ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (165,232)
  • 1960-1964  (438,947)
Collection
Language
Years
Year
  • 1
    Publication Date: 2024-05-14
    Description: The thermokarst lakes of permafrost regions play a major role in the global carbon cycle. These lakes are sources of methane to the atmosphere although the methane flux is restricted by an ice cover for most of the year. How methane concentrations and fluxes in these waters are affected by the presence of an ice cover is poorly understood. To relate water body morphology, ice formation and methane to each other, we studied the ice of three different water bodies in locations typical of the transition of permafrost from land to ocean in a continuous permafrost coastal region in Siberia. In total, 11 ice cores were analyzed as records of the freezing process and methane composition during the winter season. The three water bodies differed in terms of connectivity to the sea, which affected fall freezing. The first was a bay underlain by submarine permafrost (Tiksi Bay, BY), the second a shallow thermokarst lagoon cut off from the sea in winter (Polar Fox Lagoon, LG) and the third a land-locked freshwater thermokarst lake (Goltsovoye Lake, LK). Ice on all water bodies was mostly methane-supersaturated with respect to atmospheric equilibrium concentration, except for three cores from the isolated lake. In the isolated thermokarst lake, ebullition from actively thawing basin slopes resulted in the localized integration of methane into winter ice. Stable δ13C-CH4 isotope signatures indicated that methane in the lagoon ice was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration. Increasing salinity during winter freezing led to a micro-environment on the lower ice surface where methane oxidation occurred and the lagoon ice functioned as a methane sink. In contrast, the ice of the coastal marine environment was slightly supersaturated with methane, consistent with the brackish water below. Our interdisciplinary process study shows how water body morphology affects ice formation which mitigates methane fluxes to the atmosphere.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-14
    Description: Here we provide particle size and biovolume distribution data from an Underwater Vision Profiler 6, mounted on a BGC Argo Float with the WMO number 6903095. The float was deployed in a cyclonic eddy off Cape Columbine, South Africa on the 13 April 2021 close to the eddy center at 33.07 degree South, 13.89 degree East. Parking depth was set at 300 m and profiling depth initially to 600 m and later increased to 1000 m depth to maintain the float in the eddy. Profiling frequency was every three days. It stayed within this eddy for about five months and then operated East and Southeast of South Africa until it was deliberately picked up on the 17 September 2022 at 34.43 degrees South and 10.21 degrees East.
    Keywords: 0000a_WMO6903095; 0000p_WMO6903095; 0001a_WMO6903095; 0001p_WMO6903095; 0002a_WMO6903095; 0002p_WMO6903095; 0003a_WMO6903095; 0003p_WMO6903095; 0004a_WMO6903095; 0004p_WMO6903095; 0005a_WMO6903095; 0005p_WMO6903095; 0006a_WMO6903095; 0006p_WMO6903095; 0007a_WMO6903095; 0007p_WMO6903095; 0008a_WMO6903095; 0008p_WMO6903095; 0009a_WMO6903095; 0009p_WMO6903095; 0010a_WMO6903095; 0010p_WMO6903095; 0011a_WMO6903095; 0011p_WMO6903095; 0012a_WMO6903095; 0012p_WMO6903095; 0013a_WMO6903095; 0013p_WMO6903095; 0014a_WMO6903095; 0014p_WMO6903095; 0015a_WMO6903095; 0015p_WMO6903095; 