ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (165,232)
  • 1950-1954  (228,317)
Collection
Language
Years
Year
  • 1
    Publication Date: 2024-05-14
    Description: Here we provide particle size and biovolume distribution data from an Underwater Vision Profiler 6, mounted on a BGC Argo Float with the WMO number 6903095. The float was deployed in a cyclonic eddy off Cape Columbine, South Africa on the 13 April 2021 close to the eddy center at 33.07 degree South, 13.89 degree East. Parking depth was set at 300 m and profiling depth initially to 600 m and later increased to 1000 m depth to maintain the float in the eddy. Profiling frequency was every three days. It stayed within this eddy for about five months and then operated East and Southeast of South Africa until it was deliberately picked up on the 17 September 2022 at 34.43 degrees South and 10.21 degrees East.
    Keywords: 0000a_WMO6903095; 0000p_WMO6903095; 0001a_WMO6903095; 0001p_WMO6903095; 0002a_WMO6903095; 0002p_WMO6903095; 0003a_WMO6903095; 0003p_WMO6903095; 0004a_WMO6903095; 0004p_WMO6903095; 0005a_WMO6903095; 0005p_WMO6903095; 0006a_WMO6903095; 0006p_WMO6903095; 0007a_WMO6903095; 0007p_WMO6903095; 0008a_WMO6903095; 0008p_WMO6903095; 0009a_WMO6903095; 0009p_WMO6903095; 0010a_WMO6903095; 0010p_WMO6903095; 0011a_WMO6903095; 0011p_WMO6903095; 0012a_WMO6903095; 0012p_WMO6903095; 0013a_WMO6903095; 0013p_WMO6903095; 0014a_WMO6903095; 0014p_WMO6903095; 0015a_WMO6903095; 0015p_WMO6903095; 0016a_WMO6903095; 0016p_WMO6903095; 0017a_WMO6903095; 0017p_WMO6903095; 0018a_WMO6903095; 0018p_WMO6903095; 0019a_WMO6903095; 0019p_WMO6903095; 0020a_WMO6903095; 0020p_WMO6903095; 0021a_WMO6903095; 0021p_WMO6903095; 0022a_WMO6903095; 0022p_WMO6903095; 0023a_WMO6903095; 0023p_WMO6903095; 0024a_WMO6903095; 0024p_WMO6903095; 0025a_WMO6903095; 0025p_WMO6903095; 0026a_WMO6903095; 0026p_WMO6903095; 0027a_WMO6903095; 0027p_WMO6903095; 0028a_WMO6903095; 0028p_WMO6903095; 0029a_WMO6903095; 0029p_WMO6903095; 0030a_WMO6903095; 0030p_WMO6903095; 0031a_WMO6903095; 0031p_WMO6903095; 0032a_WMO6903095; 0032p_WMO6903095; 0033a_WMO6903095; 0033p_WMO6903095; 0034a_WMO6903095; 0034p_WMO6903095; 0035a_WMO6903095; 0035p_WMO6903095; 0036a_WMO6903095; 0036p_WMO6903095; 0037a_WMO6903095; 0037p_WMO6903095; 0038a_WMO6903095; 0038p_WMO6903095; 0039a_WMO6903095; 0039p_WMO6903095; 0040a_WMO6903095; 0040p_WMO6903095; 0041a_WMO6903095; 0041p_WMO6903095; 0042a_WMO6903095; 0042p_WMO6903095; 0043a_WMO6903095; 0043p_WMO6903095; 0044a_WMO6903095; 0044p_WMO6903095; 0045a_WMO6903095; 0045p_WMO6903095; 0046a_WMO6903095; 0046p_WMO6903095; 0047a_WMO6903095; 0047p_WMO6903095; 0048a_WMO6903095; 0048p_WMO6903095; 0049a_WMO6903095; 0049p_WMO6903095; 0050a_WMO6903095; 0050p_WMO6903095; 0051a_WMO6903095; 0051p_WMO6903095; 0052a_WMO6903095; 0052p_WMO6903095; 0053a_WMO6903095; 0053p_WMO6903095; 0054a_WMO6903095; 0054p_WMO6903095; 0055a_WMO6903095; 0055p_WMO6903095; 0056a_WMO6903095; 0056p_WMO6903095; 0057a_WMO6903095; 0057p_WMO6903095; 0058a_WMO6903095; 0058p_WMO6903095; 0059a_WMO6903095; 0059p_WMO6903095; 0060a_WMO6903095; 0060p_WMO6903095; 0061a_WMO6903095; 