ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (609)
  • 2000-2004  (609)
  • Architecture, Civil Engineering, Surveying  (609)
Collection
  • Articles  (609)
Publisher
Years
Year
Topic
  • Architecture, Civil Engineering, Surveying  (609)
  • 1
    Publication Date: 2004-10-18
    Description: The performance-based philosophy has been accepted as a more reasonable design concept for engineering structures. For this purpose, capacity evaluation and demand prediction procedures for civil engineering structures under earthquake excitations are of great significance. This work presents a displacement-based seismic performance verification procedure including capacity and seismic demand predictions for steel arch bridges and investigates its applicability. Pushover analyses is employed as a basis in this method to investigate the structure's behaviors. A failure criterion for steel members accounting for the effect of local buckling is involved and an equivalent single-degree-of-freedom (ES-DOF) system with a simplified bilinear hysteretic model formulated using pushover analyses results is introduced to estimate the displacement capacity and maximum demand of steel arch bridges under major earthquakes. To check the accuracy of the proposed method, seismic capacities and demands from multi-degree-of-freedom (MDOF) time-history analyses with Level-II design earthquake record inputs modeling major earthquakes are used as benchmarks for comparison. By a case study, it is clarified that the proposed prediction procedure can give accurate estimations of displacement capacities and demands of the steel arch bridge in the transverse direction, while insufficient for the longitudinal direction, which confirms the conclusion drawn in other structure types about the applicability of pushover analyses. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-10-18
    Description: The Di Wang Tower located in Shenzhen has 79 storeys and is about 325 m high. Field measurements have been conducted to investigate the dynamic characteristics of the super-tall building. In parallel with the field measurements, seven finite element models have been established to model the multi-outrigger-braced tall building and to analyse the effects of various arrangements of outrigger belts and vertical bracings on the dynamic characteristics and responses of the Di Wang Tower under the design wind load and earthquake action. The distributions of shear forces in vertical structural components along the building height are also presented and discussed. The results from detailed modelling of group shear walls with several types of finite elements are addressed and compared to investigate various modelling assumptions. Finally, the performance of the finite element models is evaluated by correlating the natural frequencies and mode shapes from the numerical analysis with the finite element models and the field measurements. The results generated from this study are expected to be of interest to professionals and researchers involved with the design of tall buildings. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-10-18
    Description: In this study the inelastic behavior of steel arch bridges subjected to strong ground motions from major earthquakes is investigated by dynamic analyses of a typical steel arch bridge using a three-dimensional (3D) analytical model, since checking seismic performance against severe earthquakes is not usually performed when designing such kinds of bridge. The bridge considered is an upper-deck steel arch bridge having a reinforced concrete (RC) deck, steel I-section girders and steel arch ribs. The input ground motions are accelerograms which are modified ground motions based on the records from the 1995 Hyogoken-Nanbu earthquake. Both the longitudinal and transverse dynamic characteristics of the bridge are studied by investigation of time-history responses of the main parameters. It is found that seismic responses are small when subjected to the longitudinal excitation, but significantly large under the transverse ground motion due to plasticization formed in some segments such as arch rib ends and side pier bases where axial force levels are very high. Finally, a seismic performance evaluation method based on the response strain index is proposed for such steel bridge structures. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-09-24
    Description: A previously developed simplified model of ground motion amplification is applied to the simulation of acceleration time histories at several soft-soil sites in the Valley of Mexico, on the basis of the corresponding records on firm ground. The main objective is to assess the ability of the model to reproduce characteristics such as effective duration, frequency content and instantaneous intensity. The model is based on the identification of a number of parameters that characterize the complex firm-ground to soft-soil transfer function, and on the adjustment of these parameters in order to account for non-linear soil behavior. Once the adjusted model parameters are introduced, the statistical properties of the simulated and the recorded ground motions agree reasonably well. For the sites and for the seismic events considered in this study, it is concluded that non-linear soil behavior may have a significant effect on the amplification of ground motion. The non-linear soil behavior significantly affects the effective ground motion duration for the components with the higher intensities, but it does not have any noticeable influence on the lengthening of the dominant ground period. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-09-24
