ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physiology & Biochemistry  (57)
  • Pathogens & Pathogenicity  (51)
  • Oxford University Press  (108)
  • 1
    Publication Date: 2017-01-19
    Description: Although nitric oxide (NO) is an important signaling molecule in bacteria and higher organisms, excessive intracellular NO is highly reactive and dangerous. Therefore, living cells need strict regulation systems for cellular NO homeostasis. Recently, we discovered that Streptomyces coelicolor A3(2) retains the nitrogen oxide cycle (NO 3 – -〉NO 2 – -〉NO-〉NO 3 – ) and nitrite removal system. The nitrogen oxide cycle regulates cellular NO levels, thereby controlling secondary metabolism initiation (red-pigmented antibiotic, RED production) and morphological differentiation. Nitrite induces gene expression in neighboring cells, suggesting another role for this cycle as a producer of transmittable intercellular communication molecules. Here, we demonstrated that ammonium-producing nitrite reductase (NirBD) is involved in regulating NO homeostasis in S. coelicolor A3(2). NirBD was constitutively produced in culture independently of GlnR, a known transcriptional factor. NirBD cleared the accumulated nitrite from the medium. Nir deletion mutants showed increased NO-dependent gene expression at later culture stages, whereas the wild-type M145 showed decreased expression, suggesting that high NO concentration was maintained in the mutant. Moreover, the nir deletion mutant produced more RED than that produced by the wild-type M145. These results suggest that NO 2 – removal by NirBD is important to regulate NO homeostasis and to complete NO signaling in S. coelicolor .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-13
    Description: As a leading pathogen, Edwardsiella piscicida can cause hemorrhagic septicemia in fish and gastro-intestinal infections in humans. The two-component regulatory system EsrA-EsrB plays essential roles in pathogenesis through the type III and type VI secretion systems, and hemolysin production in E. piscicida . It is unclear whether other virulence- or stress response-associated genes are regulated by EsrA-EsrB. In this study, the proteomes of wild-type E. piscicida EIB202 and esrB mutant strains were compared to reveal EsrB regulon components after growth in Luria–Bertani broth (LB). Overall, the expression levels of nine genes exhibited significant changes, and five of them required the presence of EsrB, while others exhibited higher levels in the esrB mutant. The diverse functions of these proteins were identified, including amino acid metabolism, oxidative stress defense and energy production. Interestingly, superoxidase dismutase and thiol peroxidase were the most significantly down-regulated by EsrB. Furthermore, other reported reactive oxygen species (ROS) resistance-related genes were also down-regulated by EsrB as revealed by quantitative real-time. Compared with the wild-type and the complement strain esrB + , esrB displayed a significantly enhanced ROS resistance. These results demonstrated that EsrB plays important roles in the ROS resistance pathway in E. piscicida grown in LB conditions.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-13
    Description: The sepsis caused by Vibrio vulnificus is characterized by an average incubation period of 26 h and a high mortality rate exceeding 50%. The fast growth and dissemination of V. vulnificus in vivo lead to poor clinical outcomes in patients. Therefore, elucidation of the proliferation mechanisms of this organism in vivo may lead to the development of an effective therapeutic strategy. In this study, we focused on the low oxygen concentration in the intestinal milieu because of its drastic difference from that in air. Fumarate and nitrate reduction regulatory protein (FNR) is known to be a global transcriptional regulator for adaptation to anaerobic conditions in various bacteria. We generated a strain of V. vulnificus in which the fnr gene was replaced with an erythromycin resistance gene ( fnr :: erm mutant). When the fnr :: erm mutant was tested in a growth competition assay against the wild-type (WT) in vivo , the competitive index of fnr :: erm mutant to WT in the intestinal loop and liver was 0.378 ± 0.192 (mean ± SD) and 0.243 ± 0.123, respectively. These data suggested that FNR is important for the proliferation of V. vulnificus in the intestine to achieve a critical mass to be able to invade the systemic circulation.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-13
    Description: Earlier, vitamin C was demonstrated to sterilize Mycobacterium tuberculosis culture via Fenton's reaction at high concentration. It alters the regulatory pathways associated with stress response and dormancy. Since (p)ppGpp is considered to be the master regulator of stress response and is responsible for bacterial survival under stress, we tested the effect of vitamin C on the formation of (p)ppGpp. In vivo estimation of (p)ppGpp showed a decrease in (p)ppGpp levels in vitamin C-treated M. smegmatis cells in comparison to the untreated cells. Furthermore, in vitro (p)ppGpp synthesis using Rel MSM enzyme was conducted in order to confirm the specificity of the inhibition in the presence of variable concentrations of vitamin C. We observed that vitamin C at high concentration can inhibit the synthesis of (p)ppGpp. We illustrated binding of vitamin C to Rel MSM by isothermal titration calorimetry. Enzyme kinetics was followed where K 0.5 was found to be increased with the concomitant reduction of V max value suggesting mixed inhibition. Both long-term survival and biofilm formation were inhibited by vitamin C. The experiments suggest that vitamin C has the potential to be developed as the inhibitor of (p)ppGpp synthesis and stress response, at least in the concentration range used here.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-08
