ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-11
    Description: As the world struggles to reduce its dependence on fossil fuels and curb greenhouse gas emissions, industrial biotechnology is also ‘going green.’ Escherichia coli has long been used as a model Gram-negative bacterium, not only for fundamental research, but also for industrial applications. Recently, however, cyanobacteria have emerged as candidate chassis for the production of commodity fuels and chemicals, utilizing CO2 and sunlight as the main nutrient requirements. In addition to their potential for reducing greenhouse gas emissions and lowering production costs, cyanobacteria have naturally efficient pathways for the production metabolites such as carotenoids, which are of importance in the nutraceutical industry. The unique metabolic and regulatory pathways present in cyanobacteria present new challenges for metabolic engineers and synthetic biologists. Moreover, their requirement for light and the dynamic regulatory mechanisms of the diurnal cycle further complicate the development and application of cyanobacteria for industrial applications. Consequently, significant advancements in cyanobacterial engineering and strain development are necessary for the development of a ‘green E. coli’. This Research Topic will focus on cyanobacteria as organisms of emerging industrial relevance, including research focused on the development of genetic tools for cyanobacteria, the investigation of new cyanobacterial strains, the construction of novel cyanobacterial strains via genetic engineering, the application of ‘omics’ tools to advance the understanding of engineered cyanobacteria, and the development of computational models for cyanobacterial strain development.
    Keywords: TP248.13-248.65 ; TA1-2040 ; green E. coli ; engineered cyanobacteria ; Cell factories ; Green chemicals ; Carbon Capture ; Cyanobacteria ; genetically modified cyanobacteria ; sustainable bioproducts ; Photosynthesis ; Biofuels ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TC Biochemical engineering::TCB Biotechnology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: Chloroplasts are plant cell organelles that convert light energy into relatively stable chemical energy via the photosynthetic process. By doing so, they sustain life on Earth. Chloroplasts also provide diverse metabolic activities for plant cells, including the synthesis of fatty acids, membrane lipids, isoprenoids, tetrapyrroles, starch, and hormones. The biogenesis, morphogenesis, protection and senescence of chloroplasts are essential for maintaining a proper structure and function of chloroplasts, which will be the theme of this Research Topic. Chloroplasts are enclosed by an envelope of two membranes which encompass a third complex membrane system, the thylakoids, including grana and lamellae. In addition, starch grains, plastoglobules, stromules, eyespots, pyrenoids, etc. are also important structures of chloroplasts. It is widely accepted that chloroplasts evolved from a free-living photosynthetic cyanobacterium, which was engulfed by a eukaryotic cell. Chloroplasts retain a minimal genome, most of the chloroplast proteins are encoded by nuclear genes and the gene products are transported into the chloroplast through complex import machinery. The coordination of nuclear and plastid genome expressions establishes the framework of both anterograde and retrograde signaling pathways. As the leaf develops from the shoot apical meristem, proplastids and etioplastids differentiate into chloroplasts. Chloroplasts are divided by a huge protein complex, also called the plastid-dividing (PD) machinery, and their division is also regulated by many factors to get an optimized number and size of chloroplasts in the cell. These processes are fundamental for the biogenesis and three-dimensional dynamic structure of chloroplasts. During the photosynthesis, reactive oxygen species (ROS) and other cellular signals can be made. As an important metabolic hub of the plant cell, the chloroplast health has been found critical for a variety of abiotic and biotic stresses, including drought, high light, cold, heat, oxidative stresses, phosphate deprivation, and programmed cell death at sites of infection. Therefore, a better understanding the responses of chloroplasts to these stresses is part of knowing how the plant itself responds. Ultimately, this knowledge will be necessary to engineer crops more resistant to common stresses. With the current global environment changes, world population growth, and the pivotal role of chloroplasts in carbon metabolism, it is of great significance to represent the advancement in this field, for science and society. Tremendous progresses have been made in the field of chloroplast biology in recent years. Through concerted efforts from the community, greater discoveries definitely will emerge in the future.
    Keywords: QK1-989 ; Q1-390 ; envelope ; development ; chloroplast ; thylakoid ; Photosynthesis ; Lipid ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-05
    Description: Microbial mat communities consist of dense populations of microorganisms embedded in exopolymers and/or biomineralized solid phases, and are often found in mm-cm thick assemblages, which can be stratified due to environmental gradients such as light, oxygen or sulfide. Microbial mat communities are commonly observed under extreme environmental conditions, deriving energy primarily from light and/or reduced chemicals to drive autotrophic fixation of carbon dioxide. Microbial mat ecosystems are regarded as living analogues of primordial systems on Earth, and they often form perennial structures with conspicuous stratifications of microbial populations that can be studied in situ under stable conditions for many years. Consequently, microbial mat communities are ideal natural laboratories and represent excellent model systems for studying microbial community structure and function, microbial dynamics and interactions, and discovery of new microorganisms with novel metabolic pathways potentially useful in future industrial and/or medical applications. Due to their relative simplicity and organization, microbial mat communities are often excellent testing grounds for new technologies in microbiology including micro-sensor analysis, stable isotope methodology and modern genomics. Integrative studies of microbial mat communities that combine modern biogeochemical and molecular biological methods with traditional microbiology, macro-ecological approaches, and community network modeling will provide new and detailed insights regarding the systems biology of microbial mats and the complex interplay among individual populations and their physicochemical environment. These processes ultimately control the biogeochemical cycling of energy and/or nutrients in microbial systems. Similarities in microbial community function across different types of communities from highly disparate environments may provide a deeper basis for understanding microbial community dynamics and the ecological role of specific microbial populations. Approaches and concepts developed in highly-constrained, relatively stable natural communities may also provide insights useful for studying and understanding more complex microbial communities.