0061p_WMO6903095; 0062a_WMO6903095; 0062p_WMO6903095; 0063a_WMO6903095; 0063p_WMO6903095; 0064a_WMO6903095; 0064p_WMO6903095; 0065a_WMO6903095; 0065p_WMO6903095; 0066a_WMO6903095; 0066p_WMO6903095; 0067a_WMO6903095; 0067p_WMO6903095; 0068a_WMO6903095; 0068p_WMO6903095; 0069a_WMO6903095; 0069p_WMO6903095; 0070a_WMO6903095; 0070p_WMO6903095; 0071a_WMO6903095; 0071p_WMO6903095; 0072a_WMO6903095; 0072p_WMO6903095; 0073a_WMO6903095; 0073p_WMO6903095; 0074a_WMO6903095; 0074p_WMO6903095; 0075a_WMO6903095; 0075p_WMO6903095; 0076a_WMO6903095; 0076p_WMO6903095; 0077a_WMO6903095; 0077p_WMO6903095; 0078a_WMO6903095; 0078p_WMO6903095; 0079a_WMO6903095; 0079p_WMO6903095; 0080a_WMO6903095; 0080p_WMO6903095; 0081a_WMO6903095; 0081p_WMO6903095; 0082a_WMO6903095; 0082p_WMO6903095; 0083a_WMO6903095; 0083p_WMO6903095; 0084a_WMO6903095; 0084p_WMO6903095; 0085a_WMO6903095; 0085p_WMO6903095; 0086a_WMO6903095; 0086p_WMO6903095; 0087a_WMO6903095; 0087p_WMO6903095; 0088a_WMO6903095; 0088p_WMO6903095; 0089a_WMO6903095; 0089p_WMO6903095; 0090a_WMO6903095; 0090p_WMO6903095; 0091a_WMO6903095; 0091p_WMO6903095; 0092a_WMO6903095; 0092p_WMO6903095; 0093a_WMO6903095; 0093p_WMO6903095; 0094a_WMO6903095; 0094p_WMO6903095; 0095a_WMO6903095; 0095p_WMO6903095; 0096a_WMO6903095; 0096p_WMO6903095; 0097a_WMO6903095; 0097p_WMO6903095; 0098a_WMO6903095; 0098p_WMO6903095; 0099a_WMO6903095; 0099p_WMO6903095; 0100a_WMO6903095; 0100p_WMO6903095; 0101a_WMO6903095; 0101p_WMO6903095; 0102a_WMO6903095; 0102p_WMO6903095; 0103a_WMO6903095; 0103p_WMO6903095; 0104a_WMO6903095; 0104p_WMO6903095; 0105a_WMO6903095; 0105p_WMO6903095; 0106a_WMO6903095; 0106p_WMO6903095; 0107a_WMO6903095; 0107p_WMO6903095; 0108a_WMO6903095; 0108p_WMO6903095; 0109a_WMO6903095; 0109p_WMO6903095; 0110a_WMO6903095; 0110p_WMO6903095; 0111a_WMO6903095; 0111p_WMO6903095; 0112a_WMO6903095; 0112p_WMO6903095; 0113a_WMO6903095; 0113p_WMO6903095; 0114a_WMO6903095; 0114p_WMO6903095; 0115a_WMO6903095; 0115p_WMO6903095; 0116a_WMO6903095; 0116p_WMO6903095; 0117a_WMO6903095; 0117p_WMO6903095; 0118a_WMO6903095; 0118p_WMO6903095; 0119a_WMO6903095; 0119p_WMO6903095; 0120a_WMO6903095; 0120p_WMO6903095; 0121a_WMO6903095; 0121p_WMO6903095; 0122a_WMO6903095; 0122p_WMO6903095; 0123a_WMO6903095; 0123p_WMO6903095; 0124a_WMO6903095; 0124p_WMO6903095; 0125a_WMO6903095; 0125p_WMO6903095; 0126a_WMO6903095; 0126p_WMO6903095; 0127a_WMO6903095; 0127p_WMO6903095; 0128a_WMO6903095; 0128p_WMO6903095; 0129a_WMO6903095; 0129p_WMO6903095; 0130a_WMO6903095; 0130p_WMO6903095; 0131a_WMO6903095; 0131p_WMO6903095; 0132a_WMO6903095; 0132p_WMO6903095; 0133a_WMO6903095; 0133p_WMO6903095; 0134a_WMO6903095; 0134p_WMO6903095; 0135a_WMO6903095; 0135p_WMO6903095; 0136a_WMO6903095; 0136p_WMO6903095; 0137a_WMO6903095; 0137p_WMO6903095; 0138a_WMO6903095; 0138p_WMO6903095; 0139a_WMO6903095; 0139p_WMO6903095; 0140a_WMO6903095; 0140p_WMO6903095; 0141a_WMO6903095; 0141p_WMO6903095; 0142a_WMO6903095; 0142p_WMO6903095; 0143a_WMO6903095; 0143p_WMO6903095; 0144a_WMO6903095; 0144p_WMO6903095; 0145a_WMO6903095; 0145p_WMO6903095; 0146a_WMO6903095; 0146p_WMO6903095; 0147a_WMO6903095; 