ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (30,791)
  • GEOPHYSICS  (21,936)
Collection
Keywords
Publisher
Years
  • 11
    Publication Date: 2019-08-28
    Description: The path-integrated linear growth of electromagnetic ion cyclotron waves in the outer (L is greater than or equal to 7) magnetosphere is investigated using a realistic thermal plasma distribution with an additional anisotropic energetic ring current H(+) to provide free energy for instability. The results provide a realistic simulation of the recent Active Magneto- spheric Particle Tracer Explorers (AMPTE) observations. For conditions typical of the dayside magnetosphere, high plasma beta effects reduce the group velocity and significantly increase the spatial growth rates for left-handed polarized instabilities just below the helium gyrofrequency Omega(sub He(+)), and on the guided mode above Omega(sub He(+)) but below the cross over frequency omega(sub cr). Relatively high densities, typical of the afternoon local time sector, favor these low group velocity effects for predominantly field-aligned waves. Lower densities, typical of those found in the early morning local time sector, increase the group velocity but allow strong convective instabilities at high normalized frequencies well above Omega(sub He(+)). These waves are reflected in the magnetosphere and can exist for several equatorial transits without significant damping. They are left-handed polarized only on the first equatorial crossing and become linearly polarized for the remainder of the ray path. Consequently, these waves should be observed with basically linear polarization at all frequencies and all latitudes in the early morning local time sector. Wave growth below Omega(sub He(+)) is severely limited owing to the narrow bandwidth for instability and the small resonant path lengths. In the afternoon sector, where plasma densities can exceed 10(exp 7)/cu m, intense convective amplification is possible both above and below Omega(sub He(+)). Waves below Omega(sub He(+)) are not subject to reflection when the O(+) concentration is small and therefore should be observed with left-handed polarization near the equator and essentially linear polarization at higher latitudes. Since the He(+) concentration is usually large in the afternoon sector, guided mode waves above Omega(sub He(+)) reflect to form a background distribution with basically linear polarization. We suggest that the strong left-handed polarized emissions observed by AMPTE in the afternoon sector near the equator are probably due to strongly growing low group velocity waves at frequencies just below Omega(sub He(+)), and on the guided mode above Omega(sub He(+)).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,259-17,273
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-28
    Description: Ion drift meter observations from the Atmosphere Explorer E (AE-E) satellite during the period of January 1977 to December 1979 are used to study the dependence of equatorial (dip latitudes less than or equal to 7.5 deg) F region vertical plasma drifts (east-west electric fields) on solar activity, season, and longitude. The satellite-observed ion drifts show large day-to-day and seasonal variations. Solar cycle effects are most pronounced near the dusk sector with a large increase of the prereversal velocity enhancement from solar minimum to maximum. The diuurnal, seasonal, and solar cycle dependence of the logitudinally averaged drifts are consistent with results from the Jicamarca radar except near the June solstice when the AE-E nighttime downward velocities are significantly smaller than those observed by the radar. Pronounced presunrise downward drift enhancements are often observed over a large longituudinal range but not in the Peruvian equatorial region. The satellite data indicate that longitudinal variations are largest near the June solstice, particularly near dawn and dusk but are virtually absent during equinox. The longitudinal dependence of the AE-E vertical drifts is consistent with results from ionosonde data. These measurements were also used to develop a description of equatorial F region vertical drifts in four longitudinal sectors.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5769-5776
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-28
    Description: By comparing data from the Special Sensor Microwave Imager (SSM/I) to field data, a melt threshold of the cross-polarized gradient ratio (XPGR), which is a normalized difference between the 19 GHz horizontally-polarized and 37 GHz vertically polarized brightness temperatures, is determined. This threshold, XPGR = -0.025, is used to classify dry and wet snow. The annual areal extent of melt is mapped for the years 1988 through 1991, and inter-annual variations of melt extent are examined. The results show that the melt extent varied from a low of 38.3% of the ice sheet (1990) to a high of 41.7% (1991) during the years 1988-1991.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 787-790
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-28
    Description: Dynamic isolation of the winter Arctic circumpolar vortex during 1992-1993 and 1993-1994 (the second and third northern hemisphere winters of the UARS mission) is studied using quasi-horizontal isentropic trajectories. Ejection of vortex air and entrainment of mid-latitude air into the vortex are quantified and compared with climatological values obtained from the analysis of 16 Arctic winters. A number of unusual features of both winters are discussed. The most notable features are the anomalous isolation experienced by the vortex during December 1992 and the unusual degree of isolation and persistence of the vortex during February and March of both years. the 1992-1993 winter season is the most consistently isolated vortex on record. Only during January 1993, when entrainment is large, is this pattern of extreme isolation broken.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1237-1240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-28