    Keywords: QR1-502 ; Q1-390 ; Metagenomics ; Metabolomics ; chemotrophy ; extremophiles ; microbial mats ; Proteomics ; microsensors ; Diel cycling ; Photosynthesis ; Systems Biology ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical)
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-31
    Description: Jules Verne (1828-1905), author of Around the World in Eighty Days (1873) and Journey to the Center of the Earth (1864), wrote in 1875: "I believe that water will one day be used as a fuel, because the hydrogen and oxygen which constitute it, used separately or together, will furnish an inexhaustible source of heat and light. I therefore believe that, when coal (oil) deposits are oxidised, we will heat ourselves by means of water. Water is the fuel of the future". Solar energy is the only renewable energy source that has sufficient capacity for the global energy need; it is the only one that can address the issues of energy crisis and global climate change. A vast amount of solar energy is harvested and stored via photosynthesis in plants, algae, and cyanobacteria since over 3 billion years. Today, it is estimated that photosynthesis produces more than 100 billion tons of dry biomass annually, which would be equivalent to a hundred times the weight of the total human population on our planet at the present time, and equal to a global energy storage rate of about 100 TW. The solar power is the most abundant source of renewable energy, and oxygenic photosynthesis uses this energy to power the planet using the amazing reaction of water splitting. During water splitting, driven ultimately by sunlight, oxygen is released into the atmosphere, and this, along with food production by photosynthesis, supports life on our earth. The other product of water oxidation is “hydrogen” (proton and electron). This ‘hydrogen’ is not normally released into the atmosphere as hydrogen gas but combined with carbon dioxide to make high energy containing organic molecules. When we burn fuels we combine these organic molecules with oxygen. The design of new solar energy systems must adhere to the same principle as that of natural photosynthesis. For us to manipulate it to our benefit, it is imperative that we completely understand the basic processes of natural photosynthesis, and chemical conversion, such as light harvesting, excitation energy transfer, electron transfer, ion transport, and carbon fixation. Equally important, we must exploit application of this knowledge to the development of fully synthetic and/or hybrid devices. Understanding of photosynthetic reactions is not only a satisfying intellectual pursuit, but it is important for improving agricultural yields and for developing new solar technologies. Today, we have considerable knowledge of the working of photosynthesis and its photosystems, including the water oxidation reaction. Recent advances towards the understanding of the structure and the mechanism of the natural photosynthetic systems are being made at the molecular level. To mimic natural photosynthesis, inorganic chemists, organic chemists, electrochemists, material scientists, biochemists, biophysicists, and plant biologists must work together and only then significant progress in harnessing energy via “artificial photosynthesis” will be possible. This Research Topic provides recent advances of our understanding of photosynthesis, gives to our readers recent information on photosynthesis research, and summarizes the characteristics of the natural system from the standpoint of what we could learn from it to produce an efficient artificial system, i.e., from the natural to the artificial. This topic is intended to include exciting breakthroughs, possible limitations, and open questions in the frontiers in photosynthesis research.
    Keywords: QP1-981 ; QK1-989 ; Q1-390 ; chlorophyll f ; kinase ; water oxidation ; thylakoid membrane ; FTIR ; Mass Spectrometry ; reaction center ; photoinhibition ; Photosynthesis ; photoaclimation ; thema EDItEUR::M Medicine and Nursing::MF Pre-clinical medicine: basic sciences::MFG Physiology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology B: Biology 19 (1993), S. 61-66 
    ISSN: 1011-1344
    Keywords: Chlorophyll ; Growth promotion ; Lycopersicon esculentum ; Near UV ; Photosynthesis ; Raphanus sativus ; UVA
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology B: Biology 20 (1993), S. 87-93 
    ISSN: 1011-1344
    Keywords: Algae ; Light-harvesting complex I ; Light-harvesting complex II ; Photosynthesis ; Photosystem I ; Pigment organization ; Pleurochloris meiringensis ; Xanthophyceae
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology B: Biology 21 (1993), S. 229-234 
    ISSN: 1011-1344
    Keywords: Carotenoids ; Chloroplast membrane ; Light harvesting complex ; Photosynthesis ; Xanthophylls ; Zeaxanthin
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology B: Biology 22 (1994), S. 95-104 
    ISSN: 1011-1344
    Keywords: Fluorescence ; Photosynthesis ; Picosecond kinetics
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology B: Biology 24 (1994), S. 33-40 
    ISSN: 1011-1344
    Keywords: Growth promotion ; Nicotinamide coenzymes ; Nitrate reductase ; Photosynthesis ; Raphanus sativus ; Soluble protein ; UV-A ; Vitamin C
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology B: Biology 20 (1993), S. 127-132 
    ISSN: 1011-1344
    Keywords: Absorption-detected magnetic resonance ; Bacteriochlorophyll ; Photosynthesis ; Reaction centre ; Triplet state
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...