ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (5,804,762)
  • American Physical Society  (663,490)
Collection
Language
Years
  • 1
    Publication Date: 2024-06-05
    Description: Highlights: • Acartia hudsonica shows strong seasonality in thermal tolerance. • The observed seasonal differences in are consistent with pheno-typic plasticity not adaptation. • Body size in A. hudsonica is negatively correlated to environmental and developmental temperature. Abstract: Seasonal changes in environmental conditions require substantial physiological responses for population persistence. Phenotypic plasticity is a common mechanism to tolerate these changes, but for organisms with short generation times rapid adaptation may also be a contributing factor. Here, we used a common garden design (11 °C and 18 °C) to disentangle the impacts of adaptation from phenotypic plasticity on thermal tolerance of the calanoid copepod Acartia hudsonica collected throughout spring and summer of a single year. Acartia hudsonica were collected from five time points across the season and thermal tolerance was determined using critical thermal maximum followed by additional measurements after one generation of common garden. As sea surface temperature increased through the season, field collected individuals showed corresponding increases in thermal tolerance but decreases in body size. Despite different thermal tolerances of wild collections, after one generation of common garden animals did not differ in within thermal treatments. Instead, there was evidence of phenotypic plasticity where higher temperatures were tolerated by the 18 °C versus the 11 °C treatment animals across all collections. Despite persisting differences between collections due to either adaptation or parental effects, acclimation also had significant effects on body size, with the warm treatment resulting in smaller individuals, consistent with the temperature size rule. Therefore, the differences in thermal tolerance and body size observed in field collected A. hudsonica were predominantly driven by plasticity rather than adaptation. However, the observed decrease in body size suggests that nutrient availability for higher trophic levels and ecosystem functioning could be impacted if temperatures consistently increase with no change in copepod abundance. This is the first record of A. hudsonica in the Baltic Sea known to the authors.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-05
    Description: Abundant mineral resources in the deep sea are prospected for mining for the global metal market. Seafloor massive sulphide (SMS) deposits along the Mid-Atlantic Ridge are one of the potential sources for these metals. The extraction of SMS deposits will expose adjacent marine ecosystems to suspended particle plumes charged with elevated concentrations of heavy metals and other potentially toxic compounds. Up to date there is no information about the impact of mining activities on deep-sea benthic ecosystems such as abundant deep-sea sponge grounds in the North Atlantic Ocean. Sponge grounds play a major role in benthic-pelagic coupling and represent an important habitat for a diversity of vertebrates, invertebrates and microorganisms. To simulate the effects of mining plumes on benthic life in the deep sea, we exposed Geodia barretti, a dominant sponge species in the North Atlantic Ocean, and an associated brittle star species from the genus Ophiura spp. to a field-relevant concentration of 30 mg L−1 suspended particles of crushed SMS deposits. Three weeks of exposure to suspended particles of crushed SMS resulted in a tenfold higher rate of tissue necrosis in sponges. All brittle stars in the experiment perished within ten days of exposure. SMS particles were evidently accumulated in the sponge's mesohyl and concentrations of iron and copper were 10 times elevated in SMS exposed individuals. Oxygen consumption and clearance rates were significantly retarded after the exposure to SMS particles, hampering the physiological performance of G. barretti. These adverse effects of crushed SMS deposits on G. barretti and its associated brittle star species potentially cascade in disruptions of benthic-pelagic coupling processes in the deep sea. More elaborate studies are advisable to identify threshold levels, management concepts and mitigation measures to minimize the impact of deep-sea mining plumes on benthic life.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-04
    Description: Yedoma is a permafrost deposit widely distributed across the Arctic and found exclusively within the unglaciated regions in northern Siberia, Alaska, and the Yukon, which are the core regions of Beringia. Yedoma deposits accumulated during the late Pleistocene Stage and are characterized by their predominantly fine-grained texture and association with syngenetic perma-frost formation. The very high ground ice content is most commonly present as pore ice and wedge ice that formed contemporaneously with sediment deposition. In the last decade, research has transitioned from debates about the origin of the Yedoma deposits towards increasing attention on the large carbon and nitrogen pools in Yedoma, their vulnerability to thaw, and increasing mobilization as the climate has warmed across the Arctic. In addition to classical cryolithological and sedimentological research, new methods such as stable isotope paleoclimate reconstruction and ancient sedimentary DNA studies have been more widely applied to better understand the characteristics of Yedoma deposits and helped emphasize their value as archives of Quaternary climate and paleoecological conditions during Ice Age Beringia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-02
