ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
  • 1
    Publication Date: 2024-02-28
    Description: The AlpArray experiment and the deployment of Swath-D together with the dense permanent network in Italy allow for detailed imaging of the spatio-temporal imaging complexity of seismic wave-fields within the greater Alpine region. The distance of any point within the area to the nearest station is less than 30 km, resulting in an average inter-station distance of about 45 km. With a much denser deployment in a smaller region of the Alps (320 km in length and 140 km wide), the Swath-D network possesses an average inter-station distance of about 15 km. We show that seismogram sections with a spatial sampling of less than 5 km can be obtained using recordings of these regional arrays for just a single event. Multiply reflected body waves can be observed for up to 2 h after source time. In addition, we provide and describe animations of long-period seismic wave-fields using recordings of about 1300–1600 broadband stations for six representative earthquakes. These illustrate the considerable spatio-temporal variability of the wave-field’s properties at a high lateral resolution. Within denser station distributions like those provided by Swath-D, even shorter period body and surface wave features can be recovered. The decrease of the horizontal wavelength from P to S to surface waves, deviations from spherically symmetric wavefronts, and the capability to detect multi-orbit arrivals are demonstrated qualitatively by the presented wave-field animations, which are a valuable tool for educational, quality control, and research purposes. We note that the information content of the acquired datasets can only be adequately explored by application of appropriate quantitative methods accounting for the considerable complexity of the seismic wave-fields as revealed by the now available station configuration.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Christian-Albrechts-Universität zu Kiel (3094)
    Keywords: ddc:551.22 ; Seismology ; Wave-fields ; Animations ; Alps ; AlpArray ; Swath-D
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-05
    Description: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano‐Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid‐mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude.
    Description: Plain Language Summary: The Central Andes is a subduction‐type orogeny that formed as a result of the interaction between the Nazca oceanic plate and the South American continental plate over the last 50 million years. Growth of the Andes is primarily the result of crustal shortening. Nevertheless, “geological” data compiled from previous studies have shown that phases of drastic pulsatile shortening occur at 15 and 5 Ma. In this study, we used high‐resolution 2D numerical geodynamic simulations to investigate the link between oceanic and continental plate dynamics and their interaction. We find that when the oceanic plate steepens in the mantle transition zone, the trench retreat is hindered. Coupled with the weakening of the continental plate through the slab flattening and subsequent delamination of the lithospheric mantle, this leads to pulsatile shortening phases of a magnitude equivalent to that suggested by the data.
    Description: Key Points: The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma. The absolute motion of the overriding plate controls the regime of subduction dynamics. Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: German Federal State of Brandenburg
    Description: ERC Synergy
    Description: North‐German Supercomputing Alliance
    Description: https://doi.org/10.5880/GFZ.2.5.2022.001
    Description: https://github.com/Minerallo/aspect/tree/Paper_slab_buckling_Andes
    Description: https://doi.org/10.5880/GFZ.2.5.2022.001
    Description: https://github.com/fastscape-lem/fastscapelib-fortran
    Keywords: ddc:551.8 ; Central Andes ; subduction dynamics ; geodynamics ; shortening ; steepening ; flat‐slab
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...