0016a_WMO6903095; 0016p_WMO6903095; 0017a_WMO6903095; 0017p_WMO6903095; 0018a_WMO6903095; 0018p_WMO6903095; 0019a_WMO6903095; 0019p_WMO6903095; 0020a_WMO6903095; 0020p_WMO6903095; 0021a_WMO6903095; 0021p_WMO6903095; 0022a_WMO6903095; 0022p_WMO6903095; 0023a_WMO6903095; 0023p_WMO6903095; 0024a_WMO6903095; 0024p_WMO6903095; 0025a_WMO6903095; 0025p_WMO6903095; 0026a_WMO6903095; 0026p_WMO6903095; 0027a_WMO6903095; 0027p_WMO6903095; 0028a_WMO6903095; 0028p_WMO6903095; 0029a_WMO6903095; 0029p_WMO6903095; 0030a_WMO6903095; 0030p_WMO6903095; 0031a_WMO6903095; 0031p_WMO6903095; 0032a_WMO6903095; 0032p_WMO6903095; 0033a_WMO6903095; 0033p_WMO6903095; 0034a_WMO6903095; 0034p_WMO6903095; 0035a_WMO6903095; 0035p_WMO6903095; 0036a_WMO6903095; 0036p_WMO6903095; 0037a_WMO6903095; 0037p_WMO6903095; 0038a_WMO6903095; 0038p_WMO6903095; 0039a_WMO6903095; 0039p_WMO6903095; 0040a_WMO6903095; 0040p_WMO6903095; 0041a_WMO6903095; 0041p_WMO6903095; 0042a_WMO6903095; 0042p_WMO6903095; 0043a_WMO6903095; 0043p_WMO6903095; 0044a_WMO6903095; 0044p_WMO6903095; 0045a_WMO6903095; 0045p_WMO6903095; 0046a_WMO6903095; 0046p_WMO6903095; 0047a_WMO6903095; 0047p_WMO6903095; 0048a_WMO6903095; 0048p_WMO6903095; 0049a_WMO6903095; 0049p_WMO6903095; 0050a_WMO6903095; 0050p_WMO6903095; 0051a_WMO6903095; 0051p_WMO6903095; 0052a_WMO6903095; 0052p_WMO6903095; 0053a_WMO6903095; 0053p_WMO6903095; 0054a_WMO6903095; 0054p_WMO6903095; 0055a_WMO6903095; 0055p_WMO6903095; 0056a_WMO6903095; 0056p_WMO6903095; 0057a_WMO6903095; 0057p_WMO6903095; 0058a_WMO6903095; 0058p_WMO6903095; 0059a_WMO6903095; 0059p_WMO6903095; 0060a_WMO6903095; 0060p_WMO6903095; 0061a_WMO6903095; 0061p_WMO6903095; 0062a_WMO6903095; 0062p_WMO6903095; 0063a_WMO6903095; 0063p_WMO6903095; 0064a_WMO6903095; 0064p_WMO6903095; 0065a_WMO6903095; 0065p_WMO6903095; 0066a_WMO6903095; 0066p_WMO6903095; 0067a_WMO6903095; 0067p_WMO6903095; 0068a_WMO6903095; 0068p_WMO6903095; 0069a_WMO6903095; 0069p_WMO6903095; 0070a_WMO6903095; 0070p_WMO6903095; 0071a_WMO6903095; 0071p_WMO6903095; 0072a_WMO6903095; 0072p_WMO6903095; 0073a_WMO6903095; 0073p_WMO6903095; 0074a_WMO6903095; 0074p_WMO6903095; 0075a_WMO6903095; 0075p_WMO6903095; 0076a_WMO6903095; 0076p_WMO6903095; 0077a_WMO6903095; 0077p_WMO6903095; 0078a_WMO6903095; 0078p_WMO6903095; 0079a_WMO6903095; 0079p_WMO6903095; 0080a_WMO6903095; 0080p_WMO6903095; 0081a_WMO6903095; 0081p_WMO6903095; 0082a_WMO6903095; 0082p_WMO6903095; 0083a_WMO6903095; 0083p_WMO6903095; 0084a_WMO6903095; 0084p_WMO6903095; 0085a_WMO6903095; 0085p_WMO6903095; 0086a_WMO6903095; 0086p_WMO6903095; 0087a_WMO6903095; 0087p_WMO6903095; 0088a_WMO6903095; 0088p_WMO6903095; 0089a_WMO6903095; 0089p_WMO6903095; 0090a_WMO6903095; 0090p_WMO6903095; 0091a_WMO6903095; 0091p_WMO6903095; 0092a_WMO6903095; 0092p_WMO6903095; 0093a_WMO6903095; 0093p_WMO6903095; 0094a_WMO6903095; 0094p_WMO6903095; 0095a_WMO6903095; 0095p_WMO6903095; 0096a_WMO6903095; 0096p_WMO6903095; 0097a_WMO6903095; 0097p_WMO6903095; 0098a_WMO6903095; 0098p_WMO6903095; 0099a_WMO6903095; 0099p_WMO6903095; 0100a_WMO6903095; 0100p_WMO6903095; 0101a_WMO6903095; 0101p_WMO6903095; 0102a_WMO6903095; 0102p_WMO6903095; 0103a_WMO6903095; 0103p_WMO6903095; 0104a_WMO6903095; 0104p_WMO6903095; 0105a_WMO6903095; 0105p_WMO6903095; 0106a_WMO6903095; 0106p_WMO6903095; 0107a_WMO6903095; 0107p_WMO6903095; 0108a_WMO6903095; 0108p_WMO6903095; 0109a_WMO6903095; 0109p_WMO6903095; 0110a_WMO6903095; 0110p_WMO6903095; 0111a_WMO6903095; 0111p_WMO6903095; 0112a_WMO6903095; 0112p_WMO6903095; 0113a_WMO6903095; 