ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union
  • 2010-2014  (32,139)
Collection
Years
Year
  • 1
    Publication Date: 2024-05-09
    Description: In this paper, fluid source(s) and processes controlling the chemical composition of VOCs (Volatile Organic Compounds) in gas discharges from Mt. Etna and Vulcano Island (Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of “magmatic” and “hydrothermal” components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic matter-bearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alkene and aromatic compounds via catalytic reactions (dehydrogenation and dehydroaromatization, respectively). Nevertheless, an abiogenic origin for the light hydrocarbons cannot be ruled out. Oxidative processes of hydrocarbons at relatively high temperatures and oxidizing conditions, typical of these volcanic-hydrothermal fluids, may explain the production of alcohols, esters, aldehydes, as well as O- and S-bearing heterocycles. By comparing the concentrations of hydrochlorofluorocarbons (HCFCs) in the fumarolic discharges with respect to those of background air, it is possible to highlight that they have a geogenic origin likely due to halogenation of both methane and alkenes. Finally, CFC (chlorofluorocarbon) abundances appear to be consistent with background air, although the strong air contamination that affects the Mt. Etna fumaroles may mask a possible geogenic contribution for these compounds. On the other hand, no CFCs were detected in the Vulcano gases, which are characterized by low air contribution. Nevertheless, a geogenic source for these compounds cannot be excluded on the basis of the present data.
    Description: Published
    Description: D17305
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: etna, vulcano, VOC ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-09
    Description: We carried out a combined geophysical and gas-geochemical survey on an active fault strand along the North-Anatolian Fault (NAF) system in the Gulf of İzmit (eastern Sea of Marmara), providing for the first time in this area data on the distribution of methane (CH4) and other gases dissolved in the bottom seawater, as well as the CH4 isotopic composition. Based on high-resolution morphobathymetric data and chirp-sonar seismic reflection profiles we selected three areas with different tectonic features associated to the NAF system, where we performed visual and instrumental seafloor inspections, including in-situ measurements of dissolved CH4, and sampling of the bottom water. Starting from background values of 2-10 nM, methane concentration in the bottom seawater increases abruptly up to 20 nM over the main NAF trace. CH4 concentration peaks up to ~120 nM were detected above mounds related probably to gas and fluids expulsion. Methane is microbial (δ13CCH4: -67.3 and -76 ‰ vs. VPDB), and was found mainly associated with pre- Holocene deposits topped by a 10-20 m thick draping of marine mud. The correlation between tectonic structures and gas-seepages at the seafloor suggests that the NAF in the Gulf of İzmit could represent a key site for long-term combined monitoring of fluid exhalations and seismicity to assess their potential as earthquake precursors.
    Description: Published
    Description: Q10018
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: submarine ; gas seepage ; active fault ; Marmara sea ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-16
    Description: The April–May 2010 eruption of the Eyjafjallajökull volcano (Iceland) was characterized by a nearly continuous injection of tephra into the atmosphere that affected various economic sectors in Iceland and caused a global interruption of air traffic. Eruptive activity during 4–8 May 2010 was characterized based on short-duration physical parameters in order to capture transient eruptive behavior of a long-lasting eruption (i.e., total grain-size distribution, erupted mass, and mass eruption rate averaged over 30 min activity). The resulting 30 min total grain-size distribution based on both ground and Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI) satellite measurements is characterized by Mdphi of about 2 and a fine-ash content of about 30 wt %. The accumulation rate varied by 2 orders of magnitude with an exponential decay away from the vent, whereas Mdphi shows a linear increase until about 18 km from the vent, reaching a plateau of about 4.5 between 20 and 56 km. The associated mass eruption rate is between 0.6 and 1.2 × 105 kg s−1. In situ sampling showed how fine ash mainly fell as aggregates of various typologies. About 5 to 9 wt % of the erupted mass remained in the cloud up to 1000 km from the vent, suggesting that nearly half of the ash 〉7 settled as aggregates within the first 60 km. Particle sphericity and shape factor varied between 0.4 and 1 with no clear correlation to the size and distance from vent. Our experiments also demonstrate how satellite retrievals and Doppler radar grain-size detection can provide a real-time description of the source term but for a limited particle-size range.
