ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,120)
  • 2015-2019  (3,120)
Collection
  • Articles  (3,120)
Publisher
Years
Year
Journal
Topic
  • 1
    Publication Date: 2019-12-31
    Description: In a consanguineous Pakistani family with two affected individuals, a homozygous variant Gly399Val in the eighth transmembrane domain of the taurine transporter SLC6A6 was identified resulting in a hypomorph transporting capacity of ~15% compared with normal. Three-dimensional modeling of this variant has indicated that it likely causes displacement of the Tyr138 (TM3) side chain, important for transport of taurine. The affected individuals presented with rapidly progressive childhood retinal degeneration, cardiomyopathy and almost undetectable plasma taurine levels. Oral taurine supplementation of 100 mg/kg/day resulted in maintenance of normal blood taurine levels. Following approval by the ethics committee, a long-term supplementation treatment was introduced. Remarkably, after 24-months, the cardiomyopathy was corrected in both affected siblings, and in the 6-years-old, the retinal degeneration was arrested, and the vision was clinically improved. Similar therapeutic approaches could be employed in Mendelian phenotypes caused by the dysfunction of the hundreds of other molecular transporters.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-24
    Description: Brain cholesterol homeostasis is altered in Huntington’s disease (HD), a neurodegenerative disorder caused by the expansion of a CAG nucleotide repeat in the HTT gene. Genes involved in the synthesis of cholesterol and fatty acids were shown to be downregulated shortly after the expression of mutant huntingtin (mHTT) in inducible HD cells. Nuclear levels of the transcription factors that regulate lipid biogenesis, the sterol regulatory element-binding proteins (SREBP1 and SREBP2), were found to be decreased in HD models compared to wild-type, but the underlying causes were not known. SREBPs are synthesized as inactive endoplasmic reticulum-localized precursors. Their mature forms (mSREBPs) are generated upon transport of the SREBP precursors to the Golgi and proteolytic cleavage, and are rapidly imported into the nucleus by binding to importin β. We show that, although SREBP2 processing into mSREBP2 is not affected in YAC128 HD mice, mSREBP2 is mislocalized to the cytoplasm. Chimeric mSREBP2-and mSREBP1-EGFP proteins are also mislocalized to the cytoplasm in immortalized striatal cells expressing mHTT, in YAC128 neurons and in fibroblasts from HD patients. We further show that mHTT binds to the SREBP2/importin β complex required for nuclear import and sequesters it in the cytoplasm. As a result, HD cells fail to upregulate cholesterogenic genes under sterol-depleted conditions. These findings provide mechanistic insight into the downregulation of genes involved in the synthesis of cholesterol and fatty acids in HD models, and have potential implications for other pathways modulated by SREBPs, including autophagy and excitotoxicity.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-24
    Description: Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is the most severe form of human lipodystrophy and is caused by loss-of-function mutations in the BSCL2/seipin gene. Exactly how seipin may regulate adipogenesis remains unclear. A recent study in vitro suggested that seipin may function to inhibit the activity of glycerol-3-phosphate acyltransferases (GPATs), and increased GPAT activity may be responsible for the defective adipogenesis under seipin deficiency. Here we generated Seipin−/−Gpat3−/− mice, which had mild but significant recovery of white adipose tissue mass over Seipin−/− mice. The mass of brown adipose tissue (BAT) of the Seipin−/−Gpat3−/− mice was almost completely restored to normal level. Importantly, the Seipin−/−Gpat3−/− mice showed significant improvement in liver steatosis and insulin sensitivity over Seipin−/− mice, which is attributable to the increased BAT mass and to the enhanced browning of the subcutaneous fat of the Seipin−/−Gpat3−/− mice. Together, our results establish a functional link between seipin and GPAT3 in vivo and suggest that GPAT inhibitors may have beneficial effects on BSCL2 patients.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-23
    Description: Mutations in genes that encode centrosomal/ciliary proteins cause severe cognitive deficits, while common single-nucleotide polymorphisms in these genes are associated with schizophrenia (SZ) and cognition in genome-wide association studies. The role of these genes in neuropsychiatric disorders is unknown. The ciliopathy gene SDCCAG8 is associated with SZ and educational attainment (EA). Genome editing of SDCCAG8 caused defects in primary ciliogenesis and cilium-dependent cell signalling. Transcriptomic analysis of SDCCAG8-deficient cells identified differentially expressed genes that are enriched in neurodevelopmental processes such as generation of neurons and synapse organization. These processes are enriched for genes associated with SZ, human intelligence (IQ) and EA. Phenotypic analysis of SDCCAG8-deficent neuronal cells revealed impaired migration and neuronal differentiation. These data implicate ciliary signalling in the aetiology of SZ and cognitive dysfunction. We found that centrosomal/ciliary genes are enriched for association with IQ, suggesting altered gene regulation as a general model for neurodevelopmental impacts of centrosomal/ciliary genes.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-23