0113p_WMO6903095; 0114a_WMO6903095; 0114p_WMO6903095; 0115a_WMO6903095; 0115p_WMO6903095; 0116a_WMO6903095; 0116p_WMO6903095; 0117a_WMO6903095; 0117p_WMO6903095; 0118a_WMO6903095; 0118p_WMO6903095; 0119a_WMO6903095; 0119p_WMO6903095; 0120a_WMO6903095; 0120p_WMO6903095; 0121a_WMO6903095; 0121p_WMO6903095; 0122a_WMO6903095; 0122p_WMO6903095; 0123a_WMO6903095; 0123p_WMO6903095; 0124a_WMO6903095; 0124p_WMO6903095; 0125a_WMO6903095; 0125p_WMO6903095; 0126a_WMO6903095; 0126p_WMO6903095; 0127a_WMO6903095; 0127p_WMO6903095; 0128a_WMO6903095; 0128p_WMO6903095; 0129a_WMO6903095; 0129p_WMO6903095; 0130a_WMO6903095; 0130p_WMO6903095; 0131a_WMO6903095; 0131p_WMO6903095; 0132a_WMO6903095; 0132p_WMO6903095; 0133a_WMO6903095; 0133p_WMO6903095; 0134a_WMO6903095; 0134p_WMO6903095; 0135a_WMO6903095; 0135p_WMO6903095; 0136a_WMO6903095; 0136p_WMO6903095; 0137a_WMO6903095; 0137p_WMO6903095; 0138a_WMO6903095; 0138p_WMO6903095; 0139a_WMO6903095; 0139p_WMO6903095; 0140a_WMO6903095; 0140p_WMO6903095; 0141a_WMO6903095; 0141p_WMO6903095; 0142a_WMO6903095; 0142p_WMO6903095; 0143a_WMO6903095; 0143p_WMO6903095; 0144a_WMO6903095; 0144p_WMO6903095; 0145a_WMO6903095; 0145p_WMO6903095; 0146a_WMO6903095; 0146p_WMO6903095; 0147a_WMO6903095; 0147p_WMO6903095; 0148a_WMO6903095; 0148p_WMO6903095; 0149a_WMO6903095; 0149p_WMO6903095; 0150a_WMO6903095; 0150p_WMO6903095; 0151a_WMO6903095; 0151p_WMO6903095; 0152a_WMO6903095; 0152p_WMO6903095; 0153a_WMO6903095; 0153p_WMO6903095; 0154a_WMO6903095; 0154p_WMO6903095; 0155a_WMO6903095; 0155p_WMO6903095; 0156a_WMO6903095; 0156p_WMO6903095; 0157a_WMO6903095; 0157p_WMO6903095; 0158a_WMO6903095; 0158p_WMO6903095; 0159a_WMO6903095; 0159p_WMO6903095; 0160a_WMO6903095; 0160p_WMO6903095; 0161a_WMO6903095; 0161p_WMO6903095; 0162a_WMO6903095; 0162p_WMO6903095; 0163a_WMO6903095; 0163p_WMO6903095; 0164a_WMO6903095; 0164p_WMO6903095; 0165a_WMO6903095; 0165p_WMO6903095; 0166a_WMO6903095; 0166p_WMO6903095; 0167a_WMO6903095; 0167p_WMO6903095; 0168a_WMO6903095; 0168p_WMO6903095; 0169a_WMO6903095; 0169p_WMO6903095; 0170a_WMO6903095; 0170p_WMO6903095; 0171a_WMO6903095; 0171p_WMO6903095; 0172a_WMO6903095; 0172p_WMO6903095; 0173a_WMO6903095; 0173p_WMO6903095; 0174a_WMO6903095; 0174p_WMO6903095; 0175a_WMO6903095; 0175p_WMO6903095; 0176a_WMO6903095; 0176p_WMO6903095; 0177a_WMO6903095; 0177p_WMO6903095; 0178a_WMO6903095; 0178p_WMO6903095; 0179a_WMO6903095; 0179p_WMO6903095; 0180a_WMO6903095; 0180p_WMO6903095; 0181a_WMO6903095; 0181p_WMO6903095; 0182a_WMO6903095; 0182p_WMO6903095; 0183a_WMO6903095; 0183p_WMO6903095; ARGOFL; Argo float; Biovolume; DATE/TIME; Event label; in situ imaging; LATITUDE; LONGITUDE; MOPGA-TAD; Particle concentration, fractionated; particle distribution; Pressure, water; Sample code/label; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management; Tropical Atlantic Deoxygenation: gateway dynamics, feedback mechanisms and ecosystem impacts; Volume
    Type: Dataset
    Format: text/tab-separated-values, 2518238 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-13