0147p_WMO6903095; 0148a_WMO6903095; 0148p_WMO6903095; 0149a_WMO6903095; 0149p_WMO6903095; 0150a_WMO6903095; 0150p_WMO6903095; 0151a_WMO6903095; 0151p_WMO6903095; 0152a_WMO6903095; 0152p_WMO6903095; 0153a_WMO6903095; 0153p_WMO6903095; 0154a_WMO6903095; 0154p_WMO6903095; 0155a_WMO6903095; 0155p_WMO6903095; 0156a_WMO6903095; 0156p_WMO6903095; 0157a_WMO6903095; 0157p_WMO6903095; 0158a_WMO6903095; 0158p_WMO6903095; 0159a_WMO6903095; 0159p_WMO6903095; 0160a_WMO6903095; 0160p_WMO6903095; 0161a_WMO6903095; 0161p_WMO6903095; 0162a_WMO6903095; 0162p_WMO6903095; 0163a_WMO6903095; 0163p_WMO6903095; 0164a_WMO6903095; 0164p_WMO6903095; 0165a_WMO6903095; 0165p_WMO6903095; 0166a_WMO6903095; 0166p_WMO6903095; 0167a_WMO6903095; 0167p_WMO6903095; 0168a_WMO6903095; 0168p_WMO6903095; 0169a_WMO6903095; 0169p_WMO6903095; 0170a_WMO6903095; 0170p_WMO6903095; 0171a_WMO6903095; 0171p_WMO6903095; 0172a_WMO6903095; 0172p_WMO6903095; 0173a_WMO6903095; 0173p_WMO6903095; 0174a_WMO6903095; 0174p_WMO6903095; 0175a_WMO6903095; 0175p_WMO6903095; 0176a_WMO6903095; 0176p_WMO6903095; 0177a_WMO6903095; 0177p_WMO6903095; 0178a_WMO6903095; 0178p_WMO6903095; 0179a_WMO6903095; 0179p_WMO6903095; 0180a_WMO6903095; 0180p_WMO6903095; 0181a_WMO6903095; 0181p_WMO6903095; 0182a_WMO6903095; 0182p_WMO6903095; 0183a_WMO6903095; 0183p_WMO6903095; ARGOFL; Argo float; Biovolume; DATE/TIME; Event label; in situ imaging; LATITUDE; LONGITUDE; MOPGA-TAD; Particle concentration, fractionated; particle distribution; Pressure, water; Sample code/label; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management; Tropical Atlantic Deoxygenation: gateway dynamics, feedback mechanisms and ecosystem impacts; Volume
    Type: Dataset
    Format: text/tab-separated-values, 2518238 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-14
    Description: The thermokarst lakes of permafrost regions play a major role in the global carbon cycle. These lakes are sources of methane to the atmosphere although the methane flux is restricted by an ice cover for most of the year. How methane concentrations and fluxes in these waters are affected by the presence of an ice cover is poorly understood. To relate water body morphology, ice formation and methane to each other, we studied the ice of three different water bodies in locations typical of the transition of permafrost from land to ocean in a continuous permafrost coastal region in Siberia. In total, 11 ice cores were analyzed as records of the freezing process and methane composition during the winter season. The three water bodies differed in terms of connectivity to the sea, which affected fall freezing. The first was a bay underlain by submarine permafrost (Tiksi Bay, BY), the second a shallow thermokarst lagoon cut off from the sea in winter (Polar Fox Lagoon, LG) and the third a land-locked freshwater thermokarst lake (Goltsovoye Lake, LK). Ice on all water bodies was mostly methane-supersaturated with respect to atmospheric equilibrium concentration, except for three cores from the isolated lake. In the isolated thermokarst lake, ebullition from actively thawing basin