ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-05-09
    Description: In order to unravel the tectonic evolution of the north-central sector of the Sicily Channel (Central Mediterranean), a seismo-stratigraphic analysis of single- and multichannel seismic reflection profiles has been carried out. This allowed to identify, between 20 and 50 km offshore the central-southern coast of Sicily, a *80-km-long deformation belt, characterized by a set of WNW–ESE to NW–SE fault segments showing a polyphasic activity. Within this belt, we observed: i) Miocene normal faults reactivated during Zanclean–Piacenzian time by dextral strike-slip motion, as a consequence of the Africa– Europe convergence; ii) releasing and restraining bend geometries forming well-developed pull-apart basins and compressive structures. In the central and western sectors of the belt, we identified local transpressional reactivations of Piacenzian time, attested by well-defined compressive features like push-up structures and fault-bend anticlines. The reconstruction of timing and style of tectonic deformation suggest a strike-slip reactivation of inherited normal faults and the local subsequent positive tectonic inversion, often documented along oblique thrust ramps. This pattern represents a key for an improved knowledge of the structural style of foreland fold-and-thrust belts propagating in a preexisting extensional domain. With regard to active tectonics and seismic hazards, recent GPS data and local seismicity events suggest that this deformation process could be still active and accomplished through deep-buried structures; moreover, several normal faults showing moderate displacements have been identified on top of the Madrepore Bank and Malta High, offsetting the Late Quaternary deposits. Finally, inside the northern part of the Gela Basin, multiple slope failures, originated during Pleistocene by the further advancing of the Gela Nappe, reveal tectonically induced potential instability processes.
    Description: Published
    Description: 233–251
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic stratigraphy ; Tectonic inversion ; Strike-slip motion ; Push-up structures ; Compressive features ; Sicily Channel ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-01
    Description: We calculate Plio-Pleistocene slip rates on the blind thrusts of the outer Northern Apennines fronts, that are the potential sources of highly damaging earthquakes, as shown by the MW 6.1-6.0, 2012 Emilia-Romagna seismic sequence. Slip rates are a key parameter for understanding the seismogenic potential of active fault systems and assessing the seismic hazard they pose, however, they are difficult to calculate in slow deforming areas like the Po Plain where faulting and folding is mostly blind. To overcome this, we developed a workflow which included the preparation of a homogeneous regional dataset of geological and geophysical subsurface information, rich in Plio- Pleistocene data. We then constructed 3D geological models around selected individual structures to decompact the clastic units and restore the slip on the fault planes. The back-stripping of the differential compaction eliminates unwanted overestimation of the slip rates due to compactioninduced differential subsidence. Finally, to restore the displacement we used different methods according to the deformation style, i.e. Fault Parallel Flow for faulted horizons, trishear and elastic dislocation modeling for fault-propagation folds. The result of our study is the compilation of a slip rate database integrating former published values with 28 new values covering a time interval from the Pliocene to the present. It contains data on 14 individual blind thrusts including the Mirandola thrust, seismogenic source of the 29 May 2012, MW 6.0 earthquake. Our study highlights that the investigated thrusts were active with rates ranging between 0.1-1.0 mm/yr during the last 1.81 Myr. The Mirandola thrust slipped at 0.86±0.38 mm/yr during the last 0.4 Myr. These rates calculated with an homogeneous methodology through the entire Po Plain can be charged entirely to the thrust activity and not to secondary effects like the differential compaction of sediments across the structures.
    Description: Published
    Description: 8–25
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Blind thrusts ; Slip rates ; 3D geological modeling ; Sediment decompaction ; Po Plain ; Northern Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-01
    Description: We present a reconstruction of the central Marche thrust system in the central-northern Adriatic domain aimed at constraining the geometry of the active faults deemed to be potential sources of moderate to large earthquakes in this region and at evaluating their long-term slip rates. This system of contractional structures is associated with fault-propagation folds outcropping along the coast or buried in the offshore that have been active at least since about 3Myr. The ongoing deformation of the coastal and offshore Marche thrust system is associated with moderate historical and instrumental seismicity and recorded in sedimentary and geomorphic features. In this study, we use subsurface data coming from both published and original sources. These comprise cross-sections, seismic lines, subsurface maps and borehole data to constrain geometrically coherent local 3D geological models, with particular focus on the Pliocene and Pleistocene units. Two sections crossing five main faults and correlative anticlines are extracted to calculate slip rates on the driving thrust faults. Our slip rate calculation procedure includes a) the assessment of the onset time which is based on the sedimentary and structural architecture, b) the decompaction of clastic units where necessary, and c) the restoration of the slip on the fault planes. The assessment of the differential compaction history of clastic rocks eliminates the effects of compaction-induced subsidence which determine unwanted overestimation of slip rates. To restore the displacement along the analyzed structures, we use two different methods on the basis of the deformation style: the fault parallel flow algorithm for faulted horizons and the trishear algorithm for fault-propagation folds. The time of fault onset ranges between 5.3-2.2 Myr; overall the average slip rates of the various thrusts are in the range of 0.26-1.35 mm/yr.