    Description: Helicobacter pylori is an important cause of gastric pathologies and persistent infection can lead to stomach cancer. Virulent H. pylori strains encode a type IV secretion system responsible for translocation of the oncogenic CagA protein into cells of the gastric mucosa. Gene HP0522 encodes the essential component Cag (Cag3), and we show by gel filtration and cross-linking that purified Cag forms high molecular mass complexes. In contrast, its interaction partner CagT is mostly monomeric, but co-fractionates after gel filtration. Analysis by transmission electron microscopy revealed that purified Cag complexes can self-assemble ring-like structures. Cag-overexpressing Escherichia coli exhibits membrane-associated circular profiles in regions of the cell envelope with intense immunogold labelling with a Cag-specific antiserum. Our results suggest that Cag has the capacity to form macromolecular structures contributing to the assembly of the type IV secretion system.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-29
    Description: Helicobacter pylori commonly infects the epithelial layer of the human stomach and in some individuals causes peptic ulcers, gastric adenocarcinoma or gastric lymphoma. Helicobacter pylori is a genetically diverse species, and the most important bacterial virulence factor that increases the risk of developing disease, versus asymptomatic colonization, is the cytotoxin associated gene pathogenicity island ( cag PAI). Socially housed rhesus macaques are often naturally infected with H. pylori similar to that which colonizes humans, but little is known about the cag PAI. Here we show that H. pylori strains isolated from naturally infected rhesus macaques have a cag PAI very similar to that found in human clinical isolates, and like human isolates, it encodes a functional type IV secretion system. These results provide further support for the relevance of rhesus macaques as a valid experimental model for H. pylori infection in humans.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-29
    Description: Sporisorium scitamineum is the fungus that causes sugarcane smut disease. Despite of the importance of sugarcane for Brazilian agribusiness and the persistence of the pathogen in most cropping areas, genetic variation studies are still missing for Brazilian isolates. In this study, sets of isolates were analyzed using two molecular markers (AFLP and telRFLP) and ITS sequencing. Twenty-two whips were collected from symptomatic plants in cultivated sugarcane fields of Brazil. A total of 41 haploid strains of compatible mating types were selected from individual teliospores and used for molecular genetic analyses. telRFLP and ITS analyses were expanded to six Argentine isolates, where the sugarcane smut was first recorded in America. Genetic relationship among strains suggests the human-mediated dispersal of S. scitamineum within the Brazilian territory and between the two neighboring countries. Two genetically distinct groups were defined by the combined analysis of AFLP and telRFLP. The opposite mating-type strains derived from single teliospores were clustered together into these main groups, but had not always identical haplotypes. telRFLP markers analyzed over two generations of selfing and controlled outcrossing confirmed the potential for emergence of new variants and occurrence of recombination, which are relevant events for evolution of virulence and environmental adaptation.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-23
    Description: The culturability of Escherichia coli , Ralstonia eutropha and Bacillus subtilis after incubation in phosphate-buffered saline at either 5°C or 30°C was determined. The culturability of B. subtilis showed little dependence on temperature. The culturability of E. coli rapidly decreased at 30°C but remained almost constant at 5°C. In contrast, the culturability of R. eutropha decreased by three orders of magnitude at 5°C within 24 h but only moderately decreased (one order of magnitude) at 30°C. Remarkably, prolonged incubation of R. eutropha at 30°C resulted in a full recovery of colony forming units in contrast to only a partial recovery at 5°C. Ralstonia eutropha cells at 30°C remained culturable for 3 weeks while culturability at 5°C constantly decreased. The effect of temperature was significantly stronger in a polyhydroxybutyrate-negative mutant. Our data show that accumulated polyhydroxybutyrate has a cold-protective function and can prevent R. eutropha entering the viable but not culturable state.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-23
    Description: Burkholderia pseudomallei causes melioidosis, a potentially fatal infectious disease in tropical and subtropical countries worldwide. The intracellular behaviour of this pathogen in host cells has been reported to impact the severity of melioidosis, including the development of septicaemia, a consequence of pneumonia melioidosis. We previously identified a predicted cation transporter protein, BPSS1228, that participates in the transitional stage of this intracellular pathogen. For further analysis, in this study B. pseudomallei bpss1228 mutant and complemented strains were constructed and bacterial infectivity on human lung epithelial cells, A549, investigated in vitro . Burkholderia pseudomallei bpss1228 mutant showed impaired bacterial adhesion and invasion into A549 cells compared with wild-type strain, while the deficient phenotypes were restored to wild-type levels by the complemented strain. Additionally, the inactivation of bpss1228 in the mutant strain affected flagella-based swimming on a semi-solid surface and resistance to acid stresses simulating intracellular environments. These observations of BPSS1228 relating to B. pseudomallei infection strategies shed a new light on its association with intracellular B. pseudomallei during the interaction with host cells.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-23
    Description: Formation of a transient sub-population of bacteria, referred to as persisters, is one of the most important and least understood mechanisms that bacteria employ to evade elimination. Persister cells appear to be slow-growing bacteria that are broadly protected from a wide range of antibiotics. Using both theoretical and experimental methods, we show that alternating the application and withdrawal of antibiotics can be an effective treatment—as long as the timing of the protocol is estimated with precision. More specifically, we demonstrate that timing the alternating treatment based on theoretical predictions is confirmed using experimental observations. These results support a large class of theoretical studies that show that, even without complete understanding of the biological mechanisms, these models can provide insight into properties of the system.
    Keywords: Pathogens & Pathogenicity
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...