slopes resulted in the localized integration of methane into winter ice. Stable δ13C-CH4 isotope signatures indicated that methane in the lagoon ice was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration. Increasing salinity during winter freezing led to a micro-environment on the lower ice surface where methane oxidation occurred and the lagoon ice functioned as a methane sink. In contrast, the ice of the coastal marine environment was slightly supersaturated with methane, consistent with the brackish water below. Our interdisciplinary process study shows how water body morphology affects ice formation which mitigates methane fluxes to the atmosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Description: This is a compilation of all short-wave and long-wave radiation datasets from Sonnblick that were and are published in the frame of BSRN. New data will be added regularly. The data are subject to the data release guidelines of BSRN (https://bsrn.awi.de/data/conditions-of-data-release/).
    Keywords: Austria; Baseline Surface Radiation Network; BSRN; Monitoring station; MONS; SON; Sonnblick
    Type: Dataset
    Format: application/zip, 154 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-13
    Description: Snow height was measured by the Snow Depth Buoy 2018S78, an autonomous platform, drifting on Arctic sea ice, deployed during AKADEMIK TRYOSHNIKOV cruise TRANSDRIFT XXIV (TICE). The resulting time series describes the evolution of snow depth as a function of place and time between 16 September 2018 and 16 February 2020 in sample intervals of 1 hour. The Snow Depth Buoy consists of four independent sonar measurements representing the area (approx. 10 m**2) around the buoy. The buoy was installed on multi year ice. In addition to snow depth, geographic position (GPS), barometric pressure, air temperature, and an internal ice temperature were measured. Negative values of snow height occur if surface ablation continues into the sea ice. Thus, these measurements describe the position of the sea ice surface relative to the original snow-ice interface. Differences between single sensors indicate small-scale variability of the snow pack around the buoy. The data set has been processed, including the removal of obvious inconsistencies (missing values). Records without any snow depth may still be used for sea ice drift analyses.
    Keywords: 2018S78, WMO-ID 2501653; Akademik Tryoshnikov; AT2018, TICE, NABOS; autonomous platform; AWI_SeaIce; buoy; BUOY_SNOW; Current sea ice maps for Arctic and Antarctic; DATE/TIME; drift; LATITUDE; LONGITUDE; meereisportal.de; MIDO; Multidisciplinary Ice-based Distributed Observatory; Pressure, atmospheric; Sea Ice Physics @ AWI; Snow buoy; snow depth; Snow height; Temperature, air; Temperature, technical; TICE/8_2018S78; Transdrift-XXIV
    Type: Dataset
    Format: text/tab-separated-values, 46680 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-05-13
    Description: This bibliography unites the individual data collected by different types of autonomous platforms deployed during MOSAiC in 2019/2020.