    Description: Manganese (Mn) is an essential micro-nutrient that can limit or, along with iron (Fe), co-limit phytoplankton growth in the ocean. Glacier meltwater is thought to be a key source of trace metals to high latitude coastal systems, but little is known about the nature of Mn delivered to glacially-influenced fjords and adjacent coastal waters. In this work, we combine in-situ dissolved Mn (dMn) measurements of surface waters with Mn K-edge X-ray absorption spectroscopy (XAS) data of suspended particles in four fjords of West Greenland. Data were collected from transects of up to 100 km in fjords with different underlying bedrock geology from 64 to 70°N. We found that dMn concentrations generally decreased conservatively with increasing salinity (from 80-120 nM at salinity 〈8 to 〈40 nM at salinities 〉25). Dissolved Fe (dFe) trends in these fjords similarly declined with increasing distance from glacier outflows (declining from 〉20 nM to 〈8 nM). However, the dMn/dFe ratio increased rapidly likely due to the greater stability of dMn at intermediate salinities (i.e. 10 – 20) compared to rapid precipitation of dFe across the salinity gradient. The XAS data indicated a widespread presence of Mn(II)-rich suspended particles near fjord surfaces, with structures akin to Mn(II)-bearing phyllosilicates. However, a distinct increase in Mn oxidation state with depth and the predominance of birnessite-like Mn(IV) oxides was observed for suspended particles in a fjord with tertiary basalt geology. The similar dMn behaviour in fjords with different suspended particle Mn speciation (i.e., Mn(II)-bearing phyllosilicates and Mn(IV)-rich birnessite) is consistent with the decoupling of dissolved and particulate Mn and suggests that dMn concentrations on the scale of these fjords are controlled primarily by dilution of a freshwater dMn source rather than exchange between dissolved and particle phases. This work provides new insights into the Mn cycle in high latitude coastal waters, where small changes in the relative availabilities of dMn, dFe and macronutrients may affect the identity of the nutrient(s) proximally limiting primary production.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-31
    Description: The mesopelagic or ocean twilight zone (OTZ) in the ocean contains huge numbers of fish in a relatively pristine environment and may therefore attract interest as a commercial fishery. In this study we evaluate in economic terms, the likely trade-offs between the different services provided by the mesopelagic layer in the Bay of Biscay and the societal benefits of its commercial exploitation. Benefits arise mainly from the likely use of this group of species as raw material for producing fishmeal and fish oil. Costs are derived from the loss in climate regulating and cultural, services, but also from the loss in the provisioning service of other commercial species. To do so we compare the current non-exploited status with a situation in where mesopelagic fishes are harvested at levels capable of producing the Maximum Sustainable Yield. Results suggest that if mesopelagic fishes are harvested, a mean value of 1.2 million Euro loss in a year will be created in the Bay of Biscay, although in a range between 42 million Euro loss and 48 Euro million benefits. This uncertainty comes, mainly, from the limited existing knowledge of the mesopelagic fishes’ biomass but also from the uncertainty on the biomass of the rest of the species of the studied ecosystem. The large range indicates that a better understanding of the mesopelagic ecosystem is needed, however, results also show that ecosystem services under no exploitation provided by the OTZ could be more valuable than the fishmeal and fish oil that potentially could be obtained from the fishes harvested in this sea layer.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-29
    Description: Fault creep along the lower eastern flank of Mt. Etna volcano has been documented since the end of the 19th century and significantly contributes to the surface faulting hazard in the area. On 29 October 2002, during a seismic swarm related to dyke intrusions, two earthquakes caused extensive damage and surface faulting in an area between the Santa Venerina and Santa Tecla villages. On the same day after the two earthquakes, an episodic aseismic creep occurred along the Scalo Pennisi Fault close to the Santa Tecla coastline. On 8 February 2022, during another aseismic creep event along the Scalo Pennisi Fault, we observed the reopening of the pre existing 2002 ground ruptures mostly as pure dilational fractures. We mapped the 2002 and 2022 surface ruptures, and collected data on displacement, length, and pattern of ground breaks. Ground ruptures affected structures located along the activated fault segments, including roads, walls and buildings. The 2002 surface faulting propagation can be ascribed to a sliding of the Mt. Etna eastern flank toward the SE, as also suggested by the related shallow seismicity, and InSAR and geodetic data between 2002 and 2005. For the 2022 event, dif ferential InSAR data, acquired in both descending and ascending views, allowed us to decompose Line of Sight (LOS) displacement into horizontal and vertical components. We detect a ~ 700 m long and ~ 500 m wide deformation zone with a downward and eastward motion (max displacement ~1,5 cm) consistent with a normal fault. We inverted the InSAR–detected surface deformation using a uniform-slip fault model and obtained a shallow detachment for the causative fault, located at ~300 m depth, within the volcanic pile. This is the first in depth study along the Scalo Pennisi Fault to suggest a shallow faulting that accommodates Mt. Etna E flank gravitational sliding.
