ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Data  (3)
  • 2010-2014  (3)
Collection
Keywords
Publisher
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Krüger, Stefan; Leuschner, Dirk C; Ehrmann, Werner; Schmiedl, Gerhard; Mackensen, Andreas (2012): North Atlantic Deep Water and Antarctic Bottom Water variability during the last 200 ka recorded in an abyssal sediment core off South Africa. Global and Planetary Change, 80-81, 180-189, https://doi.org/10.1016/j.gloplacha.2011.10.001
    Publication Date: 2023-10-28
    Description: Benthic d13C values (F. wuellerstorfi), kaolinite/chlorite ratios and sortable silt median grain sizes in sediments of a core from the abyssal Agulhas Basin record the varying impact of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) during the last 200 ka. The data indicate that NADW influence decreased during glacials and increased during interglacials, in concert with the global climatic changes of the late Quaternary. In contrast, AABW displays a much more complex behaviour. Two independent modes of deep-water formation contributed to the AABW production in the Weddell Sea: 1) brine rejection during sea ice formation in polynyas and in the sea ice zone (Polynya Mode) and 2) super-cooling of Ice Shelf Water (ISW) beneath the Antarctic ice shelves (Ice Shelf Mode). Varying contributions of the two modes lead to a high millennial-scale variability of AABW production and export to the Agulhas Basin. Highest rates of AABW production occur during early glacials when increased sea ice formation and an active ISW production formed substantial amounts of deep water. Once full glacial conditions were reached and the Antarctic ice sheet grounded on the shelf, ISW production shut down and only brine rejection generated moderate amounts of deep water. AABW production rates dropped to an absolute minimum during Terminations I and II and the Marine Isotope Transition (MIS) 4/3 transition. Reduced sea ice formation concurrent with an enhanced fresh water influx from melting ice lowered the density of the surface water in the Weddell Sea, thus further reducing deep water formation via brine rejection, while the ISW formation was not yet operating again. During interglacials and the moderate interglacial MIS 3 both brine formation and ISW production were operating, contributing various amounts to AABW formation in the Weddell Sea.
    Keywords: Agulhas Basin; ANT-XI/4; Gravity corer (Kiel type); Polarstern; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; PS2561-2; PS30; PS30/030; SL; SPP1158
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fuhlbruegge, Steffen; Krüger, Kirstin; Quack, Birgit; Atlas, Elliot L; Hepach, Helmke; Ziska, Franziska (2013): Impact of the marine atmospheric boundary layer conditions on VSLS abundances in the eastern tropical and subtropical North Atlantic Ocean. Atmospheric Chemistry and Physics, 13(13), 6345-6357, https://doi.org/10.5194/acp-13-6345-2013
    Publication Date: 2024-02-16
    Description: During the DRIVE (Diurnal and Regional Variability of Halogen Emissions) ship campaign we investigated the variability of the halogenated very short-lived substances (VSLS) bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) in the marine atmospheric boundary layer in the eastern tropical and subtropical North Atlantic Ocean during May/June 2010. The highest VSLS mixing ratios were found near the Mauritanian coast and close to Lisbon (Portugal). With backward trajectories we identified predominantly air masses from the open North Atlantic with some coastal influence in the Mauritanian upwelling area, due to the prevailing NW winds. The maximum VSLS mixing ratios above the Mauritanian upwelling were 8.92 ppt for bromoform, 3.14 ppt for dibromomethane and 3.29 ppt for methyl iodide, with an observed maximum range of the daily mean up to 50% for bromoform, 26% for dibromomethane and 56% for methyl iodide. The influence of various meteorological parameters - such as wind, surface air pressure, surface air and surface water temperature, humidity and marine atmospheric boundary layer (MABL) height - on VSLS concentrations and fluxes was investigated. The strongest relationship was found between the MABL height and bromoform, dibromomethane and methyl iodide abundances. Lowest MABL heights above the Mauritanian upwelling area coincide with highest VSLS mixing ratios and vice versa above the open ocean. Significant high anti-correlations confirm this relationship for the whole cruise. We conclude that especially above oceanic upwelling systems, in addition to sea-air fluxes, MABL height variations can influence atmospheric VSLS mixing ratios, occasionally leading to elevated atmospheric abundances. This may add to the postulated missing VSLS sources in the Mauritanian upwelling region (Quack et al., 2007).
