ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (637)
  • 2010-2014  (637)
Collection
  • Articles  (637)
Publisher
Years
Year
Journal
  • 1
    Publication Date: 2014-12-21
    Description: The GNSS reflectometry technique provides geometric information on the environment surrounding the GNSS antenna including the vertical distance to a reflecting surface. We use sea-surface reflections of GPS signals, recorded as oscillations in signal-to-noise ratio (SNR), to estimate the GNSS to tide gauge (TG) levelling tie, and thus the ellipsoidal heights of the TG. We develop approaches to isolate SNR data dominated by sea-surface reflections and to remove SNR frequency changes caused by the dynamic sea surface. Comparison with in situ levelling at eight sites reveals mean differences at the centimetre level for satellites above 12 \(^{\circ }\) elevation, with four sites showing differences of 3 cm or smaller. These differences include errors in the in situ levelling, in the antenna calibration model and in the TG measurements, and so represent an upper bound on our technique’s error. Data sampling (1 or 30 s) does not significantly affect the results. We detect systematic errors at the decimetre level related to satellite elevations below 12 \(^{\circ }\) and to sea-surface height and also differences between results from the L1 and L2 GPS signals larger than 15 cm at two sites. These systematic errors remain unexplained; differences between GPS signals are attributed to receiver-dependent differences in the SNR measurements, while the elevation-dependent error is attributed to unmodelled phase effects such as those caused by tropospheric refraction and sea-surface roughness. Using our approach, we identify a levelling offset of 1.5 cm related to a TG sensor change, illustrating our technique’s value for TG reference monitoring.
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-20
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-18
    Description: The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land–ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-18
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-14
    Description: The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-13
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-05
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-03
    Description: To take maximum advantage of the increasing Global Navigation Satellite Systems (GNSS) data to improve the accuracy and resolution of global ionospheric TEC map (GIM), an approach, named Spherical Harmonic plus generalized Trigonometric Series functions (SHPTS), is proposed by integrating the spherical harmonic and the generalized trigonometric series functions on global and local scales, respectively. The SHPTS-based GIM from January 1st, 2001 to December 31st, 2011 (about one solar cycle) is validated by the ionospheric TEC from raw global GPS data, the GIM released by the current Ionospheric Associate Analysis Center (IAAC), the TOPEX/Poseidon satellite and the DORIS. The present results show that the SHPTS-based GIM over the area where no real data are available has the same accuracy level (approximately 2–6 TECu) to that released by the current IAAC. However, the ionospheric TEC in the SHPTS-based GIM over the area covered by real data is more accurate (approximately 1.5 TECu) than that of the GIM (approximately 3.0 TECu) released by the current IAAC. The external accuracy of the SHPTS-based GIM validated by the TOPEX/Poseidon and DORIS is approximately 2.5–5.5 and 1.5–4.5 TECu, respectively. In particular, the SHPTS-based GIM is the best or almost the best ranked, along with those of JPL and UPC, when they are compared with TOPEX/Poseidon measurements, and the best (in addition to UPC) when they are validated with DORIS data. With the increase in the number of GNSS satellites and contributing stations, the performance of the SHPTS-based GIM can be further improved. The SHPTS-based GIM routinely calculated using global GPS, GLONASS and BDS data will be found at the website http://www.gipp.org.cn .
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-02
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-26
    Description: The ambiguity acceptance test is an important quality control procedure in high precision GNSS data processing. Although the ambiguity acceptance test methods have been extensively investigated, its threshold determine method is still not well understood. Currently, the threshold is determined with the empirical approach or the fixed failure rate (FF-) approach. The empirical approach is simple but lacking in theoretical basis, while the FF-approach is theoretical rigorous but computationally demanding. Hence, the key of the threshold determination problem is how to efficiently determine the threshold in a reasonable way. In this study, a new threshold determination method named threshold function method is proposed to reduce the complexity of the FF-approach. The threshold function method simplifies the FF-approach by a modeling procedure and an approximation procedure. The modeling procedure uses a rational function model to describe the relationship between the FF-difference test threshold and the integer least-squares (ILS) success rate. The approximation procedure replaces the ILS success rate with the easy-to-calculate integer bootstrapping (IB) success rate. Corresponding modeling error and approximation error are analysed with simulation data to avoid nuisance biases and unrealistic stochastic model impact. The results indicate the proposed method can greatly simplify the FF-approach without introducing significant modeling error. The threshold function method makes the fixed failure rate threshold determination method feasible for real-time applications.
    Print ISSN: 0949-7714
    Electronic ISSN: 1432-1394
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...