ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,099)
  • 2010-2014  (1,099)
Collection
  • Articles  (1,099)
Publisher
Years
Year
Journal
Topic
  • 1
    Publication Date: 2014-12-30
    Description: The phase and melting relationships of olivine mixed with 25 % of hydrous felsic slab melt have been determined in piston-cylinder experiments between 2.5 and 4.5 GPa and 800 to 1,050 °C to constrain metasomatic processes in the mantle wedge above subduction zones. At sub-solidus conditions, olivine, orthopyroxene, phlogopite, a Na-rich amphibole and an aqueous fluid are present. Na-rich amphibole is still observed at 950 °C at 4.5 GPa, providing evidence that this hydrous phase might be stable at sub-arc depths in an alkali-rich, Ca-poor mantle wedge. The maximum temperature stability is reached at 1,000 °C at 3.5 GPa, where amphibole coexists with hydrous melt. A sodium-rich phlogopite is stable over the whole range of P–T conditions investigated. At 2.5 GPa, 850 °C, aspidolite (Na analogue of phlogopite) has been observed as a sodium-bearing phase in the peridotite. The wet solidus in the metasomatised dunite lies between 850 and 900 °C at 2.5 GPa and between 950 and 975 °C at 3.5 GPa. At 4.5 GPa, melting relations are ambiguous and no clear solidus was found. The consumption of amphibole and minor phlogopite at the wet solidus produced Na- and H 2 O-rich phonolitic melts. The presence of phlogopite and sodic amphibole in the metasomatised dunite has implications on alkali and water storage in the part of the mantle wedge that is coupled to the down-going slab and might play a role on alkali and trace element recycling through arc magmatism.
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-30
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-26
    Description: The age of gold–copper–lead mineralization in the Katuma Block of the Ubendian Belt remains controversial because of the lack of radiometric ages that correlate with the age of tectonothermal events of this poly-orogenic belt. Previous studies reported whole rock and mineral Pb–Pb ages ranging between 1,660 and 720 Ma. In this study, we report U–Th–total Pb ages of monazite from hydrothermally altered metapelites that host the Au–Cu–Pb-bearing veins. Three types of chemically and texturally distinct types of monazite grains or zones of grains were identified: monazite cores, which yielded a metamorphic age of 1,938 ± 11 Ma ( n  = 40), corresponding to known ages of a regional metamorphic event, deformation and granitic plutonism in the belt; metamorphic overgrowths that date a subsequent metamorphic event at 1,827 ± 10 Ma ( n  = 44) that postdates known eclogite metamorphism (at ca. 1,880 Ma) in the belt; hydrothermally altered poikilitic monazite, formed by dissolution–precipitation processes, representing the third type of monazite, constrain the age of a hydrothermal alteration event at 1,171 ± 17 Ma ( n  = 19). This Mesoproterozoic age of the hydrothermal alteration coincides with the first amphibolite grade metamorphism of metasediments in the Wakole Block, which adjoins with a tectonic contact the vein-bearing Katuma Block to the southwest. The obtained distinct monazite ages not only constrain the ages of metamorphic events in the Ubendian Belt, but also provide a link between the metamorphism of the Wakole metasediments and the generation of the hydrothermal fluids responsible for the formation of the gold–copper–lead veins in the Katuma Block.
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2014-11-25
    Description: We provide new insights into the prograde evolution of H P /L T metasedimentary rocks on the basis of detailed petrologic examination, element-partitioning analysis, and thermodynamic modelling of well-preserved Fe–Mg–carpholite- and Fe–Mg–chloritoid-bearing rocks from the Afyon Zone (Anatolia). We document continuous and discontinuous compositional (ferromagnesian substitution) zoning of carpholite (overall X Mg  = 0.27–0.73) and chloritoid (overall X Mg  = 0.07–0.30), as well as clear equilibrium and disequilibrium (i.e., reaction-related) textures involving carpholite and chloritoid, which consistently account for the consistent enrichment in Mg of both minerals through time, and the progressive replacement of carpholite by chloritoid. Mg/Fe distribution coefficients calculated between carpholite and chloritoid vary widely within samples (2.2–20.0). Among this range, only values of 7–11 correlate with equilibrium textures, in agreement with data from the literature. Equilibrium phase diagrams for metapelitic compositions are calculated using a newly modified thermodynamic dataset, including most recent data for carpholite, chloritoid, chlorite, and white mica, as well as further refinements for Fe–carpholite, and both chloritoid end-members, as required to reproduce accurately petrologic observations (phase relations, experimental constraints, Mg/Fe partitioning). Modelling reveals that Mg/Fe partitioning between carpholite and chloritoid is greatly sensitive to temperature and calls for a future evaluation of possible use as a thermometer. In addition, calculations show significant effective bulk composition changes during prograde metamorphism due to the fractionation of chloritoid formed at the expense of carpholite. We retrieve P – T conditions for several carpholite and chloritoid growth stages (1) during prograde stages using unfractionated, bulk-rock XRF analyses, and (2) at peak conditions using compositions fractionated for chloritoid. The P – T paths reconstructed for the Kütahya and Afyon areas shed light on contrasting temperature conditions for these areas during prograde and peak stages.