    Description: This paper positions possibilities for human geographies of the sea. The growing volume of work under this banner has been largely qualitative in its approach, reflecting, in turn, the questions posed by oceanic scholars. These questions necessitate corresponding methods. Whilst this is not necessarily a problem, and the current corpus of work has offered many significant contributions, in making sense of the human dimensions of maritime worlds, other questions—and methods—may generate knowledge that is useful within this remit of work. This paper considers the place of quantitative approaches in posing lines of enquiry about shipping, one of the prominent areas of concern under the banner of ‘human geographies of the seas’. There is longstanding work in transport geographies concerned with shipping, logistics, freight movement and global connections, which embraces quantitative methods which could be bridged to ask fresh questions about oceanic spatial phenomena past and present. This paper reviews the state of the art of human geographies of the sea and transport geographies and navigates how the former field may be stimulated by some of the interests of the latter and a broader range of questions about society-sea-space relations. The paper focuses on Automatic Identification Systems (or AIS) as a potentially useful tool for connecting debates, and deepening spatial understandings of the seas and shipping beyond current scholarship. To advance the argument the example of shipping layups is used to illustrate or rather, position, the point.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Polar Night Marine Ecology_ Life and Light in the Dead of Night, Advances in Polar Ecology, Switzerland, Springer, pp. 217-240, ISBN: 978-3-030-33208-2
    Publication Date: 2024-05-13
    Description: Biological clocks are universal to all living organisms on Earth. Their ubiquity is testament to their importance to life: from cells to organs and from the simplest cyanobacteria to plants and primates, they are central to orchestrating life on this planet. Biological clocks are usually set by the day–night cycle, so what happens in polar regions during the Polar Night or Polar Day when there are periods of 24! hours of darkness or light? How would a biological clock function without a timekeeper!cycle? This chapter details evidence that biological clocks are central to structuring daily and seasonal activities in organisms at high latitudes. Importantly, despite a strongly reduced or absent day–night cycle, biological clocks in the Polar Night still appear to be regulated by background illumination. Here we explore evidence for highly cyclic activity, from behaviour patterns to clock gene expression, in copepods, krill and bivalves. The ultimate goal will be to understand the role of endogenous clocks in driving important daily and seasonal life cycle functions and to determine scope for plasticity in a rapidly changing environment.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  EPIC3Springer International Publishing, 4, pp. 217-240, ISBN: 9783030332075
    Publication Date: 2024-05-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-13
    Description: This paper positions possibilities for human geographies of the sea. The growing volume of work under this banner has been largely qualitative in its approach, reflecting, in turn, the questions posed by oceanic scholars. These questions necessitate corresponding methods. Whilst this is not necessarily a problem, and the current corpus of work has offered many significant contributions, in making sense of the human dimensions of maritime worlds, other questions—and methods—may generate knowledge that is useful within this remit of work. This paper considers the place of quantitative approaches in posing lines of enquiry about shipping, one of the prominent areas of concern under the banner of ‘human geographies of the seas’. There is longstanding work in