    Description: Published
    Description: 229829
    Description: JCR Journal
    Keywords: Etna ; Aseismic creep ; Earthquake ; Surface faulting ; Volcano-tectonic deformation ; InSAR
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-28
    Description: Nominally anhydrous minerals (NAMs) may contain significant amounts of water and constitute an important reservoir for mantle hydrogen. The colloquial term ‘water’ in NAMs is related to the presence of hydroxyl-bearing (OH􀀀 ) point defects in their crystal structure, where hydrogen is bonded to lattice oxygen and is charge-balanced by cation vacancies. This hydrous component may therefore have substantial effects on the thermoelastic parameters of NAMs, comparable to other major crystal-chemical substitutions (e.g., Fe, Al). Assessment of water concentrations in natural minerals from mantle xenoliths indicates that olivine commonly stores ~0–200 ppm of water. However, the lack of samples originating from depths exceeding ~250 km coupled with the rapid diffusion of hydrogen in olivine at magmatic temperatures makes the determination of the olivine water content in the upper mantle challenging. On the other hand, numerous experimental data show that, at pressures and temperatures corresponding to deep upper mantle conditions, the water storage capacity of olivine increases to 0.2–0.5 wt%. Therefore, determining the elastic properties of olivine samples with more realistic water contents for deep upper mantle conditions may help in interpreting both seismic velocity anomalies in potentially hydrous regions of Earth’s mantle as well as the observed seismic velocity and density contrasts across the 410-km discontinuity. Here, we report simultaneous single-crystal X-ray diffraction and Brillouin scattering experiments at room temperature up to 11.96(2) GPa on hydrous [0.20(3) wt% H2O] Fo90 olivine to assess its full elastic tensor, and complement these results with a careful re-analysis of all the available single-crystal elasticity data from the literature for anhydrous Fo90 olivine. While the bulk (K) and shear (G) moduli of hydrous Fo90 olivine are virtually identical to those of the corresponding anhydrous phase, their pressure derivatives K′ and G′ are slightly larger, although consistent within mutual uncertainties. We then defined linear relations between the water concentration in Fo90 olivine, the elastic moduli and their pressure derivatives, which were then used to compute the sound velocities of Fo90 olivine with higher degrees of hydration. Even for water concentrations as high as 0.5 wt%, the sound wave velocities of hydrous and anhydrous olivines were found to be identical within uncertainties at pressures corresponding to the base of the upper mantle. Contrary to previous claims, our data suggest that water in olivine is not seismically detectable, at least for contents consistent with deep upper mantle conditions. In addition to that, our data reveal that the hydration of olivine is unlikely to be a key factor in reconciling seismic velocity and density contrasts across the 410-km discontinuity with a pyrolitic mantle.
