ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (20,125)
  • LUNAR AND PLANETARY EXPLORATION  (14,409)
  • SOLAR PHYSICS  (5,716)
  • 1
    Publication Date: 2019-08-28
    Description: The quantum yield and reaction threshold for the photochemical dissociation of cyanoacetylene into a hydrogen atom and the cyanoethynyl radical have been determined. The quantum yield at 185 nm is approximately 0.09. The threshold is approximately 240 nm. Combination of this data with literature values shows that production of excited-state cyanoacetylene is the major primary process resulting from irradiation between 185 and 254 nm. Also determined are the relative rate constants for the abstraction of a hydrogen atom from hydrogen, methane, and ethane by the cyanoethynyl radical (k(H2):k(CH4):k(C2H6) = 1:9.3:63). Implications of these results for the proposal that hydrogen abstraction plays an important role in the conversion of methane to ethane and in the protection of unsaturated compounds from photoconsumption in the atmosphere of Titan are discussed.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 115; 1; p. 119-125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The atmospheric flow on Io is numerically computed in a flat 2-D axisymmetric geometry for a sublimation atmosphere on the trailing hemisphere subjected to plasma bombardment, UV heating, and IR cooling. Calculations are performed for subsolar vapor pressures of approximately 6.5 x 10(exp -3) Pa (approximately 3 x 10(exp 18) SO2/sq cm) and 6.8 x 10(exp -4) Pa (approximately 4 x 10(exp 17) SO2/sq cm); the latter approximates the vapor pressure of F. P. Fanale et al. (1982). The amount of plasma energy deposited in the atmosphere is 20% of the plasma flow energy due to corotation (J. A. Linker et al., 1988). It is found that plasma heating significantly inflates the upper atmosphere, increasing both the exobase altitude and the amount of surface covered by more than an exospheric column of gas. This in turn controls the supply of the Io plasma torus (M. A. McGrath and R. E. Johnson, 1987). The horizontal flow of mass and energy is also important in determining the exobase altitude; and it is shown that IR cooling can be important, although our use of the equilibrium, cool-to-space approximation for a pure SO2 gas (E. Lellouch et al., 1992) may overestimate this effect. The calculated exobase altitudes are somewhat lower than those suggested by McGrath and Johnson (1987) for supplying the torus, indicating the details of the plasma energy deposition and sputter ejection rate near the exobase, as well as the IR emission from this region need to be examined. In addition, the molecules sublimed (or sputtered) from the surface are transported to the exobase in times short compared to the molecular photodissociation time. Therefore, the exobase is dominated by molecular species and the exobase is supplied by a small region of the surface.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 115; 1; p. 109-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E4; p. 7531-7537
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: We analyze simultaneous, or near-simultaneous, coregistered, digital, photometric images of solar photospheric intensity and line-of-sight magnetic field. Images were made with the Lockheed tunable filter instrument at the Swedish Solar Observatory, La Palma, with the video spectra-spectroheliograph system at the San Fernando Observatory and with the new NASA spectromagnetograph at the National Solar Observatory at Kitt Peak. We study the disk center contrasts of small magnetic elements. While active region faculae are dark at disk center quiet Sun network features are bright. The populations of magnetic field elements that make up these two kinds of features are quite different. Different contrast center-limb functions must be used when estimating their irradiance or luminosity contributions. The disk center contrasts of active region faculae are colar dependent and indicate a depth effect related to the H(-) opacity of the facular atmopshere. This results is important for calibration of monochromatic observations of faculae to bolometric irradiance fluctuations. We emphasize the value of cooperative observations among installations whose differing strengths are complementary.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 18,911-18,918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: A thermal model that can be easily adapted to craters of arbitrary shape is developed and applied to high-latitude impact craters on Mercury and the Moon, Chao Meng Fu crater at -87.5 deg L on Mercury, an unnamed bowl-shaped crater at 86.7 deg L on Mercury, and Peary crater at 88.6 deg L on the Moon. For an assumed input topography and grid of surface elements, the model computes for each element the irradiation from direct insolation and reflected and emitted radiation from other elements, taking into account shadowing by walls of the crater, partial obscuration of the solar disk near the poles and the diurnal, orbital, and seasonal cycles. Temperatures are computed over the surface grid as functions of depth and time from the surface to a specified depth and over the pertinent astronomical cycles, including the effects of direct and indirect surface irradiation, infrared radiation, heat conduction, and interior heating. Vapor fluxes and ice recession times are computed as functions of ice depth over the surface grid. Temperatures profiles, vapor fluxes, and ice recession times were computed for flat surfaces not associated with craters near the poles of Mercury and the Moon. It was found that water ice could have existed throughout geologic time within the maximum radar detection depth of recent observation of Mercury (J. K. Harmon and M. A. Slade, 1992, Science 258, 640-643) poleward of approximately 87 - 88 deg L on Mercury and poleward of approximately 73 deg L on the Moon. For Chao Meng Fu crater it was found that approximately 40% of the crater floor is permanently shadowed from direct solar insolation, while the remainder of the crater floor is periodically illuminated by a partially obscured Sun. Temperatures at the upper levels of the south wall can slightly exceed 550 K. Surface temperatures in the permanently shadowed region of the crater floor are under approximately 130 K, which could have allowed water ice to exist throughout geologic time within the radar detection depth of recent observation of Mercury. For small bowl-shaped crater on Mercury, it was found that most of the crater is permanently shadowed from direct solar radiation, except for a narrow semicircular band bordering the north rim. However, temperatures in the permanently shadowed region periodically reach a maximum near approximately 315 K due to efficient heating of the small crater by thermal emission and reflection from the small sunlit region, which periodically reaches temperatures exceeding 630 K. Water ice could not have existed throughout geologic time anywhere in this crater within the radar detection depth. For Peary crater on the Moon, the entire crater floor is permanently shadowed from direct solar insolation with maximum temperature under 120 K. The upper level of the north wall periodically reaches a maximum temperature near 310 K. The low temperatures on the crater floor would have allowed water ice to exist near the surface throughout geologic time, provided that the Moon's obliquity was always as low as it is at present.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 111; 2; p. 441-455