    Description: Published
    Description: B12202
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: MSG-SEVIRI, PLUDIX ; particle aggregation ; settling velocity ; tephra deposits ; weak plumes ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting, San Francisco, CA, USA, 2014-12-14-2014-12-19American Geophysical Union
    Publication Date: 2022-09-29
    Description: The Mid Pleistocene Transition (MPT) constitutes a fundamental shift in Earth's climate system from a 41 ka to a 100 ka periodicity in glacial oscillations. The exact timing and mechanism(s) that caused this change from a low- to high-amplitude glacial variability are still under debate and only recently Pena & Goldstein (2014) suggested that a disruption of the thermohaline circulation at about 900 ka BP and a subsequent change in ocean circulation might have acted as a trigger for the onset of 100 ka glacial-interglacial cycles. Most studies targeting the MPT are based on Atlantic sediment records whereas only few data sets are available from the North Pacific (see e.g. Clark et al., 2006 and McClymont et al., 2013 for reviews). IODP Expedition 341 distal deep-water site U1417 in the Gulf of Alaska (subpolar NE Pacific) now provided a continuous sediment record for reconstructing Miocene to Late Pleistocene changes in the sea surface conditions and how these relate to orbital and millennial scale climate variability. Here we present organic geochemical biomarker data covering the 1.5 Ma to 0.1 Ma time interval with special focus on the MPT. Alkenone, sterol, n-alkane and C25 highly branched isoprenoid data are used to reconstruct sea surface temperatures, primary productivity and terrigenous organic matter input (via sea ice, icebergs, meltwater discharge or aeolian transport). In addition, the diatom concentration and the species composition of the diatom assemblage deliver information on changes in palaeoproductivity and nutrient (silicate) availability. A major change in the environmental setting between 1.2 and 0.8 Ma is recorded by the biomarkers. This shift seems to be associated with a significant cooling of the surface waters in the Gulf of Alaska. Matching this shift, a significant change in the main components of the diatom community occurred between 1.2 and 0.8 Ma. References Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., Roy, M., 2006. Quaternary Science Reviews, 25, (23–24), 3150-3184. McClymont, E.L., Sosdian, S.M., Rosell-Melé, A., Rosenthal, Y., 2013. Earth-Science Reviews, 123, 173-193. Pena, L.D. and Goldstein, S.L., 2014. Science, 345, 318-322.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting, San Francisco, CA, USA, 2014-12-14-2014-12-19American Geophysical Union
    Publication Date: 2022-09-29
    Description: Since the Pliocene, global climate history is distinguished by the transition into a colder world, dominated by the onset and intensification of major Northern Hemisphere glaciations which have also changed in their duration and intensity. Potential drivers for these events include falling atmospheric CO2, progressive sub-glacial erosion, tectonic uplift, and associated feedbacks. At present, isolating climate as the driver of evolving continental ice volume since the Pliocene is hindered by the limited long term data sets which directly link climate changes to evidence for ice-sheet advance/retreat, erosion, and tectonic evolution over million year timescales. IODP Expedition 341 drilled a cross-margin transect in the Gulf of Alaska from ice-proximal sites on the continental shelf to distal sites in the deep Pacific. This study focuses on the distal site (Site U1417, c.4190 m water depth) which contains variable biogenic and terrigenous contributions, and evidence for deposition through pelagic, mass movement and glacial processes. Our aim is to investigate links between north-east Pacific paleoceanography and the history of the north-west Cordilleran ice sheet, neither of which are fully understood given limited data pre-dating the Last Glacial Maximum. We reconstruct SSTs during the mid-Pliocene, Plio-Pleistocene Transition (PPT) and mid-Pleistocene transition (MPT) using the UK37’ index. We consider the interaction between SSTs and primary production by examining the absolute and relative abundances of plankton biomarkers (e.g. for haptophytes, diatoms and dinoflagellates), carbon/nitrogen ratios, stable isotopes (δ13C, δ15N) and diatom assemblages. Links between these climatic events and the north-west Cordilleran ice-sheet advance/retreat history are initially made using shipboard stratigraphy; emerging data sets on ice-rafting from members of the Expedition 341 Scientific Party will refine these relationships.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting, San Francisco, CA, USA, 2014-12-14-2014-12-19American Geophysical Union