    Keywords: Atmosphere; autonomous platform; distributed network; drift; MOSAiC; MOSAiC_ATMOS; MOSAiC_ICE; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Oceans; Sea ice; snow
    Type: Dataset
    Format: 71 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-13
    Description: The ²³⁴Th-²³⁸U radioactive pair has been extensively used to evaluate the efficiency with which photosyntetically fixed carbon is exported from the surface ocean by means of the biological pump since the 90's. The seminal work of Buesseler et al. (1992) proposed that particulate organic carbon (POC) flux can be indirectly calculated from ²³⁴Th distributions if the ratio of POC to ²³⁴Th measured on sinking particles (POC:²³⁴Th) at the desired export depth is known. Since then, a huge amount of ²³⁴Th depth profiles have been collected using a variety of sampling instruments and strategies that have changed along years. This is a global oceanic compilation of ²³⁴Th measurements, that collects results from innumerable researchers and laboratories over a period exceeding 50 years. The present compilation is made of a total 223 datasets: 214 from studies published either in articles in referred journals, PhD thesis or repositories, and 9 unpublished datasets. Including measurements from JGOFS, VERTIGO and GEOTRACES programs, with sampling from approximately 5000 locations spanning all the oceans. The compilation includes total ²³⁴Th profiles, dissolved and particulate ²³⁴Th concentrations, and POC:²³⁴Th ratios (both from pumps and sediment traps) for two sizes classes (1-53 μm and 〈 53 μm) when available. Appropriate metadata have been included, including geographic location, date, and sample depth, among others. When available, we also include water temperature, salinity, ²³⁸U data and particulate organic nitrogen data. Data sources and methods information (including ²³⁸U and ²³⁴Th) are also detailed along with valuable information for future data analysis such as bloom stage and steady/non-steady state conditions at the sampling moment. This undertaking is a treasure of data to understand and quantify how oceanic carbon cycle functions and how it will change in future. The compilation can be downloaded in three different ways: 1) A single merged file including all the individual excel files. This option can be accessed under "Other version: More than 50 years of Th-234 data: a comprehensive global oceanic compilation (single xlsx file)". 2) A summary table that includes details from cruise, sampling dates, techniques applied, authors and DOI of the compiled ²³⁴Th data, among others, each line corresponds to a specific dataset. The table can be accessed by clicking ""View dataset as HTML" and downloaded in "Download dataset as tab-delimited text". 3) Individual Excel files for each dataset can be manually chosen from the summary table, corresponding to the complete ²³⁴Th dataset and metadata from a specific publication or program. This option is available by clicking "View dataset as HTML". Furthermore, all files referred to can be downloaded in one go as ZIP or TAR.
