ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate  (8)
  • Springer Verlag GMBH Germany  (7)
  • American Institute of Physics  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of obser- vations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal corre- lates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.
    Description: Published
    Description: 775-785
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Decadal prediction 􏰁 Atlantic MOC 􏰁 Predictability 􏰁 Multi-model comparison ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-09
    Description: The Indo-Pacific Ocean (i.e. region between 30E and 150E) has been experiencing a spread warming since the 1950s. At the same time the large-scale summer monsoon rainfall over India and the moisture over the East Africa/Arabian Sea are both decreasing. In this study we intend to investigate how the decrease of moisture over the East Africa/Arabian Sea is related with the Indo-Pacific Ocean warming and how this could affect the variability of the Indian summer monsoon rainfall. We performed the analysis for the period 1951-2012 based on observed precipitation, sea surface temperature and atmospheric reanalysis products and we verified the robustness of the result by comparing different datasets. The decreasing trend of moisture over the East Africa/Arabian Sea coincides with an increasing trend of moisture over the western Pacific region. This is accompanied by the strengthening (weakening) of the upward motion over the western Pacific (East Africa/Arabian Sea) that, consequently, contributes in strengthening the western Pacific-Indian Ocean Walker circulation. Associated with it, the low-level westerlies are weakening over the peninsular India, thus contributing to the reduction of moisture transport towards India. Therefore, rainfall has decreased over the Western Ghats and central-east India. Differently from previous decades, since 2003 moisture over the East Africa/Arabian Sea started to increase and this is accompanied by the strengthening of convection due to increased warming of sea surface temperature over the western Arabian Sea. Despite this moisture increase over the Arabian sea, we found that moisture transport is still weakening over the Indian landmass in the very recent decade and still contributing to the decreased precipitation over the northeast India and southern part of the Western Ghats.
    Description: Published
    Description: 949–965
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Indian Ocean warming ; Indo-Pacific moisture ; Indian monsoon rainfall ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-25
    Description: This work focuses on the Late Saalian (140 ka) Eurasian ice sheets’ surface mass balance (SMB) sensitivity to changes in sea surface temperatures (SST). An Atmospheric General Circulation Model (AGCM), forced with two preexisting Last Glacial Maximum (LGM, 21 ka) SST reconstructions, is used to compute climate at 140 and 21 ka (reference glaciation). Contrary to the LGM, the ablation almost stopped at 140 ka due to the climatic cooling effect from the large ice sheet topography. Late Saalian SST are simulated using an AGCM coupled with a mixed layer ocean. Compared to the LGM, these 140 ka SST show an inter-hemispheric asymmetry caused by the larger ice-albedo feedback, cooling climate. The resulting Late Saalian ice sheet SMB is smaller due to the extensive simulated sea ice reducing the precipitation. In conclusion, SST are important for the stability and growth of the Late Saalian Eurasian ice sheet.
    Description: Published
    Description: 531-553
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Sea surface temperatures ; Late Saalian ; Last Glacial Maximum ; Eurasian ice sheet ; Climate modelling ; Quaternary ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 02. Cryosphere::02.02. Glaciers::02.02.02. Cryosphere/atmosphere Interaction ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-22
    Description: Within the CIRCE project ‘‘Climate change and Impact Research: the Mediterranean Environment’’, an ensemble of high resolution coupled atmosphere–ocean regional climate models (AORCMs) are used to simulate the Mediterranean climate for the period 1950–2050. For the first time, realistic net surface air-sea fluxes are obtained. The sea surface temperature (SST) variability is consistent with the atmospheric forcing above it and oce- anic constraints. The surface fluxes respond to external forcing under a warming climate and show an equivalent trend in all models. This study focuses on the present day and on the evolution of the heat and water budget over the Mediterranean Sea under the SRES-A1B scenario. On the contrary to previous studies, the net total heat budget is negative over the present period in all AORCMs and sat- isfies the heat closure budget controlled by a net positive heat gain at the strait of Gibraltar in the present climate. Under climate change scenario, some models predict a warming of the Mediterranean Sea from the ocean surface (positive net heat flux) in addition to the positive flux at the strait of Gibraltar for the 2021–2050 period. The shortwave and latent flux are increasing and the longwave and sen- sible fluxes are decreasing compared to the 1961–1990 period due to a reduction of the cloud cover and an increase in greenhouse gases (GHGs) and SSTs over the 2021–2050 period. The AORCMs provide a good estimates of the water budget with a drying of the region during the twenty- first century. For the ensemble mean, he decrease in pre- cipitation and runoff is about 10 and 15% respectively and the increase in evaporation is much weaker, about 2% compared to the 1961–1990 period which confirm results obtained in recent studies. Despite a clear consistency in the trends and results between the models, this study also underlines important differences in the model set-ups, methodology and choices of some physical parameters inducing some difference in the various air-sea fluxes. An evaluation of the uncertainty sources and possible improvement for future generation of AORCMs highlights the importance of the parameterisation of the ocean albedo, rivers and cloud cover.
