ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (3,944)
  • 1995-1999  (3,916)
  • 1900-1904  (28)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 30 (1995), S. 1-7 
    ISSN: 0886-1544
    Keywords: actin ; cytoskeleton ; contractile ring ; microinjection ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cofilin is a small actin-binding protein which reguiates actin polymerization in a pH-dependent manner. Immunofluorescence microscopy with a monoclonal antibody for cofilin revealed that this protein is temporarily concentrated at the contractile ring during cytokinesis. Cofilin appeared to accumulate rapidly at the contractile ring during late stages of furrowing, and was finally enriched at the midbody. The concentration of cofilin at the contractile ring was observed in several kinds of cultured cells. Furthermore, cofilin introduced into living cells by a microinjection method was also concentrated at the contractile ring. These results suggest that cofilin is involved in actin reorganization during cytokinesis. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 30 (1995), S. 38-49 
    ISSN: 0886-1544
    Keywords: Listeria monocytogenes ; actin ; profilin ; DNase I ; vitamin D-binding protein ; phalloidin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Infection of host cells by Listeria monocytogenes results in the recruitment of cytoplasmic actin into a tail-like appendage that projects from one end of the bacterium. Each filamentous actin tail progressively lengthenes, providing the force which drives the bacterium in a forward direction through the cytoplasm and later results in Listeria cell-to-cell spread. Host cell actin monomers are incorporated into the filamentous actin tail at a discrete site, the bacterial-actin tail interface. We have studied the consequences of microinjecting three different actin monomer-binding proteins on the actin tail assembly and Listeria intracellular movement. Introduction of high concentrations of profilin (estimated injected intracellular concentration 11-22 m̈M) into infected PtK2 cells causes a marked slowing of actin tail elongation and bacterial migration. Lower intracellular concentrations of two other injected higher affinity monomer-sequenstering proteins, Vitamin D-binding protein (DBP; 1-2 m̈M) and DNase I (6-7 m̈M) completely block bacterial-induced actin assembly and bacterial migration. The onset of inhibition by each protein is gradual (10-20 min) indicating that the mechanisms by which these proteins interfere with Listeria-induced actin assembly are likely to be complex. To exclude the possibility that Listeria recruits preformed actin filaments to generate the tails and that these monomer-binding proteins act by depolymerizing such performed actin filaments, living infected cells have been injected with fluorescently labeled phalloidin (3 m̈M). Although the stress fibers are labeled, no fluorescent phalloidin is found in the tails of the moving bacteria. These results demonstrate that Listeria-induced actin assembly in PtK2 cells is the result of assembly of actin monomers into new filaments and that Listeria's ability to recruit polymerization competent monomeric actin is very sensitive to the introduction of exogenous actin monomer-binding proteins. © 1995 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0886-1544
    Keywords: microfilamentous cytoskeleton ; actin binding proteins ; actin polymerization ; annealing ; non-muscle cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Gelsolin, a Ca++ activated, 90 kd actin binding protein, can regulate actin polymerization in polymorphonuclear leukocytes (PMNs) via severing of filaments to dissolve gels or by capping of filament ends to limit polymerization. In Triton-lysed PMNs, 30% of gelsolin is bound to the Triton-soluble F-actin (TSF) pool and none is bound to the Triton-insoluble F-actin (TIF) pool. Calcium-activated PMNs exhibit concurrent temporal and quantitative TIF growth and TSF and total F-actin loss. To determine if gelsolin plays a role in regulating TSF pool size, we monitored gelsolin-actin interactions and TIF, TSF and G-actin content at 5 second intervals in PMNs activated with the calcium ionophore, ionomycin. Actin pools were measured by NBDphallacidin binding and by gel scans and expressed relative to basal; gelsolin-actin interactions were measured as change in the amount of EGTA-resistant gelsolin:actin (G:A) complexes and by immunoblot quantification of gelsolin in actin pools. In basal PMNs, 33% of PMN gelsolin is bound in 1:1 EGTA-resistant G:A complexes and TSF and TIF retain 30% and 0% of PMN gelsolin, respectively. By 20 seconds after ionomycin addition, TSF decreases, TIF increases and a fraction of gelsolin repartitions from the TSF to the TIF pool. At maximum change (60 seconds), total F-actin (TIF + TSF) and TSF decrease and TIF increases by 25%; gelsolin is bound to both TSF and TIF (35% of total gelsolin in each pool), and 1:1 EGTA-resistant G:A complexes increase from 33% to 70%. No changes occur in cells activated by ionomycin in the absence of Ca++. The data show Ca++ activated TIF growth and TSF loss are temporally and quantitatively associated with an increase in the percent of gelsolin bound to actin and the translocation of gelsolin from TSF to TIF. This is unique, since no other PMN activator is known to repartition gelsolin into TIF actin. Further, the Ca++ activated initial increase in TIF concurrent with a fall in TSF without a change in total F-actin or G-actin content suggest that TIF grows initially only by TSF annealing/cross-linking to TIF. Gelsolin may regulate these events. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 30 (1995), S. 153-163 