    Description: Published
    Description: 122-134
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: open
    Keywords: slip rate ; 3D geological model ; structural restoration ; seismogenic source ; thrust tectonics ; northern Apennines ; Adriatic Sea ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-06-05
    Description: A detailed analysis of the earthquake effects on the urban area of Rome has been conducted for the L’Aquila sequence, which occurred in April 2009, by using an on-line macroseismic questionnaire. Intensity residuals calculated using the mainshock and four aftershocks are analyzed in the light of a very accurate and original geological reconstruction of the subsoil of Rome based on a large amount of wells. The aim of this work is to highlight ground motion amplification areas and to find a correlation with the geological settings at a sub-regional scale, putting in evidence the extreme complexity of the phenomenon and the difficulty of making a simplified model. Correlations between amplification areas and both near-surface and deep geology were found. Moreover, the detailed scale of investigation has permitted us to find a correlation between seismic amplification in recent alluvial settings and subsiding zones, and between heard seismic sound and Tiber alluvial sediments.
    Description: Published
    Description: 425-443
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: Earthquakes ; Intensity residuals ; Urban geosciences ; Macroseismic effects ; Amplification areas ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-14
    Description: On 6 April 2009, at 01:32 GMT, an Mw 6.3 seismic event hit the central Apennines, severely damaging the town of L’Aquila and dozens of neighboring villages and resulting in approximately 300 casualties (Istituto Nazionale di Geofisica e Vulcanologia, http://www.ingv.it; MedNet, http://mednet.rm.ingv.it/proce- dure/events/QRCMT/090406_013322/qrcmt.html). This earth- quake was the strongest in central Italy since the devastating 1915 Fucino event (Mw 7.0). The INGV national seismic net- work located the hypocenter 5 km southwest of L’Aquila, 8–9 km deep. Based on this information and on the seismotectonic framework of the region, earthquake geologists traveled to the field to identify possible surface faulting (Emergeo Working Group 2009a, 2009b). The most convincing evidence of pri- mary surface rupture is along the Paganica fault, the geometry of which is consistent with seismological, synthetic aperture radar (SAR) and GPS data. Investigation of other known nor- mal faults of the area, i.e., the Mt. Pettino, Mt. San Franco, and Mt. Stabiata normal faults suggested that these structures were not activated during the April 6 shock (Emergeo Working Group 2009a, 2009b). In this report, we first describe the seismotectonic frame- work of the area, and then we present the field information that supports the occurrence of surficial displacement on the Paganica fault.
    Description: Published
    Description: 940-950
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Surface coseismic ruptures ; Paganica Fault ; earthquake ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Geological Society of America
    Publication Date: 2022-06-14
    Description: In central Italy, the geometry, kinematics, and tectonic evolution of the late Neogene Umbrian Arc, which is one of the main thrusts of the northern Apennines, have long been studied. Documented evidence for orogenic curvature includes vertical axis rotations along both limbs of the arc and a positive orocline test along the entire arc. The cause of the curvature is, however, still unexplained. In this work, we focus our attention on the southern portion of the Umbrian Arc, the so-called Olevano- Antrodoco thrust. We analyze, in particular, gravity and seismic-reflection data and consider available paleomagnetic, stratigraphic, structural, and topographic evidence from the central Apennines to infer spatial extent, attitude, and surface effects of a midcrustal anticlinorium imaged in the CROP-11 deep seismic profile. The anticlinorium has horizontal dimensions of ~50 by 30 km, and it is located right beneath the Olevano- Antrodoco thrust. Stratigraphic, structural, and topographic evidence suggests that the anticlinorium produced a surface uplift during its growth in early Pliocene times. We propose an evolutionary model in which, during late Neogene time, the Olevano- Antrodoco thrust developed in an out-of sequence fashion and underwent ~16° of clockwise rotation when the thrust ran into and was then raised and folded by the growing anticlinorium (late Messinian–early Pliocene time). This new model suggests a causal link between midcrustal folding and surficial orogenic curvature that is consistent with several available data sets from the northern and central Apennines; more evidence is, however, needed to fully test our hypothesis. Additionally, due to the occurrence of midcrustal basement-involved thrusts in other orogens, this model may be a viable mechanism for arc formation elsewhere.
