ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (14,995)
  • 1995-1999  (14,995)
Collection
Publisher
Years
Year
  • 1
    ISSN: 0006-3525
    Keywords: folding type-specific secondary structure propensities ; amino acids ; α-helical proteins ; β sheet proteins ; α/β proteins ; α+β proteins ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35-49, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 45 (1998), S. 69-83 
    ISSN: 0006-3525
    Keywords: DNA branched junctions ; branch migration ; superhelical torque ; control of DNA structure ; endonuclease VII ; nanomechanical device ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: DNA branched junctions are analogues of Holliday junction recombination intermediates. Partially mobile junctions contain a limited amount of homology flanking the branch point. A partially mobile DNA branched junction has been incorporated into a synthetic double-stranded circular DNA molecule. The junction is flanked by four homologous nucleotide pairs, so that there are five possible locations for the branch point. Two opposite arms of the branched junction are joined to form the circular molecule, which contains 262 nucleotides to the base of the junction. This molecule represents a system whereby torque applied to the circular molecule can have an impact on the junction, by relocating its branch point. Ligation of the molecule produces two topoisomers; about 87% of the product is a relaxed molecule, and the rest is a molecule with one positive supercoil. The position of the branch point is assayed by cleaving the molecule with endonuclease VII. We find that the major site of the branch point in the relaxed topoisomer is at the maximally extruded position in the relaxed molecule. Upon the addition of ethidium, the major site of the branch point migrates to the minimally extruded position. © 1998 John Wiley & Sons, Inc. Biopoly 45: 69-83, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3525
    Keywords: conformation ; aggregation ; κ-carrageenan ; flow field-flow fractionation ; multiangle light scattering ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The relatively novel combination of flow field-flow fractionation (FFF) and multiangle light scattering (MALS) was employed to study a nondegraded κ-carrageenan in different 0.1M salt solutions. The applicability of the technique was tested, and the effects of salt type and salt composition on the molar mass and radius of gyration were studied. A conformational ordering was induced at room temperature by switching the solvent from 0.1M NaCl (coil form) to 0.1M NaI (helix form). An approximate doubling of the average molar mass and an increase in radius of gyration was then observed, in agreement with results obtained previously using size exclusion chromatography-MALS. This increase in size was attributed to conformational ordering and to the formation of double helices. Severe aggregation was observed above 40% CsI in the 0.1M mixed salt solution of CsI and NaI. This was ascribed to the association of helices into large aggregates. For these large associates, having molar masses of several millions, a reversal of the elution order in flow FFF was detected. © 1998 John Wiley & Sons, Inc. Biopoly 45: 85-96 1998
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 45 (1998), S. 119-133 
    ISSN: 0006-3525
    Keywords: conformations of D-alanyl-D-alanine ; β-lactam ; structural overlay ; AMBER force field ; AM1 ; ab initio ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In this article a conformational analysis of the D-alanyl-D-alanine dipeptide, both charged and neutral, has been carried out. The preferred conformations were determined by means of ab initio and semiempirical quantum, together with empirical force field calculations. The AMBER* force field and the 6-31 + G** and 6-31G** ab initio levels give rise to a coincident minimum energy structure, which, on the other hand, differs from that determined by AM1, 3-21 + G, and 3-21G. The solvent effect on the different charged and neutral conformations have been considered through the AMSOL semiempirical method. A quantification regarding the structural similarities between the different dipeptide conformations and the ampicillin has been performed. The results show that the best overlay is attained by the minimum structure energy obtained by using the 6-31 + G** methodology, which presents a planar amidic nitrogen. © 1998 John Wiley & Sons, Inc. Biopoly 45: 119-133, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0006-3525
    Keywords: chemical oxidation ; cellulose ; conformational transition ; capillary viscosity ; microcalorimetry ; calcium ions ; gels ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The conformational behavior of different molecular weight fractions of a synthetic C6-oxidized derivative of cellulose were investigated by means of capillary viscometry, CD, and microcalorimetric measurements. Experiments were carried out in the presence of either monovalent or divalent counterions.The experimental data indicated that C6-oxidized cellulose can assume an ordered extended conformation at low ionic strength, induced by the intrachain repulsions of negative charges. This conformation was suggested to be very similar to the fully extended structure of cellulose. In addition to this, upon increasing the ionic strength, a conformational transition of the order-to-disorder type occurred. In fact, the screening of the electrostatic repulsions introduced a number of conformational kinks into the cellulosic backbone, which enabled the polymer to assume a more coiled conformation hence producing less viscous aqueous solutions. © 1998 John Wiley & Sons, Inc. Biopoly 45: 157-163, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0006-3525