    Description: Despite the many advances made in the diagnosis and management of preeclampsia, this syndrome remains a leading cause of maternal mortality and life-long morbidity, as well as adverse fetal outcomes. Successful prediction and therapeutic intervention require an improved understanding of the molecular mechanisms, which underlie preeclampsia pathophysiology. We have used an integrated approach to discover placental genetic and epigenetic markers of preeclampsia and validated our findings in an independent cohort of women. We observed the microRNA, MIR138, to be upregulated in singleton preeclamptic placentas; however, this appears to be a female infant sex-specific effect. We did not identify any significant differentially methylated positions (DMPs) in singleton pregnancies, indicating that DNA methylation changes in mild forms of the disease are likely limited. However, we identified infant sex-specific preeclampsia-associated differentially methylated regions among singletons. Disease-associated DMPs were more obvious in a limited sampling of twin pregnancies. Interestingly, 2 out of the 10 most significant changes in methylation over larger regions overlap between singletons and twins and correspond to NAPRT1 and ZNF417.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-21
    Description: Retinitis pigmentosa (RP) is a debilitating blinding disease affecting over 1.5 million people worldwide, but the mechanisms underlying this disease are not well understood. One of the common models used to study RP is the retinal degeneration-10 (rd10) mouse, which has a mutation in Phosphodiesterase-6b (Pde6b) that causes a phenotype mimicking the human disease. In rd10 mice, photoreceptor cell death occurs with exposure to normal light conditions, but as demonstrated in this study, rearing these mice in dark preserves their retinal function. We found that inactivating rhodopsin signaling protected photoreceptors from degeneration suggesting that the pathway activated by this G-protein-coupled receptor is causing light-induced photoreceptor cell death in rd10 mice. However, inhibition of transducin signaling did not prevent the loss of photoreceptors in rd10 mice reared under normal light conditions implying that the degeneration caused by rhodopsin signaling is not mediated through its canonical G-protein transducin. Inexplicably, loss of transducin in rd10 mice also led to photoreceptor cell death in darkness. Furthermore, we found that the rd10 mutation in Pde6b led to a reduction in the assembled PDE6αβγ2 complex, which was corroborated by our data showing mislocalization of the γ subunit. Based on our findings and previous studies, we propose a model where light activates a non-canonical pathway mediated by rhodopsin but independent of transducin that sensitizes cyclic nucleotide gated channels to cGMP and causes photoreceptor cell death. These results generate exciting possibilities for treatment of RP patients without affecting their vision or the canonical phototransduction cascade.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-16
    Description: Objective Serum uric acid is the end-product of purine metabolism and at high levels is a risk factor for several human diseases including gout and cardiovascular disease. Heritability estimates range from 0.32 to 0.63. Genome-wide association studies (GWAS) provide an unbiased approach to identify loci influencing serum uric acid. Here, we performed the first GWAS for serum uric acid in continental Africans, with replication in African Americans. Methods Africans (n = 4126) and African Americans (n = 5007) were genotyped on high-density GWAS arrays. Efficient mixed model association, a variance component approach, was used to perform association testing for a total of ~ 18 million autosomal genotyped and imputed variants. CAVIARBF was used to fine map significant regions. Results We identified two genome-wide significant loci: 4p16.1 (SLC2A9) and 11q13.1 (SLC22A12). At SLC2A9, the most strongly associated SNP was rs7683856 (P = 1.60 × 10−44). Conditional analysis revealed a second signal indexed by rs6838021 (P = 5.75 × 10−17). Gene expression and regulatory motif data prioritized a single-candidate causal variant for each signal. At SLC22A12, the most strongly associated SNP was rs147647315 (P = 6.65 × 10−25). Conditional analysis and functional annotation prioritized the missense variant rs147647315 (R (Arg) 〉 H (His)) as the sole causal variant. Functional annotation of these three signals implicated processes in skeletal muscle, subcutaneous adipose tissue and the kidneys, respectively. Conclusions This first GWAS of serum uric acid in continental Africans identified three associations at two loci, SLC2A9 and SLC22A12. The combination of weak linkage disequilibrium in Africans and functional annotation led to the identification of candidate causal SNPs for all three signals. Each candidate causal variant implicated a different cell type. Collectively, the three associations accounted for 4.3% of the variance of serum uric acid.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-16