    Description: Published
    Description: 1409-1420
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: oroclines ; Apennines ; fold and thrust belts ; gravity anomalies ; seismic reflection profiles ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-06-10
    Description: I bacini intramontani dell’Appennino centro-meridionale sono soggetti, sin dalla loro genesi (Pleistocene inferiore), a deformazioni del suolo, la cui non uniforme distribuzione e la cui diversa entità sono una risposta all’attività di faglie, intersecanti e bordanti le pianure, e al costipamento differenziale dei depositi costituenti le successioni sedimentarie di riempimento. Al fine di valutare la distribuzione spaziale dei movimenti verticali e le relative velocità, e di interpretarne correttamente le cause, è stato affrontato uno studio multidisciplinare che ha previsto l’elaborazione di dati radar con tecnica PSInSAR, lo studio geomorfologico e strutturale e l’analisi stratigrafica di dati di sottosuolo della piana di Venafro, ampia depressione tettonica interposta tra i M. delle Mainarde-M. di Venafro ed i M. del Matese e drenata dal F. Volturno. L’interpolazione dei dati PS, effettuata in ambiente GIS, riferita a due intervalli di tempo, 1995–2000 (ERS) e 2003–2008 (ENVISAT) ha permesso di valutare i ‘cumulative vertical displacements’ (mm), i ‘displacement rates’ (mm/a) e il ‘gradient field’ dei ‘displacement rates’, consentendo di individuare alcuni settori del bacino che si distinguono per tassi di subsidenza superiori alla media e per comportamento deformativo costante nel tempo. Risulta evidente una correlazione tra la distribuzione spaziale del quadro deformativo di natura interferometrica, lo sviluppo geometrico delle faglie che interessano la piana e la natura litologica del riempimento sedimentario. I valori maggiori di subsidenza si registrano nel settore centrale della piana, probabilmente indotti da un maggiore spessore dei depositi di riempimento, nonché dalla presenza di depositi argillo-sabbiosi poco addensati e più suscettibili al costipamento, così come dalla presenza di alcuni lineamenti tettonici orientati NE-SW e NW-SE. In particolare, i valori maggiori si registrano a valle di una scarpata morfologica, orientata NW-SE, coincidente anche con un importante ‘knick point’ del F. Volturno, oltre che a valle di una faglia, orientata NW-SE (Faglia dell’’Aquae Juliae’), attiva in tempi storici per aver dislocato l’acquedotto romano.
    Description: Published
    Description: Firenze
    Description: 2T. Tettonica attiva
    Description: 5IT. Osservazioni satellitari
    Description: open
    Keywords: PS InSAR ; Geomorphology ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-24
    Description: We present a marine paleoseismology analysis of a dense network of very high resolution seismic profiles along the Gondola Fault Zone (GFZ), a right-lateral, E-W–striking, active fault system in the Adriatic foreland. This case-study aims to show how time and space variations in the activity of a dominantly right-lateral fault system can be assessed based on the vertical component of slip alone. The GFZ has been investigated for a length of 50 km. It includes two parallel subvertical fault sets and two main anticlines. The distribution of the late Middle Pleistocene to Holocene vertical component of displacement along-fault is bell-shaped, suggesting that in the long-term the fault zone acts as a single, kinematically coherent structure. Slip rates on individual fault segments, however, suggest that they may rupture independently. Vertical slip rates calculated for late Middle Pleistocene-Holocene intervals fall in a narrow range and are consistently small (0-0.18 mm/a).
    Description: Published
    Description: 393-400
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Description: open
    Keywords: Chirp-Sonar profiles ; fault reactivation ; right-lateral shear ; Adriatic Sea ; Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-24
    Description: This article focuses on the Montello thrust system in the Eastern Southern Alps as a potential seismogenic source. This system is of particular interest because of its lack of historical seismicity. Nevertheless, the system is undergoing active deformation. We developed a finite-element model using visco-elasto-plastic rheology. The free parameters of the model (essentially, the locking status of the three thrusts included in the study), were constrained by matching the observed horizontal GPS and vertical levelling data. We show that the amount of interseismic fault locking, and thus the seismic potential, is not necessarily associated with the fastest-slipping faults. More specifically, the locked Bassano thrust has a greater seismic potential than the freely slipping Montello thrust. The findings suggest that faults with subtle evidence of Quaternary activity should be carefully considered when creating seismic hazard maps.
    Description: Published
    Description: 221-227
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: interseismic deformation ; Montello thrust ; Southern Alps ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-04
    Description: This paper illustrates the results of structural studies carried out in the western margin of Tuscany along a major crustal structure. Surface deformation of sediments filling different basins aligned on top of this major structure (from north to south: the Fine Basin, the Sassa–Guardistallo basin, the Rio Guardigiano area in the Lustignano basin) allow us to date its tectonic activity to the Messinian-Early Pliocene. In these areas, structures such as reverse and strike-slip faults and mesoscopic folds are widely developed. Structural analysis determined a compressive stress field with the σ1 oriented from E-W to NE-SW active from Messinian to Early Pliocene. At the southern end of this crustal structure, the Gavorrano antiform and the granitic pluton (radiometric age of granite ~4.4 Ma) coring this fold correlate with a thrust ramp anticline at depth, and thus constrain thrust activity to the Early Pliocene. These data document a Messinian–Early Pliocene compressive activity that contrasts with models invoking continuous extensional tectonics affecting the hinterland since the Late Oligocene-Middle Miocene in the frame of a back-arc-slab retreating process. The results presented therefore raise the question of which geodynamical model could account for such a complex structural evolution of Northern Apennines hinterland.
    Description: Published
    Description: 593-604
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Northern Apennines ; hinterland areas ; structural analysis ; pluton emplacement ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...