    Description: The seismic performance of the Bolu Viaduct in the Duzce, Turkey, earthquake of November 1999 was studied via a non-linear, time-history analysis of a multi-degree of freedom model. The viaduct had a seismic isolation system consisting of yielding-steel energy dissipation units and sliding pot bearings. The Duzce earthquake caused a surface rupture across the viaduct, which resulted in excessive superstructure movement and widespread failure of the seismic isolation system. The effect of the rupture was modeled by a static, differential ground displacement in the fault-parallel direction across the rupture. The ground motions used in the analysis contain common near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction. The analysis used a finite element package capable of modeling the mechanical behavior of the seismic isolation system and focused on the structural response of a 10-span module of the viaduct. This analysis showed that the displacement of the superstructure relative to the piers exceeded the capacity of the bearings at an early stage of the earthquake, causing damage to the bearings as well as to the energy dissipation units. The analysis also indicated that shear keys, both longitudinal and transverse, played a critical role in preventing collapse of the deck spans. Published in 2004 by John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-09-24
    Description: A novel base-isolation device is described and its performance is compared with that of a friction pendulum bearing. In its simplest form, the device consists of two wedges sliding on a horizontal plane in opposite directions and constrained from retreating by ratchets or bilinear dampers. The superstructure rests at the intersection of the two wedges. For a sufficiently large horizontal acceleration of the base, the structure starts to move up the inclined plane of one of the wedges, which remains fixed while the second wedge is slaved to follow the structure. As the direction of the base acceleration reverses, the process is reversed and the structure starts to climb on the second inclined plane while the first wedge follows. The overall result is that the horizontal acceleration of the structure is reduced with respect to that of the base and that kinetic energy associated with horizontal velocities is systematically transformed into potential energy. In the case of motion in a vertical plane, the device has the following advantages over a friction pendulum: (i) the sliding surface is linear instead of curved, (ii) kinetic energy is systematically transformed into potential energy during the strong ground motion, and (iii) the device is slowly self-centering. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-09-14
    Description: The collapse of timber-frame houses during an earthquake was analyzed by the 2-dimensional (2D) and 3-dimensional (3D) distinct element methods (DEM). The DEM is a numerical analysis technique in which positions of elements are calculated by solving equations of motion step by step. Both individual and group behavior can be simulated. The structure is modeled as an assembly of distinct elements connected by virtual springs and dashpots where elements come into contact. A timber-frame house with simple structural elements; beams, columns, floors, and a roof, was modeled. Injury to human bodies also was considered. Human bodies modeled as circles (2D) or rectangular parallelepipeds (3D) were placed on its floors. The maximum impact acceleration on the human body during an earthquake was calculated. Injury to humans in houses was assessed by the Chest-G index and Head Injury Criteria (HIC) widely used in automobile engineering. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-09-14
    Description: An investigation on the validity of the conventional design approach known as constant displacement ductility is carried out. The hysteretic behaviour described by the Modified Takeda model is taken to represent the characteristics of reinforced concrete structural systems. The results presented in the form of seismic damage spectra indicate that the conventional design approach may not be valid because cumulative damage is excessively high. The inelastic design spectra based on the constant-damage concept are proposed in terms of simplified expressions. The expressions are derived from constant-damage design spectra computed by non-linear response analysis for SDOF systems subjected to ground motions recorded on rock sites, alluvium deposits, and soft-soil sites. The proposed expressions, which are dependent on the local soil conditions, are functions of target seismic damage, displacement ductility ratio and period of vibration. The seismic damage of structures that have been designed based on this new design approach is also checked by a design-and-evaluation approach. The results are found to be satisfactory. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-09-14
    Description: A procedure is presented to determine new modal combination rules (both CQC and SRSS) for nonclassically damped structures. The procedure presented in this paper does not need the solution of any complex eigenvalue problem, in contrast to other methods found in the literature. Thus, the modal combination rules presented here are easily applicable, even by those engineers who are unaccustomed to using complex algebra. Moreover, these formulations show the further advantage of requiring the response spectra only for the target damping ratio value. So the use of approximated formulae, necessary for passing from the response spectrum with the target damping ratio value to other ones, is avoided. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-09-01
    Description: A systematic and improved design procedure for sliding mode control (SMC) of seismically excited civil structures with saturation problem is provided in this paper. In order to restrict the control force to a certain level, a procedure for determining the upper limits of the control forces for single or multiple control units is proposed based on the design response spectrum of external loads. Further, an efficient procedure using the LQR method for determining sliding surfaces appropriate for different controller types is provided through the parametric evaluation of the dynamic characteristics of sliding surfaces in terms of SMC controller performance. Finally, a systematic design procedure for SMC required to achieve a given performance level is provided and its effectiveness is verified by applying it to multi-degree-of-freedom (MDOF) systems. © 2004 John Wiley and Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...