    Description: Selective pressures imposed by pathogens have varied among human populations throughout their evolution, leading to marked inter-population differences at some genes mediating susceptibility to infectious and immune-related diseases. Here, we investigated the evolutionary history of a common polymorphism resulting in a Y529 versus C529 change in the cadherin related family member 3 (CDHR3) receptor which underlies variable susceptibility to rhinovirus-C infection and is associated with severe childhood asthma. The protective variant is the derived allele and is found at high frequency worldwide (69–95%). We detected genome-wide significant signatures of natural selection consistent with a rapid increase of the haplotypes carrying the allele, suggesting that non-neutral processes have acted on this locus across all human populations. However, the allele has not fixed in any population despite multiple lines of evidence suggesting that the mutation predates human migrations out of Africa. Using an approximate Bayesian computation method, we estimate the age of the mutation while explicitly accounting for past demography and positive or frequency-dependent balancing selection. Our analyses indicate a single emergence of the mutation in anatomically modern humans ~150 000 years ago and indicate that balancing selection has maintained the beneficial allele at high equilibrium frequencies worldwide. Apart from the well-known cases of the MHC and ABO genes, this study provides the first evidence that negative frequency-dependent selection plausibly acted on a human disease susceptibility locus, a form of balancing selection compatible with typical transmission dynamics of communicable respiratory viruses that might exploit CDHR3.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-16
    Description: A neuropathologic hallmark of Alzheimer’s disease (AD) is the presence of senile plaques that contain neurotoxic amyloid-β protein (Aβ) species, which are generated by the cleavage of amyloid β-protein precursor by secretases such as the γ-secretase complex, preferentially located in detergent-resistant membrane (DRM) regions and comprising endoproteolysed amino- and carboxy-terminal fragments of presenilin, nicastrin, anterior pharynx defective 1 and presenilin enhancer 2. Whereas some of familial AD patients harbor causative PSEN mutations that lead to more generation of neurotoxic Aβ42, the contribution of Aβ generation to sporadic/late-onset AD remains unclear. We found that the carboxy-terminal fragment of presenilin 1 was redistributed from DRM regions to detergent-soluble membrane (non-DRM) regions in brain tissue samples from individuals with sporadic AD. DRM fractions from AD brain sample had the ability to generate significantly more Aβ and had a lower cholesterol content than DRM fractions from non-demented control subjects. We further demonstrated that lowering the cholesterol content of DRM regions from cultured cells contributed to the redistribution of γ-secretase components and Aβ production. Taken together, the present analyses suggest that the lowered cholesterol content in DRM regions may be a cause of sporadic/late-onset AD by enhancing overall Aβ generation.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-09
    Description: Mutations in the key transcription factor, SOX2, alone account for 20% of anophthalmia (no eye) and microphthalmia (small eye) birth defects in humans—yet its regulation is not well understood, especially on the post-transcription level. We report the unprecedented finding that the conserved RNA-binding motif protein, RBM24, positively controls Sox2 mRNA stability and is necessary for optimal SOX2 mRNA and protein levels in development, perturbation of which causes ocular defects, including microphthalmia and anophthalmia. RNA immunoprecipitation assay indicates that RBM24 protein interacts with Sox2 mRNA in mouse embryonic eye tissue. and electrophoretic mobility shift assay shows that RBM24 directly binds to the Sox2 mRNA 3’UTR, which is dependent on AU-rich elements (ARE) present in the Sox2 mRNA 3’UTR. Further, we demonstrate that Sox2 3’UTR AREs are necessary for RBM24-based elevation of Sox2 mRNA half-life. We find that this novel RBM24–Sox2 regulatory module is essential for early eye development in vertebrates. We show that Rbm24-targeted deletion using a constitutive CMV-driven Cre in mouse, and rbm24a-CRISPR/Cas9-targeted mutation or morpholino knockdown in zebrafish, results in Sox2 downregulation and causes the developmental defects anophthalmia or microphthalmia, similar to human SOX2-deficiency defects. We further show that Rbm24 deficiency leads to apoptotic defects in mouse ocular tissue and downregulation of eye development markers Lhx2, Pax6, Jag1, E-cadherin and gamma-crystallins. These data highlight the exquisite specificity that conserved RNA-binding proteins like RBM24 mediate in the post-transcriptional control of key transcription factors, namely, SOX2, associated with organogenesis and human developmental defects.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...