ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems  (14)
  • Elsevier Science Limited  (13)
  • Public Library of Science
Collection
Years
  • 1
    Publication Date: 2024-05-09
    Description: A geochemical survey of the main thermal waters discharging in the southwestern part of the Domuyo volcanic complex (Argentina),where the latest volcanic activity dates to 0.11 Ma, has highlighted the extraordinarily high heat loss from this remote site in Patagonia. The thermal water discharges are mostly Na-Cl in composition and have TDS values up to 3.78 g L−1 (El Humazo). A simple hydrogeochemical approach shows that 1,100 to 1,300 kg s−1 of boiling waters, which have been affected by shallow steam separation, flow into the main drainage of the area (Rio Varvarco). A dramatic increase of the most conservative species such as Na, Cl and Li from the Rio Varvarco fromupstreamto downstreamwas observed and related solely to the contribution of hydrothermal fluids. The equilibrium temperatures of the discharging thermal fluids, calculated on the basis of the Na-K-Mg geothermometer, are between 190 °C and 230 °C. If we refer to a liquid originally at 220 °C (enthalpy = 944 J g−1), the thermal energy release can be estimated as high as 1.1±0.2 GW, a value that ismuch higher than the natural release of heat in other important geothermal fields worldwide, e.g., Mutnovsky (Russia), Wairakei (New Zealand) and Lassen Peak (USA). This value is the second highest measured advective heat flux from any hydrothermal system on Earth after Yellowstone.
    Description: Published
    Description: 71–77
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Domuyo volcano ; Argentine Patagonia ; Geothermal potential ; Water geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: The genetic relationship between carbon-bearing species (CO, CO2, CH4, C2H6, C3H8, C2H4 and C3H6) was investigated in volcanic-hydrothermal gases emitted from Nisyros (Greece), Vesuvio, La Solfatara (Campi Flegrei) and Pantelleria (all Italy). Apparent carbon isotopic temperatures of the CH4-CO2 system are ~360°C at Nisyros, 420-460°C at Vesuvio, ~450°C at La Solfatara and ~540°C at Pantelleria. These temperatures are confirmed by measured propene/propane and H2/H2O concentration ratios. CH4 and CO2 equilibrate in the single liquid phase prior to the onset of boiling, whereas propene and propane attain equilibrium in the saturated water vapor phase. Boiling in these high-enthalpy hydrothermal systems might occur isothermally. Once vapor has been extracted from the parental liquid, CO/CO2 responds most sensitively to the temperature gradient encountered by the ascending gases. Our results imply that the CH4-CO2 isotopic geothermometer can provide reliable information about temperatures of deep hydrothermal liquids associated with volcanism. Propene/propane and H2/H2O concentration ratios should be measured along with the carbon isotopic composition of CO2 and CH4 to provide independent constraints on the geological significance of the apparent carbon isotopic temperatures.
    Description: Published
    Description: 66–75
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrocarbons ; Hydrothermal fluids ; Volcanoes ; Geothermometry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-09
    Description: The Principal Cordillera of Central Chile is characterized by two belts of different ages and lithologies: (i) an eastern Mesozoic belt, consisting of limestone- and gypsum-rich sedimentary rocks at the border between Central Chile and Argentina, where the active volcanic arc occurs; and (ii) a western belt of Cenozoic age containing basaltic to andesitic volcanic and volcanoclastic sequences. This distinctive geological setting controls water chemistry of cold and thermal springs in the region, which are fed by meteoric water that circulates through deep regional structures. In the western sector of Principal Cordillera, water–rock interaction processes produce lowTDS, slightly alkaline HCO3 − dominatedwaters, although dissolution of underlyingMesozoic evaporitic rocks occasionally causes SO4 2− and Cl− enrichments. In this area, few Na+–HCO3 − and Na+–SO4 2− waters occurred, being likely produced by a Ca2+–Na+ exchange during water–rock interactions. Differently, the chemical features of Ca2+–Cl−waterswas likely related to an albitization–chloritization process affecting basaltic to andesitic rocks outcropping in this area. Addition of Na+–Cl− brines uprising from the eastern sector through the westverging thrust faults cannot be excluded, as suggested by the occurrence of mantle He (~19%) in dissolved gases. In contrast, in the eastern sector of the study region, mainly characterized by the occurrence of evaporitic sequences and relatively high heat flow,mature Na+–Cl− waters were recognized, the latter being likely related to promising geothermal reservoirs, as supported by the chemical composition of the