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: We examine the effects of the loss of Mars atmospheric constituents by solar-wind-induced sputtering and by photochemical escape during the past 3.8 billion years. Sputtering is capable of efficiently removing species from the upper atmosphere, including the light noble gases; nitrogen and oxygen are removed by photochemical processes as well. Due to diffusive separation (by mass) above the homopause, removal from the top of the atmosphere will fractionate the isotopes of each species, with the lighter mass being preferentially lost. For carbon and oxygen, this allows us to determine the size of nonatmospheric reservoirs which mix with the atmosphere; these reservoirs can be CO2 adsorbed in the regolith and H2O in the polar ice caps. We have constructed both simple analytical models and time-dependent models of the loss of volatiles from and supply to the martian atmosphere. Both argon and neon require continued replenishment from outgassing over geologic time. For argon, sputtering loss explains the fractionation of (Ar-36)/(Ar-38) without requiring a distinct epoch of hydrodynamic escape (although fractionation of Xe isotopes still requires very early hydrodynamic loss). For neon, the current (Ne-22)/(Ne-20) ratio represents a balance between loss to space and continued resupply from the interior; the similarity of the ratio to the terrestrial value is coincidental. For nitrogen, the loss by both sputtering and photochemical escape would produce a fractionation of (N-15)/(N-14) larger than observed; an early, thicker carbon dioxide atmosphere could mitigate the nitrogen loss and produce the observed fractionation, as could continued outgassing of juvenile nitorgen. Based on the isotopic constraints, the total amount of carbon dioxide lost over geologic time is probably on the order of tens of millibars rather than a substantial fraction of a bar. The total loss from solar-wind-induced sputtering and photochemical escape, therefore, does not seem able to explain the loss of a putative thick, early atmosphere withput requiring formation of extensive surface carbonate deposits or other nonatmospheric reservoirs for CO2.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 111; 2; p. 271-288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: We prospose a new center and ring assignment for the original Chryse impact basin based upon photogeologic mapping of Noachian outcrops and re-examination of the published geology using orthographic projections. While others have centered the Chryse impact on the topographic low associated with Hesperian volcanic and fluvial deposits, we suggest that the center of the Noachian-age excavation cavity was located approximately 800 km to the north, and that the basin topography was modified significantly from the Noachian into the Hesperian. Evolution of the topographic low included structural modification by a later impact centered in Acidalia, restricted volcanic deposition and loading, localized subsidence, and restricted deposition from the circum-Chryse outlfow channels.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1269-1272
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: Interplanetary scintillation measurements of the disturbance factor, g, from October 1991 to October 1992 are used to construct synoptic Carrington maps. These maps, which show the structure of the quiet solar wind, are compared with X-ray Carrington maps from the Yohkoh Soft X-ray Telescope (SXT) instrument. For the period studied the global structure outlined by (weakly) enhanced g-values apparent in the interplanetary scintillation (IPS) maps tend to match the active regions (as shown in the X-ray maps) significantly better than the heliospheric current sheet. Contrary to traditional opinion, which views active regions as magnetically closed structures that do not have any significant impact on the solar wind flow, our results suggest that density fluctuations in the solar wind are significantly enhanced over active regions. These results support the suggestion by Uchida et al. (1992), based on Yohkoh observations of expanding active regions, that active regions play a role in feeding mass into the quiet solar wind.
    Keywords: SOLAR PHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 5; p. 643-646
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: We have analyzed the geomagnetic transmission of solar energetic Fe ions at approximately 200-600 MeV per nucleon during the great solar energetic particle (SEP) events of 1989 September-October. By comparing fluences from the Chicago charged-particle telescope on IMP-8 in interplanetary space and from NRL's Heavy Ions in Space (HIIS) experiment aboard the Long Duration Exposure Facility (LDEF) in low-Earth orbit, we obtain a mean ionic charge (Q(sub 3)) = 14.2 +/- 1.4. This result is significantly lower than (Q) observed at approximately 1 MeV per nucleon in impulsive, He-3 rich SEP events, indicating that neither acceleration at the flare site nor flare-heated plasma significantly contributes to the high-energy Fe ions we observe. But it agrees well with the (Q) observed in gradual SEP events at approximately 1 MeV per nucleon, in which ions are accelerated by shocks driven by fast coronal mass ejections, and hence shows that particles are accelerated to very high energies in this way. We also note apparent differences between solar wind and SEP charge state distributions, which may favor a coronal (rather than solar wind) seed population or may suggest additional ionization in the ambient shock-region plasma.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 444; 2; p. L109-L113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E12; p. 26105-26028
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...