    ISSN: 0886-1544
    Keywords: colchicine binding site ; MTC ; cod microtubules ; bovine microtubules ; MAPs ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Isolated microtubules from cod (Gadus morhua) are apparently more stable to colchicine than bovine microtubules. In order to further characterize this difference, the effect of the colchicine analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cyclo heptatrien-1-one (MTC) was studied on assembly, as measured by turbidity and sedimentation analysis, and on polymer morphology. MTC has the advantage to bind fast and reversible to the colchicine binding site of tubulin even at low temperatures. It was found to bind to one site in cod brain tubulin, with affinity (6.5 ± 1.5) × 105M 1at both low or high temperature, similarly to bovine brain tubulin. However, the effect of the binding differed. At substoichiometric concentrations of MTC bovine brain microtubule assembly was almost completely inhibited, while less effect was seen on the mass of polymerized cod microtubule proteins. A preformed bovine tubulin-colchicine complex inhibited the assembly of both cod and bovine microtubules at substoichiometric concentrations, but the effect on the assembly of cod microtubules was less. At higher concentrations (5 × 10-5 to 1 × 10-3M), MTC induced a large amount of cold-stable spirals of cod proteins, whereas abnormal polymers without any defined structure were formed from bovine proteins. Spirals of cod microtubule proteins were only formed in the presence of microtubule associated proteins (MAPs), indicating that the morphological effect of MTC can be modulated by MAPs. The effects of colchicine and MTC differed. At 10-5M colchicine no spirals were formed, while at 10-4M and 10-3M, a mixture of spirals and aggregates was found. The morphology of the spirals differed both from vinblastine spirals and from the spirals previously found when cod microtubule proteins polymerize in the presence of high Ca2concentrations. The present data show that even if the colchicine binding site is conserved between many different species, the bindings have different effects which seem to depend on intrinsic properties of the different tubulins. © 1995 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 31 (1995), S. 34-44 
    ISSN: 0886-1544
    Keywords: microtubule ; MTOC ; mitosis ; MPM-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In diverse cell types, monoclonal antibody MPM-2 recognizes a class of phosphorylated proteins related to microtubule organizing centers and abundant during mitosis. We have used this antibody in an attempt to identify the spatial and temporal localization of putative microtubule organizing centers in endosperm cells of the higher plant Haemanthus. Our results show that MPM-2 recognized epitope is present in interphase cells and enriched in mitotic cells. In interphase the antibody usually stains cytoplasmic granules. During the interphase-prophase transition immunoreactive material appears in the nucleus, at the nuclear envelope, and in association with microtubules. Concomitantly, we observed an increase of immunoreactivity of the cytoplasm. During mitosis the phosphorproteins recognized by MPM-2 are detected in the cytoplasm, in association with microtubules of the spindle, the phragmoplast, and in the newly-formed cell plate. After completion of mitosis, only the cell plate and cytoplasmic granules are MPM-2 positive. Extraction of the cells with Triton X-100 prior to fixation removes staining of the cytoplasm by MPM-2. The detergent resistant immunoreactive material remains associated with surrounding the nucleus microtubules of the prophase spindle, the core of kinetochore fibers, and the phragmoplast. In the phragmoplast, however, segments of microtubules which are distal to the cell plate are depleted of MPM-2.These data demonstrate that microtubule arrays of endosperm cells are phosphorylated during mitosis. Thus, similar to animal cells, interphase and mitotic microtubules of higher plants have different properties. Additionally, the localization of detergent resistant MPM-2 antigen points to the difference in microtubule nucleation/organization between higher plant and animal cells.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 31 (1995), S. 59-65 
    ISSN: 0886-1544
    Keywords: flagella ; cane-shaped bend ; principal bend ; calcium ; membrane depolarization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: To investigate the mechanism of the flagellar quiescence in sperm, we examined the effect of electric stimulation of individual spermatozoa of the sea urchin, Hemicentrotus pulcherrimus. Stimulation with a suction electrode attached to the sperm head elicited a flagellar quiescence response, in which the sperm showed a typical cane-shaped bend in the proximal region of the flagellum when the electrode was used as anode. Cathodic stimulation also induced quiescence, but was much less effective than anodic stimulation. During the quiescence response, which lasted for 1-3 s, no new bend was initiated, and subsequently the flagellum resumed normal beating. The quiescence response required the presence of Ca2+ (〉2 mM) in sea water, and was inhibited by Co2+ and La3+. At low Ca2+ concentrations (2-5 mM), the angle of the cane-shaped bend was smaller than that at 10 mM Ca2+; thus the angle of the cane-shaped bend, characteristic of the quiescence response is dependent on Ca2+ concentration. These results suggest membrane, followed by an influx of Ca2+ into the flagellum through Ca2+ channels. The increase in Ca2+ concentration within the flagellum affects the amount of sliding and thus produces a cane-shaped proximal bend of various angles, white inhibiting both the propagation of the proximal bend (principal bend) and the formation of a new reverse bend.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 30 (1995), S. 285-300 