    Keywords: 234Th; Author(s); Binary Object; biological carbon pump; Carbon, organic, particulate/Thorium-234 ratio; carbon export; Chief scientist(s); Cruise/expedition; DATE/TIME; ELEVATION; Gear; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; JGOFS; Joint Global Ocean Flux Study; Journal/report title; LATITUDE; LONGITUDE; Multiple cruises/expeditions; Ocean; Ocean and sea region; Period; POC flux; Project; Reference of data; Thorium-234, dissolved; Thorium-234, particulate; Thorium-234, total; Uniform resource locator/link to reference; Uranium-238; Vessel; Year of publication
    Type: Dataset
    Format: text/tab-separated-values, 4056 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-13
    Description: Ocean Alkalinity Enhancement (OAE) could augment long-term carbon storage and mitigate ocean acidification by increasing the bicarbonate ion concentration in ocean water. However, the side effects and/or potential co-benefits of OAE on natural planktonic communities remain poorly understood. To address this knowledge gap, 9 mesocosms were deployed in the oligotrophic waters of Gran Canaria, from September 14th to October 16th, 2021. A CO2-equilibrated Total Alkalinity (TA) gradient was employed in increments of 300 µmol·L-1, ranging from ~2400 to ~4800 µmol·L-1. The carbonate chemistry conditions in terms of TA and Dissolved Inorganic Carbon (DIC), which were then used to calculate pCO2 and pH, and the nitrate+nitrite, phosphate and silicate concentrations were measured every two days over the course of the 33-day experiment alongside the following biotic parameters. Net Community Production (NCP), Gross Production (GP), Community Respiration (CR) rates, as well as the metabolic balance (GP:CR), were monitored every two days through oxygen production and consumption using the winkler method. Fractionated 14C uptake and chlorophyll a were also determined every four days although, initially, the total PO14C and DO14C production were also measured every 4 days, in between, up to day 13. Finally, flow cytometry was also carried out every two days and synecococcus, picoeukaryote and nanophytoplankton abundances were obtained. No damaging effect of CO2-equilibrated OAE in the range applied here, on phytoplankton primary production, community metabolism and composition could be inferred from our results. In fact, a potential co-benefit to OAE was observed in the form of the positive curvilinear response to the DIC gradient up to the ∆TA1800 treatment. Further experimental research at this scale is key to gain a better understanding of the short and long-term effects of OAE on planktonic communities.
    Keywords: 14C-DOC; 14C-POC; 14C uptake; AQUACOSM; Canarias Sea; Chlorophyll a, total; chlorophyll-a concentration; Chlorophyll a microplankton; Chlorophyll a nanoplankton; Chlorophyll a picoplankton; DATE/TIME; Day of experiment; Depth, water, experiment, bottom/maximum; Depth, water, experiment, top/minimum; Event label; Extracellular release; Field experiment; flow cytometry; Flow cytometry; Gross community production/respiration rate, oxygen, ratio; Gross community production of oxygen; Identification; KOSMOS_2021; KOSMOS_2021_Mesocosm-M1; KOSMOS_2021_Mesocosm-M2; KOSMOS_2021_Mesocosm-M3; KOSMOS_2021_Mesocosm-M4; KOSMOS_2021_Mesocosm-M5; KOSMOS_2021_Mesocosm-M6; KOSMOS_2021_Mesocosm-M7; KOSMOS_2021_Mesocosm-M8; KOSMOS_2021_Mesocosm-M9; KOSMOS Gran Canaria; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Nanoeukaryotes; Net community production of oxygen; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; Ocean-based Negative Emission Technologies; OceanNETs; Picoeukaryotes; primary production; Primary production of carbon, organic, dissolved; Primary production of carbon, organic, particulate; Primary production of carbon, organic, total; Respiration rate, oxygen, community; Synechococcus; Treatment: alkalinity, total; Type of study; Winkler oxygen
    Type: Dataset
    Format: text/tab-separated-values, 3828 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 100392, WRMC No. 75026; Pyranometer, Kipp & Zonen, CMP21, SN 140386, WRMC No. 75027; Pyrgeometer, Kipp & Zonen, CGR4, SN 060004, WRMC No. 75028; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9120, WRMC No. 75025; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 800857 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 100392, WRMC No. 75026; Pyranometer, Kipp & Zonen, CMP21, SN 140386, WRMC No. 75027; Pyrgeometer, Kipp & Zonen, CGR4, SN 060004, WRMC No. 75028; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9120, WRMC No. 75025; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 762143 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Zentralanstalt für Meteorologie und Geodynamik, Wien
    Publication Date: 2024-05-13
    Keywords: Air temperature at 2 m height; Austria; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Monitoring station; MONS; Pyranometer, Kipp & Zonen, CMP21, SN 100392, WRMC No. 75026; Pyranometer, Kipp & Zonen, CMP21, SN 140386, WRMC No. 75027; Pyrgeometer, Kipp & Zonen, CGR4, SN 060004, WRMC No. 75028; Pyrheliometer, Hukseflux, DR02-T2-10, SN 9120, WRMC No. 75025; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; SON; Sonnblick; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 800619 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...