    Description: We present a statisical survey of Prognoz 10 solar wind observations at the times of transient (step function and impulsive) variations in the dayside magnetospheric magnetic field strength measured by the GOES 5 and 6 geosynchronous satellites. The results indicate that 51% of the magnetospheric events can be associated with corresponding variations in the solar wind dynamic pressure. A further 17% of the events can be associated with fluctuations in the interplanetary magnetic field orientation in the sense previously associated with foreshock pressure pulses. We find no tendency for impulsive events at dayside geosynchronous orbit to be associated with north/south fluctuations in the interplanetary magnetic field (IMF) orientation, nor for the events to occur primarily during intervals of southward IMF. The success rate for associating transient events at dayside geosynchronous orbit with solar wind features decreases as Prognoz 10 moves farther from the Earth-Sun line. The observations indicate that variations in the solar wind dynamic pressure and foreshock pressure pulses associated with variations in the IMF cone angle are the predominant causes of large-amplitude transient events observed at dayside geosynchronous orbit.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5643-5656
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-28
    Description: Plasmoids are thought to occur as a consequence of the formation of a near-Earth neutral line during the evolution of a geomagnetic substorm. Using a 3D, global MHD simulation of the interaction of the Earth's magnetosphere with the solar wind, we initiate a substorm by a southward turning of the Interplanetary Magnetic Field (IMF) after a long period of steady northward field. A large plasmoid is formed and ejected. We show field line maps of its shape and relate its formation time to the progress of the substorm as indicated by the cross polar potential. Because of the large region of closed field in the magnetotail at the time of the substorm, this plasmoid is longer in axial dimension than is typically observed. We compare the simulation results with the type of satellite observations which have been used to argue for the existence of plasmoids or of traveling compression regions (TCRs) in the lobes or magnetosheath. The simulation predicts that plasmoid passage would result in a strong signal in the cross tail electric field.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 859-862
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-28
    Description: Plasma and magnetic field data from the International Sun Earth Explorer (ISEE) 2 spacecraft recorded on 29 Oct 1979 provide evidence for a slow shock (SS) in the reconnection layer of the dayside magnetopause. This layer is bounded on the magnetosheath side by the SS and on the magnetospheric side by a rotational discontinuity (RD). The direction of the accelerated plasma flow, the earthward sense of the normal magnetic field across both discontinuities, and the relative orientation of the SS and the RD all indicate that the reconnection site was located south of the spacecraft. Examination of the substantial pressure anisotropy downstream of the SS explains two unusual properties of the shock: (1) the slow-mode and intermediate-mode phase speeds are inverted downstream of the SS such that the RD propagates behind the SS rather than ahead of it; (2) the magnetic wave polarization reserves such that the SS initially displays a left-handed polarization and then switches to a right-handed polarization inside the shock structure.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 9-Aug; p. 501-506
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-28
    Description: Measurements of crustal uplift from bedrock around the edges of Antarctica or Greenland could help constrain the mass balance of those ice caps. Present-day changes in ice could cause vertical displacement rates of several mm/yr around Antarctica and up to 10-15 mm/yr around Greenland. Horizontal displacement rates are likely to be about 1/3 the vertical rates. The viscoelastic response of the earth to past changes in ice could cause uplift rates that are several times larger. By measuring both gravity and vertical displacements, it is possible to remove the viscoelastic effects, so that the observations can be used to constrain present-day thickness changes.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 8; p. 977-980
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: Recent updates and extensions to a steady-state two-dimensional linearized model of global-scale atmospheric waves have facilitated improved calculations of those which are subharmonics of a solar day and propagate with the apparent motion of the sun. The model improvements are briefly described and some updated predictions of the migrating solar diurnal component are highlighted. The latter represent the first numerical modeling effort to examining the seasonal variability of the migrating diurnal harmonic as it propagates into the mesosphere and lower thermosphere.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 8; p. 893-896
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-28
    Description: We present a simple analytic model of the interaction of cold convective downwelling currents with an endothermic phase change. The model describes the ponding and lateral spreading of downflows along the phase transition interface. A simple comparison of the vertical forces on the ponding material provides a necessary condition for a downflow to penetrate the phase boundary. This condition is fundamentally dependent on the geometry of the downflow. For planar downwellings, the model predicts a minimum ponding time before the structure can penetrate the phase boundary. For columnar (axisymmetric) downflows, there is no minimum time of spreading required before penetration can proceed. The model thus provides an explanation for the observation that in numerical models of three-dimensional convection with an endothermic phase change, cylindrical downflows penetrate the phase interface while planar ones do not. Since descending slabs in the Earth's mantle display a wide spectrum of geometries between planar and cylindrical (given various trench curvatures, as well as intersections of two or more subduction zones), this phenomenon may explain, in part, why some slabs appear to extend into the lower mantle while others are deflected at the 660 km discontinuity.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 23; p. 2599-2602
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...