    Keywords: conformational stability ; biological polyelectrolytes ; enthalpy ; entropy ; conformational transitions ; carrageenan ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A new method is proposed for the determination of the enthalpy and entropy changes of nonionic origin upon conformational transition of linear biopolyelectrolytes in solution. For all transition midpoints, defined by given temperature and ionic strength, the total free energy change of the system is zero, which means that the nonionic contribution to the free energy change is equal in value and opposite in sign to the polyelectrolytic one. The counterion condensation theory of linear polyelectrolytes provides for the appropriate analytical expression to be used in such calculations. Linear plots of the proper functions of the calculated free energy changes vs the proper functions of temperature allows for the determination of the enthalpic and entropic terms of the nonionic free energy change of transition.The method has been applied to the extensive available data of the ion-induced conformational change of κ-carrageenan, a linear sulfated galactan extracted from seaweeds. The method has proved very successful, with the results showing a remarkable convergency of the enthalpy values for different monovalent counterions. On the other hand, the above approach has made it possible to explain the known effect of counterion specificity on the transition by a small difference in the nonionic entropic contributions. © 1998 John Wiley & Sons, Inc. Biopoly 45: 203-216, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0006-3525
    Keywords: uv resonance Raman spectroscopy ; Raman cross section ; hypochromism ; DNA ; deoxynucleoside ; protein ; aromatic amino acid ; virus assembly ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Ultraviolet resonance Raman (UVRR) spectra of H2O and D2O solutions of the nucleoside (dA, dG, dC, dT) and aromatic amino acid (Phe, Trp, Tyr) constituents of DNA viruses have been obtained with laser excitation wavelengths of 257, 244, 238, and 229 nm. Using the 981 cm-1 marker of Na2SO4 as an internal standard, Raman frequencies and scattering cross sections were evaluated for all prominent UVRR bands at each excitation wavelength. The results show that UVRR cross sections of both the nucleosides and amino acids are strongly dependent on excitation wavelength and constitute sensitive and selective probes of the residues. The results provide a library of UVRR marker bands for structural analysis of DNA viruses and other nucleoprotein assemblies. © 1998 John Wiley & Sons, Inc. Biopoly 45: 247-256, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0006-3525
    Keywords: hemoglobin ; hexagonal bilayer ; Lumbricus ; electron microscopy ; three-dimensional reconstruction ; small-angle x-ray scattering ; three-dimensional models ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The quaternary structure of Lumbricus terrestris hemoglobin was investigated by small-angle x-ray scattering (SAXS). Based on the SAXS data from several independent experiments, a three-dimensional (3D) consensus model was established to simulate the solution structure of this complex protein at low resolution (about 3 nm) and to yield the particle dimensions. The model is built up from a large number of small spheres of different weights, a result of the two-step procedure used to calculate the SAXS model. It accounts for the arrangement of 12 subunits in a hexagonal bilayer structure and for an additional central unit of cylinder-like shape. This model provides an excellent fit of the experimental scattering curve of the protein up to h = 1 nm-1 and a nearly perfect fit of the experimental distance distribution function p(r) in the whole range. Scattering curves and p(r) functions were also calculated for low-resolution models based on 3D reconstructions obtained by cryoelectron microscopy (EM). The calculated functions of these models also provide a very good fit of the experimental scattering curve (even at h 〉 1 nm-1) and p(r) function, if hydration is taken into account and the original model coordinates are slightly rescaled. The comparison of models reveals that both the SAXS-based and the EM-based model lead to a similar simulation of the protein structure and to similar particle dimensions. The essential differences between the models concern the hexagonal bilayer arrangement (eclipsed in the SAXS model, one layer slightly rotated in the EM model), and the mass distribution, mainly on the surface and in the central part of the protein complex. © John Wiley & Sons, Inc. Biopoly 45: 289-298, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0006-3525
    Keywords: conformational changes ; vicinal glycosylation ; branched α-l-Rhap(1-2)[β-d-Galp(1-3)]-β-d-Glc1-OMe trisaccharide ; parent disaccharides ; hydrogen bond ; isotope effect ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Conformations of the α-l-Rhap(1-2)-β-d-Glc1-OMe and β-d-Galp(1-3)-β-d-Glc1-OMe disaccharides and the branched title trisaccharide were examined in DMSO-d6 solution by 1H-nmr. The distance mapping procedure was based on rotating frame nuclear Overhauser effect (NOE) constraints involving C- and O-linked protons, and hydrogen-bond constraints manifested by the splitting of the OH nmr signals for partially deuteriated samples. An “isotopomer-selected NOE” method for the unequivocal identification of mutually hydrogen-bonded hydroxyl groups was suggested. The length of hydrogen bonds thus detected is considered the only one motionally nonaveraged nmr-derived constraint. Molecular mechanics and molecular dynamics methods were used to model the conformational properties of the studied oligosaccharides. Complex conformational search, relying on a regular Φ,Ψ-grid based scanning of the conformational space of the selected glycosidic linkage, combined with simultaneous modeling of different allowed orientations of the pendant groups and the third, neighboring sugar residue, has been carried out. Energy minimizations were performed for each member of the Φ,Ψ grid generated set of conformations. Conformational clustering has been done to group the minimized conformations into families with similar values of glycosidic torsion angles. Several stable syn and anti conformations were found for the 1→2 and 1→3 bonds in the studied disaccharides. Vicinal glycosylation affected strongly the occupancy of conformational states in both branches of the title trisaccharide. The preferred conformational family of the trisaccharide (with average Φ,Ψ values of 38°, 17° for the 1→2 and 48°, 1° for the 1→3 bond, respectively) was shown by nmr to be stabilized by intramolecular hydrogen bonding between the nonbonded Rha and Gal residues. © 1998 John Wiley & Sons, Inc. Biopoly 46: 417-432, 1998
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 46 (1998), S. 489-492 
    ISSN: 0006-3525
    Keywords: refractive index increment ; proteins ; solvent ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The refractive index increment of a protein solution is a property not only of the protein, but also of the solvent. This is demonstrated theoretically and confirmed experimentally using analytical interferometry. © 1998 John Wiley & Sons, Inc. Biopoly 46: 489-492, 1998
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...