    Publication Date: 2022-09-29
    Description: The last transition from full glacial to current interglacial conditions was accompanied by distinct short-term climate fluctuations caused by changes in the global ocean circulation system. Most palaeoceanographic studies focus on the documentation of the behaviour of the Atlantic Meridional Overturning Circulation (AMOC) during the last deglaciation in response to freshwater forcing events. In this respect, the role of Arctic sea ice remained relatively unconsidered - primarily because of the difficulty of its reconstruction. Here we present new proxy data on late glacial (including the Last Glacial Maximum; LGM) and deglacial sea ice variability in the Arctic Ocean and its main gateway - the Fram Strait - and how these changes in sea ice coverage contributed to AMOC perturbations observed during Heinrich Event 1 and the Younger Dryas. Recurrent short-term advances and retreats of sea ice in Fram Strait, prior and during the LGM, are in line with a variable (or intermittent) North Atlantic heat flow along the eastern corridor of the Nordic Seas. Possibly in direct response to the initial freshwater discharge from melting continental ice-sheets, a permanent sea ice cover established only at about 19 ka BP (i.e. post-LGM) and lasted until 17.6 ka BP, when an abrupt break-up of this thick ice cover and a sudden discharge of huge amounts of sea ice and icebergs through Fram Strait coincided with the weakening of the AMOC during Heinrich Event 1. Similarly, another sea ice maximum at about 12.8 ka BP is associated with the slowdown of the AMOC during the Younger Dryas. The new data sets clearly highlight the important role of Arctic sea ice for the re-organisation of the oceanographic setting in the North Atlantic during the last deglaciation. Further studies and sensitivity experiments to identify crucial driving (and feedback) mechanisms within the High Latitude ice-ocean-atmosphere system will contribute the understanding of rapid climate changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3AGU Fall Meeting, San Francisco, CA, USA, 2014-12-14-2014-12-19American Geophysical Union
    Publication Date: 2022-09-29
    Description: Reconstructing the timing and nature of past changes in aquatic productivity in the Gulf of Alaska (GoA) can shed light on the primary processes driving biogeochemical cycling over geologic timescales. Here, we present sedimentologic, physical property, stable isotope, and biogenic opal concentration data from IODP Expedition 341 Sites U1417 and U1419 and identify intervals where diatom ooze lithofacies and geochemical evidence for increased algal productivity are prevalent during the Pleistocene. Sites U1417 and U1419 are located in the center and the margin of the Fe-limited GoA, respectively, and they offer the potential to characterize past changes in biogeochemical cycling during different Pleistocene time intervals. Site U1419 cores were collected from a small slope basin at the edge of the continental shelf. Sediment cores reveal two prominent ~6-m-thick intervals of diatomaceous ooze. Between these intervals are numerous 20-cm-thick sections of biogenic-rich sediment, interbedded with gray mud that commonly contains lonestones. Based on preliminary age models, the two diatom ooze intervals likely correspond to the Holocene and MIS 3, while the intervening interbedded glacigenic and biogenic sediment can broadly be ascribed to MIS 2. Diatomaceous ooze and diatom-rich sediments are generally characterized by lower magnetic susceptibility, natural gamma ray, bulk density, and higher b* color reflectance. Initial C & N concentration and stable isotopic data show elevated concentrations and more positive stable isotope values during the Holocene and MIS 3, which approximate the isotopic signature of modern phytoplankton measured in the GoA. Within the glacial period, the biogenic-rich intervals are also characterized by more positive C and N isotopic values. When combined with the shipboard physical property data, the stable isotopic results are indicative of millennial-scale variations in productivity and/or changes in glacial ice extent in the GoA during the last glacial period. We will discuss these results in the context of an improved isotope stratigraphy and ongoing work examining multiple interglacial productivity variations at Site U1417.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-09
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Eos 93, no. 43 (2012): 425-426.