    Description: Published
    Description: 107011
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-28
    Description: The rapid decline in both quality and availability of freshwater resources on our planet necessitates their thorough assessment to ensure sustainable usage. The growing demand for water in industrial, agricultural, and domestic sectors poses significant challenges to managing both surface and groundwater resources. This study tests and proposes a hybrid evaluation approach to determine Groundwater Quality Indices (GQIs) for irrigation (IRRI), seawater intrusion (SWI), and potability (POT), finalized to the spatial distribution of groundwater suitability involving water quality indicator along with hydrogeological and socio-economic factors. Mean Decrease Accuracy (MDA) and Information Gain Ratio (IGR) were used to state the importance of chosen factors such as level of groundwater above the sea, thickness of the aquifer, land cover, distance from coastline, silt soil content, recharge, distance from river and lagoons, depth to water table from ground, distance from agricultural wells, hydraulic conductivity, and lithology for each quality index, separately. The results of both methods showed that recharge is the most important parameter for GQIIRRI and GQIPOT, while the distance from the coastline and the rivers, are the most important for GQISWI. The spatial modelling of GQIIRRI and GQIPOT in the study area has been achieved applying three machine learning (ML) algorithms: the Boosted Regression Tree (BRT), the Random Forest (RF), and the Support Vector Machine (SVM). Validation results showed that RF has the highest prediction for GQIIRRI, while the SVM model has the highest prediction for the GQIPOT index. It is worth to mention that the future utilization and testing of new algorithms could produce even better results. Finally, GQIIRRI and GQIPOT were combined and compared using two combine and overlay methods to prepare a hybrid map of multi-GQIs. The results showed that 69% of the study area is suitable for irrigation and potable use, due to both geogenic and anthropogenic activities which contribute to make some water resources unsuitable for either use. Specifically, the northern, western, and eastern portions of the study area are in the "very high and high quality" classes while the southern portion shows "very low and low quality" classes. In conclusion, the developed map and approach can serve as a practical guide for enhancing groundwater management, identifying suitable areas for various uses and pinpointing regions requiring improved management practices.
    Description: Published
    Description: 119041
    Description: JCR Journal
    Keywords: Artificial intelligence ; Groundwater suitability ; Quality index ; Vulnerability map
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-05-28
    Description: The spatial pattern of Antarctic surface air temperature variability on multi–decadal to multi–centennial time scales is poorly known because of the short instrumental records, the relatively small number of high–resolution paleoclimate observations, and biases in climate models. Here, changes in surface air temperature over Antarctica are reconstructed over the past two millennia using data assimilation constrained by different ice core water isotope records in order to identify robust signals. The comparison between previous statistically based temperature reconstructions and simulations covering the full Common Era driven by natural and anthropogenic forcings shows major discrepancies occurring in the period 1–1000 CE over East Antarctica, with the reconstructions displaying a warming over 1–500 CE that is not reproduced by the simulations. This suggests that the trends in the first millennium deduced from the statistically based reconstructions are unlikely to be entirely forced by external forcings. Our reconstructions show the high sensitivity of the 500-year temperature trend in Antarctica and its spatial distribution to selection of the records for the reconstructions, especially during 1–500 CE. A robust cooling over Antarctica during 501–1000 CE has been obtained in three data assimilation–based reconstructions with a larger magnitude in the WAIS than elsewhere over Antarctica, in agreement with previous estimates with the larger changes than simulated in climate models. The reconstructions for atmospheric circulation indicate that the pattern of temperature changes over 501–1000 CE is related to the positive trend of Southern Annular Mode and a deepening of Amundsen Sea Low. This confirms the role of internal variability in the temperature trends on multi–centennial scales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-27
    Description: In this paper we employ a combination of gravity and hydrologic data to constrain a hydraulic model of the Škocjan Caves, an allogenic dominated karstic system in Slovenia. The gravity time-series recorded by a spring-based gravimeter, are carefully analyzed to remove tidal and non-tidal effects and unveil the local hydrologic contribution, which is influenced by the temporary accumulation of water in the cave system during the flood events of the Reka river. We make use of a combined analysis of three large flood events with peak river discharge of about 200, 230 and 300 m3/s, that caused significant water level and gravity variations sensed by the pressure transducer and by the gravimeter. By the integration of hydraulic modelling we study the different coupled gravimetric-hydrologic responses to these flood events: we show that, depending on the peak discharge and duration of the event, different flow conditions are present in the cave system. In addition to the information provided by the pressure transducer, the gravimeter is sensitive to the flow dynamics in a different sector of the cave due to the choice of its location; this configuration helps to better constrain the hydraulic model. Moreover, we find that the autogenic recharge by percolating water can significantly affect the gravity time-series and must be considered in related models. By inclusion of both the hydraulic model outcomes and of the modelling of the autogenic recharge, we are able to better explain the gravity transients during the two smaller magnitude events. In particular, during such events the autogenic contribution produces a transient gravity signal, which is about 4 times larger than the allogenic one, while during the largest flood the allogenic contribution drastically overcomes the autogenic effect by a factor 20. By discussing this case, we prove the potential of terrestrial gravity observation to depict the hydro-dynamics of these complex karstic systems as well as the potential of gravimetry to remotely monitor these storage units.
    Description: Published
    Description: 130453
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...