associated bubbling and fumarolic gases. Their relatively low3He/4He ratios (up to 3.9 Ra)measured in the fumaroles on this area evidenced a significant crustal contamination by radiogenic 4He. The latter was likely due to (i) degassing from 4He-rich magma batches residing in the crust, and/or (ii) addition of fluids interacting with sedimentary rocks. This interpretation is consistent with the measured δ13C-CO2 values (from−13.2 to−5.72‰vs. V-PDB) and the CO2/3He ratios (up to 14.6 × 1010), which suggest that CO2 mostly originates from the limestone-rich basement and recycling of subducted sediments,with an important addition of sedimentary (organic-derived) carbon,whereas mantle degassing contributes at a minor extent. According to geothermometric estimations based on the Na+, K+, Mg2+ and Ca2+ contents, the mature Na+–Cl− rich waters approached a chemical equilibrium with calcite, dolomite, anhydrite, fluorite, albite, K-feldspar and Ca- andMg-saponites at a broad range of temperatures (up to ~300 °C) In the associated gas phase, equilibria of chemical reactions characterized by slowkinetics (e.g. sabatier reaction) suggested significant contributions from hot and oxidizing magmatic gases. This hypothesis is consistent with the δ13C-CO2, Rc/Ra, CO2/3He values of the fumarolic gases. Accordingly, the isotopic signatures of the fumarolic steam is similar to that of fluids discharged from the summit craters of the two active volcanoes in the study area (Tupungatito and Planchón–Peteroa). These results encourage the development of further geochemical and geophysical surveys aimed to provide an exhaustive evaluation of the geothermal potential of these volcanic–hydrothermal systems.
    Description: Published
    Description: 97-113
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Fluid geochemistry ; Central Chile ; Water–gas–rock interaction ; Hydrothermal reservoir ; Geothermal resource ; Volcanoes ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-09
    Description: The Vicano–Cimino Volcanic District (VCVD) is related to the post-orogenic magmatic activity of the peri- Tyrrhenian sector of Central Italy. The chemical and isotopic compositions of 333 water discharges and 25 gas emissions indicate the occurrence of two main sources: 1) cold Ca-HCO3 to Ca(Na, K)-HCO3 type waters from relatively shallow aquifers hosted in volcanic and sedimentary formations; and 2) thermal Ca-SO4(HCO3) type waters located in a deep CO2-pressurized reservoir, hosted in carbonate–evaporite rocks and separated from the shallow aquifers by thick sequences of low-permeability formations. Carbon dioxide is mainly produced by thermal metamorphic decarbonation within the deepest and hottest parts of the carbonate–evaporite reservoir (δ13C–CO2 from−3.1 to+2.2‰vs. VPDB), likely affected by a mantle-rooted CO2. ReleaseofCO2-rich gases from the deep aquifer into the overlying shallow aquifers produces high-CO2 springs and bubbling pools. The spatial distribution of thermal waters and CO2-rich cold discharges is strongly controlled by fractures and faults located in correspondencewith buried structural highs. Stable isotopes (δD and δ18O) suggest thatmeteoric water feeds both the shallowand deep reservoirs. The relatively lowR/Ra values (0.27–1.19) indicate that He ismainly deriving from a crustal source, with minor component from the mantle affected by crustal contamination related to the subduction of the Adriatic plate. Consistently, relatively high N2/Ar and N2/3He ratios and positive δ15N–N2 values (from0.91 to 5.7‰vs. air) characterize the VCVD gas discharges, suggesting the occurrence of a significant “excess” nitrogen. Isotopic compositions of CH4 (δ13C–CH4 and δD–CH4 values from−28.9 to−22.1‰vs. VPDB and from −176 to −138‰ vs. VSMOW, respectively), and composition of light alkanes are indicative of prevalent thermogenic CH4, although the occurrence of abiogenic CH4 production cannot be excluded. The δ34S–H2S values (from+9.3 to+11.4‰vs. VCDT) are consistentwith the hypothesis of H2S production fromthermogenic reduction of Triassic anhydrites. Gas geothermometry in the H2O–H2–Ar–H2S system suggests that the VCVD gases equilibrated in a liquid phase at redox conditions controlled by interactions of fluids with the local mineral assemblage at temperatures lower (b200 °C) than that andmeasured in deep (N2000 m) geothermalwells. This confirms that secondary processes, i.e. steam condensation, gas dissolution in shallow aquifers, re-equilibration at lower temperature, and microbial activity, significantly affect the chemistry of the uprising fluids. Thermal water chemistry supports the occurrence in this area of an anomalous heat flowthat, coupledwith the recent demographic growth, makes this site suitable for direct and indirect exploitation of the geothermal resource, in agreement with the preliminary surveys carried out in the 1970's–1990's for geothermal exploration purposes.