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-25
    Description: The time scales and mechanics of gravitationally driven crystal settling and compaction is investigated through high temperature (1,280–1,500 °C) centrifuge-assisted experiments on a chromite-basalt melt system at 100–1,500 g (0.5 GPa). Subsequently, the feasibility of this process for the formation of dense chromite cumulate layers in large layered mafic intrusions (LMIs) is assessed. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. The experimentally observed mechanical settling velocity of a suspension of ~24 vol% chromite is calculated to be about half (~0.53) of the Stokes settling velocity, with a sedimentation exponent n of 2.35 (3). Gravitational settling leads to an orthocumulate layer with a porosity of 0.52 (all porosities as fraction). Formation times for such a layer from a magma with initial chromite contents of 0.1–1 vol% are 140–3.5 days, equal to a growth rate of 0.007–0.3 m/day for grain sizes of 1–2 mm. More compacted chromite layers form with increasing centrifugation time and acceleration through chemical compaction: An increase of grain contact areas and grain sizes together with a decrease in porosity is best explained by pressure dissolution at grain contacts, reprecipitation and grain growth into the intergranular space and a concomitant expulsion of intergranular melt. The relation between the porosity in the cumulate pile and effective pressure integrated over time (Δ ρ   ·   h   ·   a   ·   t ) is best fit with a logarithmic function, in fact confirming that a (pressure) dissolution–reprecipitation process is the dominant mechanism of compaction. The experimentally derived equation allows calculating compaction times: 70–80 % chromite at the bottom of a 1-m-thick chromite layer are reached after 9–250 years, whereas equivalent compaction times are 0.2–0.9 years for olivine (both for 2 mm grain size). The experiments allow to determine the bulk viscosities of chromite and olivine cumulates to be of magnitude 10 9  Pa s, much lower than previously reported. As long as melt escape from the compacting cumulate remains homogeneous, fluidization does not play any role; however, channelized melt flow may lead to suspension and upward movement of cumulate crystals. In LMIs, chromitite layers are typically part of a sequence with layers of mafic minerals, compaction occurs under the additional weight of the overlying layers and can be achieved in a few years to decades.
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-25
    Description: A series of Barrovian sequence samples ranging from garnet to sillimanite zones were investigated to infer their porphyroblast-forming reactions and mineral inclusion histories. Quartz is overgrown and partly consumed during garnet formation and remains as inclusion-rich layers in porphyroblasts of the garnet zone. Staurolite crystals in the staurolite zone display sharp transitions between inclusion-rich and inclusion-free areas, suggesting two stages of growth with a different role of quartz in each. The inclusion-rich domains formed similarly to those in garnet by simple overgrowth and resorption of matrix minerals, with thermodynamic constraints suggesting that this staurolite-forming reaction required the presence of chloritoid that is now absent from the examined samples. The participation of garnet was limited in staurolite formation, with chloritoid breakdown supplying sufficient material to form the large amounts (c. 25 vol%) of staurolite found in the rock. This reaction produces an excess of SiO 2 , which leaves the crystal domain as SiO 2aq and thus caused the formation of the inclusion-free areas in the staurolite and precipitation of quartz in the matrix. In the sillimanite zone, staurolite is consumed forming new garnet. The newly formed garnet has less quartz inclusions than its core due to a proportionally greater consumption of quartz by the second garnet-forming reaction than by the initial, garnet-grade reactions. Textural and thermodynamic data both suggest that inclusions in these porphyroblasts represent leftovers of a preferentially overgrown matrix than co-products of the porphyroblast-forming reaction.
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-11-25
    Description: Epidote metasomatism affected large areas of tholeiitic metabasalts of the ~1,780 Ma Eastern Creek Volcanics in the Western Fold Belt of the Proterozoic Mount Isa inlier. Hydrothermal epidote generally occurs in quartz veins parallel to or boudinaged within the dominant S 2 fabrics which formed during the regional metamorphic peak at ~1,570 Ma associated with the Isan orogeny. Previously published stable isotopic and halogen data suggest that the fluids responsible for epidote formation are metamorphic in origin (with an evaporitic component). Application of the Pb stepwise leaching technique to the epidote does not separate radiogenic Pb 4+ and common Pb 2+ , generating little spread in 206 Pb/ 204 Pb (between 16.0 and 30.5). The causes for this relatively low range are twofold: There is little radiogenic Pb in the epidotes (the most radiogenic steps account for 〈1 % of Pb released) and both Pb 2+ and uranogenic Pb 4+ substitute into the same site in the epidote crystal lattice. Consequently, age regressions using the Pb stepwise leaching data give ages between 150 and 1,500 myrs older than the host rocks and over 450 myrs older than the thermal metamorphic peak. These old ages are attributed to chemical inheritance from the host metabasalts, via radiogenic Pb release by breakdown of phases such as zircon, monazite, titanomagnetite, and ilmenite during metamorphism. This idea is supported by trace element data and chrondrite-normalized rare earth element patterns that are similar to both the metabasalts and epidotes (except for a variable Eu anomaly in the latter). Relatively high fO 2 during vein formation (Fe 3+ dominates in the epidote crystal lattice) would allow the incorporation of Th 4+ and exclusion of U 6+ and would explain elevated Th/U ratios (up to 12) in epidote compared with the host metabasalts. Non-incorporation of U would explain the relatively low U/Pb ratios and non-radiogenic character of the epidote. This process may provide a source of metal for the small U deposits around Mount Isa and may also suggest a relationship between U mineralization and regional Cu mobilization during the Isan orogeny. Our work suggests that non-conventional geochronometers should be used only if additional geological information and geochemical data (e.g., mineral chemistry, trace elements) are available to evaluate any resulting age calculations.
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2014-11-25
    Print ISSN: 0010-7999
    Electronic ISSN: 1432-0967
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...