    Keywords: 1,1,1,2-Tetrafluoroethane; 1,1,2-Trichloro-1,2,2-trifluoroethane; 1,1-Dichloro-1-fluoroethane; 1,1-Difluoroethane; 1,2-Dibromotetrafluoroethane; 1,2-Dichloroethane; 1,2-Dichlorotetrafluoroethane; 1-Chlor-1,2,2,2-tetrafluorethan; 1-Chloro-1,1-difluoroethane; 23-10; ALTITUDE; Benzene; Bromochlorodifluoromethane; Bromoform; Bromomethane; Carbonyl sulfide; Chlorodibromomethane; Chlorodifluoromethane; Chloroform; Chloromethane; CT; DATE/TIME; Dibromomethane; Dichlorodifluoromethane; Dichloromethane; Dimethyl sulfate; Eastern Tropical North Atlantic; Ethyl nitrate; Event label; Isobutane; Isopentane; Isoprene; Isopropyl nitrate; LATITUDE; LONGITUDE; Methyl acetate; Methyl Chloroform; Methyl iodide; Methyl nitrate; n-Butane; n-Hexane; n-Pentane; n-Propyl nitrate; POS399/2; POS399/2-track; POS399/3; POS399/3-track; Poseidon; Propane; sec-Butyl nitrate; SOPRAN; Surface Ocean Processes in the Anthropocene; Tetrachlormethan; Tetrachloroethylene; Toluene; Trichlorfluormethan; Underway cruise track measurements
    Type: Dataset
    Format: text/tab-separated-values, 7351 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hepach, Helmke; Quack, Birgit; Ziska, Franziska; Fuhlbruegge, Steffen; Atlas, Elliot L; Krüger, Kirstin; Peeken, Ilka; Wallace, Douglas WR (2014): Drivers of diel and regional variations of halocarbon emissions from the tropical North East Atlantic. Atmospheric Chemistry and Physics, 14(3), 1255-1275, https://doi.org/10.5194/acp-14-1255-2014
    Publication Date: 2024-02-16
    Description: Methyl iodide (CH3I), bromoform (CHBr3) and dibromomethane (CH2Br2), which are produced naturally in the oceans, take part in ozone chemistry both in the troposphere and the stratosphere. The significance of oceanic upwelling regions for emissions of these trace gases in the global context is still uncertain although they have been identified as important source regions. To better quantify the role of upwelling areas in current and future climate, this paper analyzes major factors that influenced halocarbon emissions from the tropical North East Atlantic including the Mauritanian upwelling during the DRIVE expedition. Diel and regional variability of oceanic and atmospheric CH3I, CHBr3 and CH2Br2 was determined along with biological and meteorological parameters at six 24 h-stations. Low oceanic concentrations of CH3I from 0.1-5.4 pmol/L were equally distributed throughout the investigation area. CHBr3 of 1.0-42.4 pmol/L and CH2Br2 of 1.0-9.4 pmol/L were measured with maximum concentrations close to the Mauritanian coast. Atmospheric mixing rations of CH3I of up to 3.3, CHBr3 to 8.9 and CH2Br2 to 3.1 ppt above the upwelling and 1.8, 12.8, respectively 2.2 ppt at a Cape Verdean coast were detected during the campaign. While diel variability in CH3I emissions could be mainly ascribed to oceanic non-biological production, no main driver was identified for its emissions in the entire study region. In contrast, oceanic bromocarbons resulted from biogenic sources which were identified as regional drivers of their sea-to-air fluxes. The diel impact of wind speed on bromocarbon emissions increased with decreasing distance to the coast. The height of the marine atmospheric boundary layer (MABL) was determined as an additional factor influencing halocarbon emissions. Oceanic and atmospheric halocarbons correlated well in the study region and in combination with high oceanic CH3I, CHBr3 and CH2Br2 concentrations, local hot spots of atmospheric halocarbons could solely be explained by marine sources. This conclusion is in contrast with previous studies that hypothesized the occurrence of elevated atmospheric halocarbons over the eastern tropical Atlantic mainly originating from the West-African continent.
    Keywords: 1,1,1-Trichloroethane; 23-10; Bromoiodomethane; Cape Verde; CTD/Rosette; CTD10; CTD17; CTD19; CTD22; CTD5; CTD-RO; CVOO; DATE/TIME; Dibromochloromethane; Dibromomethane; Dichloromethane; Diiodomethane; Event label; Gas chromatography - Mass spectrometry (GC-MS); Iodomethane; LATITUDE; LONGITUDE; OBSE; Observation; POS399/2; POS399/2_308-11; POS399/2_311-19; POS399/2_316-31; POS399/2_317-36; POS399/2_319-43; Poseidon; Sample ID; SOPRAN; Surface Ocean Processes in the Anthropocene; TENATSO; Tetrachloromethane; Tribromomethane; Trichloromethane
    Type: Dataset
    Format: text/tab-separated-values, 1540 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...