    Description: Published
    Description: 96-114
    Description: 5A. Energia e georisorse
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal resources ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: An extensive self-potential survey was carried out in the central volcanic complex of Tenerife Island (Canary Islands, Spain). A total amount of ~237 kmof profileswith 20 mspacing betweenmeasurementswas completed, including radial profiles extending from the summits of Teide and Pico Viejo, and circular profiles inside and around Las Cañadas caldera and the northern slopes of Teide and Pico Viejo. One of themain results of this mapping is the detection ofwell-developed hydrothermal systemswithin the edifices of Teide and Pico Viejo, and also associated with the flank satellite M. Blanca and M. Rajada volcanoes. A strong structural control of the surface manifestation of these hydrothermal systems is deduced from the data, pointing to the subdivision of Teide and Pico Viejo hydrothermal systems in three zones: summit crater, upper and lower hydrothermal systems. Self-potential maxima related to hydrothermal activity are absent from the proximal parts of the NE and NW rift zones as well as from at least two of the mafic historical eruptions (Chinyero and Siete Fuentes), indicating that long-lived hydrothermal systems have developed exclusively over relatively shallow felsic magma reservoirs. Towards Las Cañadas caldera floor and walls, the influence of the central hydrothermal systems disappears and the self-potential signal is controlled by the topography, the distance to thewater table of Las Cañadas aquifer and its geometry. Nevertheless, fossil or remanent hydrothermal activity at some points along the Caldera wall, especially around the Roques de García area, is also suggested by the data. Self-potential data indicate the existence of independent groundwater systems in the three calderas of Ucanca, Guajara and Diego Hernández, with a funnel shaped negative anomaly in the Diego Hernández caldera floor related to the subsurface topography of the caldera bottom. Two other important self-potential features are detected: positive values towards the northwestern Santiago rift, possibly due to the relatively high altitude of the water-table in this area; and a linear set ofminima to thewest of Pico Viejo, aligned with the northwestern rift and related to meteoricwater infiltration along its fracture system.
    Description: Published
    Description: 59-77
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: reserved
    Keywords: Self-potential ; Hydrothermal system ; Tenerife ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-07-14
    Description: The geochemical behaviour of Rare Earth Elements, Zr and Hf was investigated in the thermal waters of Nevado del Ruiz volcano system. A wide range of pH, between 1.0 and 8.8, characterizes these fluids. The acidic waters are sulphate dominatedwith different Cl/SO4 ratios. The important role of the pH and the ionic complexes for the distribution of REE, Zr and Hf in the aqueous phase was evidenced. The pH rules the precipitation of authigenic Fe and Al oxyhydroxides producing changes in REE, Zr, Hf amounts and strong anomalies of Cerium. The precipitation of alunite and jarosite removes LREE from the solution, changing the REE distribution in acidic waters. Y–Ho and Zr–Hf (twin pairs) have a different behaviour in strong acidic waterswith respect to the water with pH near-neutral. Yttrium and Ho behave as Zr and Hf in waters with pH near neutral-to-neutral, showing superchondritic ratios. The twin pairs showed to be sensitive to the co-precipitation and/or adsorption onto the surface of authigenic particulate (Fe-, Al-oxyhydroxides), suggesting an enhanced scavenging of Ho and Hf with respect to Y and Zr, leading to superchondritic values. In acidic waters, a different behaviour of twin pairs occurs with chondritic Y/Ho ratios and sub-chondritic Zr/Hf ratios. For the first time, Zr and Hf were investigated in natural acidic fluids to understand the behaviour of these elements in extreme acidic conditions and different major anion chemistry. Zr/Hf molar ratio changes from 4.75 to 49.29 in water with pH b 3.6. In strong acidic waters the fractionation of Zr and Hf was recognized as function of major anion contents (Cl and SO4), suggesting the formation of complexes leading to sub-chondritic Zr/Hf molar ratios.