    Description: Published
    Description: 1859–1884
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Mediterranean Sea ; scenarios ; coupled regional climate models ; circe ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-18
    Description: This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (s) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (∆SWA), wv (DSWwv), and aerosols (∆SWs) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm-2 (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm-2 (+4.5%). The annual mean radiative effect is estimated to be -(21–22) Wm-2 for wv, and +(2–3) Wm-2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ∆SWwv by 0.93 Wm-2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in ∆SWA by 0.41 Wm-2 (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm-2 (-6.7%). The instantaneous aerosol radiative forcing (RFs) reaches values of -28 Wm-2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEs) for solar zenith angles between 55 and 70 is estimated to be (-120.6 ± 4.3) for 0.1〈A〈0.2, and (-41.2 ± 1.6) Wm-2 for 0.5〈A〈0.6.
    Description: Published
    Description: 953-969
    Description: 1.10. TTC - Telerilevamento
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Arctic radiative balance ; Surface albedo ; Atmospheric aerosols ; Water vapour ; Direct radiative forcing ; Arctic amplification ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-14
    Description: In this study we present an intercomparison of measurements of very low water vapor column content obtained with a Ground-Based Millimeter-wave Spectrometer (GBMS), Vaisala RS92k radiosondes, a Raman Lidar, and an IR Fourier Transform Spectrometer. These sets of measurements were carried out during the primary field campaign of the ECOWAR (Earth COoling by WAter vapor Radiation) project which took place on the Western Italian Alps from 3 to 16 March, 2007.
    Description: Published
    Description: 135-138
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: N/A or not JCR
    Description: open
    Keywords: Precipitable Water Vapor ; ECOWAR ; IR and Millimeter-Wave Spectroscopy ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-24
    Description: The seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geo- physical Fluid Dynamics Laboratory Coupled Model, ver- sion 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90–110°E; 10°S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circula- tion anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the south- eastern Indian Ocean warms up as the El Nino proceeds,and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the cli- matological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one.
    Description: Published
    Description: 221-236
    Description: JCR Journal
    Description: restricted
    Keywords: El Nino ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Detection of tropical lows is performed in a suite of climate model simulations using objectively-determineddetection thresholds that are resolution-dependent. It is found that there is some relationship between model resolution and tropical cyclone formation rate even after the resolution-dependent tropical cyclone detection threshold is applied. The relationship is investigated between model-simulated tropical cyclone formation and a climate-based tropical cyclone Genesis Potential Index (GPI). It is found that coar- ser-resolution models simulate the GPI better than theysimulate formation of tropical cyclones directly. As a result, there appears to be little relationship from model to modelbetween model GPI and the directly-simulated cyclone formation rate. Statistical analysis of the results shows that themain advantage of increasing model resolution is to give aconsiderably better pattern of cyclone formation. Finer resolution models also simulate a slightly better pattern of GPI, and for these models there is some relationship between the pattern of GPI simulated by each model and that model’s pattern of simulated tropical cyclone formation.
    Description: Published
    Description: 585-599
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: tropical cyclones ; climate models ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...