    ISSN: 0886-1544
    Keywords: microtubule dynamics ; β-tubulin ; mitosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Microtubule (MT) dynamics vary both spatially and temporally within cells and are thought to be important for proper MT cellular function. Because MT dynamics appear to be closely tied to the guanosine triphosphatase (GTPase) activity of β-tubulin subunits, we examined the importance of MT dynamics in the budding yeast S. cerevisiae by introducing a T107K point mutation into a region of the single β-tubulin gene, TUB2, known to affect the assembly-dependent GTPase activity of MTs in vitro. Analysis of MT dynamic behavior by video-enhanced differential interference contrast microscopy, revealed that T107K subunits slowed both the growth rates and catastrophic disassembly rates of individual MTs in vitro. In haploid cells tub2-T107K is lethal; but in tub2-T107K/tub2-590 heterozygotes the mutation is viable, dominant, and slows cell-cycle progression through mitosis, without causing wholesale disruption of cellular MTs. The correlation between the slower growing and shortening rates of MTs in vitro, and the slower mitosis in vivo suggests that MT dynamics are important in budding yeast and may regulate the rate of nuclear movement and segregation. The slower mitosis in mutant celis did not result in premature cytokinesis and cell death, further suggesting that cell-cycle control mechanisms “sense” the mitotic slowdown, possibly by monitoring MT dynamics directly. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 30 (1995), S. 310-323 
    ISSN: 0886-1544
    Keywords: mitosis ; mitotic apparatus ; sea urchin ; immunofluorescence ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A protein component of 62-kDa (p62) in the mitotic apparatus of the sea urchin embryo has been shown to be important for the proper progression of mitosis [Dinsmore and Sloboda, 1989: Cell 57:127-134]. To study the subcellular distribution of p62 during the cell cycle of sea urchin embryos, indirect immunofluorescence microscopy was used coupled to a modified detergent extraction procedure. The improved fluorescent images obtained by this procedure provide new information concerning the subcellular localization of p62 during the cell cycle that could not be obtained with previous conventional staining procedures [Johnston and Sloboda, 1992: J. Cell Biol. 119:843-854]. Using affinity purified antibodies to p62, we observed a cell cycle-dependent localization of p62 to the chromosomes/chromatin. Prior to nuclear envelope breakdown of the first or second cell cycle, p62 localizes to chromatin in the nucleus. During mitosis, p62 associates with the region of the spindle occupied by the microtubules of the mitotic apparatus. As anaphase proceeds, but before the nuclear envelope reforms, p62 becomes progressively associated with the chromosomes. Thus, p62 is incorporated into the forming interphase nucleus due to its association with chromosomes during late anaphase, rather than by active translocation into the newly formed daughter nuclei through the nuclear pores. The protein is not unique to marine embryos, as demonstrated by immunofluorescence of Y-1 cells, a mouse adrenal tumor cell line In these cells, the localization of p62 is similar to the localization of the protein in echinoderm embryos, suggesting its possible function in mitotic progression in mammalian somatic cells as well. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 31 (1995), S. 45-58 
    ISSN: 0886-1544
    Keywords: colcemid ; kinesin ; actin ; topographic guidance ; micromachined substrata ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Fibroblats cultured on grooved substrata align themselves and migrate in the direction of the grooves, a phenomenon called contact guidance. Microtubules have been deemed important for cell polarization, directed locomotion, and contact guidance. Because microtubules were the first cytoskeletal element to align with the grooves when fibroblasts spread on grooved substrata, we investigated the consequences of eliminating the influence of microtubules by seeding fibro-blasts onto smooth and grooved micromachined substrata in the presence of colcemid. Fibroblasts were examined by time-lapse cinematography and epifluorescence or confocal microscopy to determine cell shape and orientation and the distribution of cytoskeletal or associated elements including actin filaments, vinculin, intermediate filaments, microtubules, and kinesin.As expected, cells spreading on smooth surfaces in the presence of colcemid did not polarize or locomote. Surprisingly however, by 24 hours, cells spread on grooves in the presence of colcemid were morphologically indistinguishable from controls spread on grooves. Both groups were aligned and polarized with the direction of the grooves and demonstrated directional locomotion along the grooves. In the absence of microtubules, kinesin localized to some of the aligned stress fibers and to leading edges of cells spreading on grooves. The grooved substratum compensated for the microtubule deficiency by organizing and maintaining an aligned actin filament framework. Thus, microtubules are not required to establish or maintain stable, polarized cell shapes or directed locomotion, provided an alternate oriented cytoskeletal component is available.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 31 (1995), S. 255-258 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...