    Description: In the ocean sciences, a project was started in 2008 to bring together scientists, data managers, and library experts to explore means to (1) increase the submission of data to data centers, (2) make data more accessible for reuse, (3) link data more closely to traditional journal publications, and (4) create a system that gives more credit to data generators. This project is a joint effort among the Scientific Committee on Oceanic Research, the International Oceanographic Data and Information Exchange (IODE) of the United Nations Educational, Scientific and Cultural Organization’s Intergovernmental Oceanographic Commission, and the Marine Biological Laboratory Woods Hole Oceanographic Institution (MBLWHOI) Library.
    Description: 2013-04-23
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 24 (2009): PA2204, doi:10.1029/2008PA001696.
    Description: Studies from the subtropical western and eastern Atlantic Ocean, using the 231Pa/230Th ratio as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of meridional overturning circulation (MOC) over the last deglaciation. In this study, we present a compilation of existing and new sedimentary 231Pa/230Th records from North Atlantic cores between 1710 and 4550 m water depth. Comparing sedimentary 231Pa/230Th from different depths provides new insights into the evolution of the geometry and rate of deep water formation in the North Atlantic during the last 20,000 years. The 231Pa/230Th ratio measured in upper Holocene sediments indicates slow water renewal above ∼2500 m and rapid flushing below, consistent with our understanding of modern circulation. In contrast, during the Last Glacial Maximum (LGM), Glacial North Atlantic Intermediate Water (GNAIW) drove a rapid overturning circulation to a depth of at least ∼3000 m depth. Below ∼4000 m, water renewal was much slower than today. At the onset of Heinrich event 1, transport by the overturning circulation declined at all depths. GNAIW shoaled above 3000 m and significantly weakened but did not totally shut down. During the Bølling‐Allerød (BA) that followed, water renewal rates further decreased above 2000 m but increased below. Our results suggest for the first time that ocean circulation during that period was quite distinct from the modern circulation mode, with a comparatively higher renewal rate above 3000 m and a lower renewal rate below in a pattern similar to the LGM but less accentuated. MOC during the Younger Dryas appears very similar to BA down to 2000 m and slightly slower below.
    Description: The LSCE-WHOI cooperation has been supported by a NSF-CNRS cooperative grant NSF INT-0233483. Analytical measurements in LSCE have been supported by French Programme National d’Etude de la Dynamique du Climat, Commissariat a` l’Energie Atomique, and Centre National de la Recherche Scientifique. The participation of J.F.M. in this project was supported in part by grants from the U.S.-NSF, WHOI-OCCI, and the Gary Comer Science and Education Foundation. R.F.’s participation was supported by grants from NSERC and the Canadian Foundation for Climate and Atmospheric Science.
    Keywords: MOC
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/vnd.ms-excel
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): C09005, doi:10.1029/2008JC004948.
    Description: A persistent gyre at the mouth of the Bay of Fundy results from a combination of tidal rectification and buoyancy forcing. Here we assess recent interannual variability in the strength of the gyre using data assimilative model simulations. Realistic hindcast representations of the gyre are considered during cruises in 2005, 2006, and 2007. Assimilation of shipboard and moored acoustic Doppler current profiler velocities is used to improve the skill of the simulations, as quantified by comparison with nonassimilated drifter trajectories. Our hindcasts suggest a weakening of the gyre system during May 2005. Retention of simulated passive particles in the gyre during that period was highly reduced. A recovery of the dense water pool in the deep part of the basin by June 2006 resulted in a return to particle retention characteristics similar to climatology. Retention estimates reached a maximum during May 2007 (subsurface) and June–July 2007 (near surface). Interannual variability in the strength of the gyre was primarily modulated by the stratification of the dense water pool inside the Grand Manan Basin. These changes in stratification were associated with mixing conditions the preceding fall–winter and/or advectively driven modification of water mass properties.
    Description: The preparation of this paper was supported by NSF grant OCE-0430724, NIEHS grant 1P50-ES01274201 (Woods Hole Center for Oceans and Human Health), andNOAAgrant NA06NOS4780245 (GOMTOX). Additional support was provided by NSF grant DMS-0417769.
    Keywords: Bay of Fundy ; Model simulations ; Gyre hindcast
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...