transport geographies concerned with shipping, logistics, freight movement and global connections, which embraces quantitative methods which could be bridged to ask fresh questions about oceanic spatial phenomena past and present. This paper reviews the state of the art of human geographies of the sea and transport geographies and navigates how the former field may be stimulated by some of the interests of the latter and a broader range of questions about society-sea-space relations. The paper focuses on Automatic Identification Systems (or AIS) as a potentially useful tool for connecting debates, and deepening spatial understandings of the seas and shipping beyond current scholarship. To advance the argument the example of shipping layups is used to illustrate or rather, position, the point.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-13
    Description: 〈jats:p〉Central Arctic properties and processes are important to the regional and global coupled climate system. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Distributed Network (DN) of autonomous ice-tethered systems aimed to bridge gaps in our understanding of temporal and spatial scales, in particular with respect to the resolution of Earth system models. By characterizing variability around local measurements made at a Central Observatory, the DN covers both the coupled system interactions involving the ocean-ice-atmosphere interfaces as well as three-dimensional processes in the ocean, sea ice, and atmosphere. The more than 200 autonomous instruments (“buoys”) were of varying complexity and set up at different sites mostly within 50 km of the Central Observatory. During an exemplary midwinter month, the DN observations captured the spatial variability of atmospheric processes on sub-monthly time scales, but less so for monthly means. They show significant variability in snow depth and ice thickness, and provide a temporally and spatially resolved characterization of ice motion and deformation, showing coherency at the DN scale but less at smaller spatial scales. Ocean data show the background gradient across the DN as well as spatially dependent time variability due to local mixed layer sub-mesoscale and mesoscale processes, influenced by a variable ice cover. The second case (May–June 2020) illustrates the utility of the DN during the absence of manually obtained data by providing continuity of physical and biological observations during this key transitional period. We show examples of synergies between the extensive MOSAiC remote sensing observations and numerical modeling, such as estimating the skill of ice drift forecasts and evaluating coupled system modeling. The MOSAiC DN has been proven to enable analysis of local to mesoscale processes in the coupled atmosphere-ice-ocean system and has the potential to improve model parameterizations of important, unresolved processes in the future.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-13
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: contributiontoperiodical , doc-type:contributionToPeriodical
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Marburg : Metropolis-Verlag
    Publication Date: 2024-05-13
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: bookpart , doc-type:bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-05-13
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: contributiontoperiodical , doc-type:contributionToPeriodical
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...