    Description: Published
    Description: 125–133
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: JCR Journal
    Description: restricted
    Keywords: Zirconium ; Hafnium ; Rare earth elements ; Ionic complexes ; Acidic waters ; Fe–Al oxyhydroxides ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-01
    Description: Between 1994 and 1995, gas samples from fumaroles and thermal waters were collected on Ischia Island. The chemical composition of the shallow and deep natural hydrothermal fluids discharged is related to the main hydrological and lithological characteristics of the rock formations present in the reservoir. A biphase reservoir (liquid 1 gas) is identified, where the dominant liquid has a temperature of about 2808C. On the basis of d 13CTDC values it was possible to hypothesize a deep source characterised by carbon isotopic values varying from 0 to 23d‰. These values are noticeably more positive with respect to those attributed to magmatic CO2 d13CCO2 ranging from 25 to 28d ‰), thus suggesting a magmatic source modified by crustal contamination. This hypothesis is supported by the carbon isotopic composition of CO2 in sampled gases, which varied from 0 to 25d‰. The inferred isotopic value of carbon of magmatic CO2 would then be about 22d‰. The observed differences in C isotopic composition between fumarolic and magmatic gases would be caused by kinetic and/or equilibrium fractionation processes. These processes would cause a fractionation of d 13C of deep CO2 towards more negative values (down to 25‰). Actually, CO2 removal or addition processes caused by the interaction between deep gases and shallow hydrothermal waters are likely to be responsible for the different chemical and isotopic compositions of gaseous emissions. For these reasons, and on the basis of the homogeneity of geothermometric values, the existence of a single, large reservoir that feeds all of the fluids discharged at Ischia Island can be hypothesised. Based on acquired data, a new geochemical model of the geothermal system of Ischia Island is proposed.
    Description: Published
    Description: 151-178
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: gas thermometers; water geothermometer; dissolved gases; geothermal system; Ischia Island ; 03. Hydrosphere::03.02. Hydrology::03.02.02. Hydrological processes: interaction, transport, dynamics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-24
    Description: Hule and Rı´o Cuarto are maar lakes located 11 and 18 km N of Poa´s volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Rı´o Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).
    Description: Published
    Description: e102456
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: bio activity, volcanic lakes, costa rica ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-09
    Description: A comprehensive hydrogeochemical study of the cold and thermal groundwaters of the presently quiescent volcanic system at Methana was undertaken that involved collecting 71 natural water samples. Methana is a peninsula in Peloponnesus, Greece whose arid climate and hydrological situation is similar to that of the nearby small islands of the Aegean Sea. Similarly, the chemical and isotopic compositions of its water are dominated by the mixing of seawaterwith meteoric water both through direct intrusion and meteoric recharge. However, the simple mixing trends at Methana are modified by water–rock interaction processes, enhanced by the dissolution of endogenous CO2, which lead to strong enrichments in alkalinity, Ca, Ba, Fe and Mn. The thermal waters show very high salinity that is sometimes close to that of seawater [total dissolved solids (TDS)=8.5–40 g/l]. Although the cold groundwaters sometimes also show elevated TDS values (up to 6.3 g/l), their overall quality is acceptable due to the trace metal and nitrate contents mostly being below acceptable limits. While the saltiest groundwaters are not acceptable for human consumption, they are used for irrigation without exerting toxic effects on plants, which is probably due to the high permeability of the soils not supporting salt accumulation and salinity-resistant crops being cultivated.
    Description: Published
    Description: 110-119
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Hydrogeochemistry ; volcanic aquifers ; Salinization ; stable isotopes ; Trace elements ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: A multidisciplinary approach integrating self-potential, soil temperature, heat flux, CO2 efflux and gravity gradiometry signals was used to investigate a relatively small fissure-related hydrothermal systemnear the summit of Mt. Etna volcano (Italy). Measurements were performed through two different surveys carried out at the beginning and at the end of July 2009, right after the end of the long-lived 2008–2009 flank eruption and in coincidencewith an increase in diffuse flank degassing related to a reactivation of the volcano, leading to the opening of a new summit vent (NSEC). The main goal was to use a multidisciplinary approach to the detection of hidden fractures in an area of evident near-surface hydrothermal activity. Despite the different methodologies used and the different geometry of the sampling grid between the surveys, all parameters concurred in confirming that the study area is crossed by faults related with the main fracture systems of the south flank of the volcano,where a continuous hydrothermal circulation is established. Results also highlighted that hydrothermal activity in this area changed both in space and in time. These changes were a clear response to variations in themagmatic system, notably tomigration of magma at various depth within the main feeder systemof the volcano. The results suggest that this specific area, initially chosen as the optimal test-site for the proposed approach, can be useful in order to get information on the potential reactivation of the summit craters of Mt. Etna.
    Description: Istituto Nazionale di Geofisica e Vulcanologia — Sezione di Catania — Osservatorio Etneo
    Description: Published
    Description: 111-125
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Etna volcano ; Hydrothermal system ; Fractures systems ; Multidisciplinary ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...