ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,312)
  • Oxford University Press  (1,312)
  • 2020-2022  (1,312)
  • 2184
Collection
  • Articles  (1,312)
Publisher
  • Oxford University Press  (1,312)
Years
Year
Journal
Topic
  • 1
    Publication Date: 2021-08-20
    Description: Motivation Accurate automatic annotation of protein function relies on both innovative models and robust data sets. Due to their importance in biological processes, the identification of DNA-binding proteins directly from protein sequence has been the focus of many studies. However, the data sets used to train and evaluate these methods have suffered from substantial flaws. We describe some of the weaknesses of the data sets used in previous DNA-binding protein literature and provide several new data sets addressing these problems. We suggest new evaluative benchmark tasks that more realistically assess real-world performance for protein annotation models. We propose a simple new model for the prediction of DNA-binding proteins and compare its performance on the improved data sets to two previously published models. Additionally, we provide extensive tests showing how the best models predict across taxonomies. Results Our new gradient boosting model, which uses features derived from a published protein language model, outperforms the earlier models. Perhaps surprisingly, so does a baseline nearest neighbor model using BLAST percent identity. We evaluate the sensitivity of these models to perturbations of DNA-binding regions and control regions of protein sequences. The successful data-driven models learn to focus on DNA-binding regions. When predicting across taxonomies, the best models are highly accurate across species in the same kingdom and can provide some information when predicting across kingdoms. Code and Data Availability The data and results for this paper can be found at https://doi.org/10.5281/zenodo.5153906. The code for this paper can be found at https://doi.org/10.5281/zenodo.5153683. The code, data and results can also be found at https://github.com/AZaitzeff/tools_for_dna_binding_proteins.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-06
    Description: Motivation The investigation of quantitative trait loci (QTL) is an essential component in our understanding of how organisms vary phenotypically. However, many important crop species are polyploid (carrying more than two copies of each chromosome), requiring specialized tools for such analyses. Moreover, deciphering meiotic processes at higher ploidy levels is not straightforward, but is necessary to understand the reproductive dynamics of these species, or uncover potential barriers to their genetic improvement. Results Here, we present polyqtlR, a novel software tool to facilitate such analyses in (auto)polyploid crops. It performs QTL interval mapping in F1 populations of outcrossing polyploids of any ploidy level using identity-by-descent probabilities. The allelic composition of discovered QTL can be explored, enabling favourable alleles to be identified and tracked in the population. Visualization tools within the package facilitate this process, and options to include genetic co-factors and experimental factors are included. Detailed information on polyploid meiosis including prediction of multivalent pairing structures, detection of preferential chromosomal pairing and location of double reduction events can be performed. Availabilityand implementation polyqtlR is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polyqtlR. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-11
    Description: Motivation The investigation of the structure of biological systems at the molecular level gives insights about their functions and dynamics. Shape and surface of biomolecules are fundamental to molecular recognition events. Characterizing their geometry can lead to more adequate predictions of their interactions. In the present work, we assess the performance of reference shape retrieval methods from the computer vision community on protein shapes. Results Shape retrieval methods are efficient in identifying orthologous proteins and tracking large conformational changes. This work illustrates the interest for the protein surface shape as a higher-level representation of the protein structure that (i) abstracts the underlying protein sequence, structure or fold, (ii) allows the use of shape retrieval methods to screen large databases of protein structures to identify surficial homologs and possible interacting partners and (iii) opens an extension of the protein structure–function paradigm toward a protein structure-surface(s)-function paradigm. Availabilityand implementation All data are available online at http://datasetmachat.drugdesign.fr. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-29
    Description: Motivation The mathematically optimal solution in computational protein folding simulations does not always correspond to the native structure, due to the imperfection of the energy force fields. There is therefore a need to search for more diverse suboptimal solutions in order to identify the states close to the native. We propose a novel multimodal optimization protocol to improve the conformation sampling efficiency and modeling accuracy of de novo protein structure folding simulations. Results A distance-assisted multimodal optimization sampling algorithm, MMpred, is proposed for de novo protein structure prediction. The protocol consists of three stages: The first is a modal exploration stage, in which a structural similarity evaluation model DMscore is designed to control the diversity of conformations, generating a population of diverse structures in different low-energy basins. The second is a modal maintaining stage, where an adaptive clustering algorithm MNDcluster is proposed to divide the populations and merge the modal by adjusting the annealing temperature to locate the promising basins. In the last stage of modal exploitation, a greedy search strategy is used to accelerate the convergence of the modal. Distance constraint information is used to construct the conformation scoring model to guide sampling. MMpred is tested on a large set of 320 non-redundant proteins, where MMpred obtains models with TM-score≥0.5 on 291 cases, which is 28% higher than that of Rosetta guided with the same set of distance constraints. In addition, on 320 benchmark proteins, the enhanced version of MMpred (E-MMpred) has 167 targets better than trRosetta when the best of five models are evaluated. The average TM-score of the best model of E-MMpred is 0.732, which is comparable to trRosetta (0.730). Availability and implementation The source code and executable are freely available at https://github.com/iobio-zjut/MMpred. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-12
    Description: Motivation Co-evolution analysis can be used to accurately predict residue–residue contacts from multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial improvements in precision and a shift from predicting binary contacts to predict distances between pairs of residues. These developments have significantly improved the accuracy of de novo prediction of static protein structures. With AlphaFold2 lifting the accuracy of some predicted protein models close to experimental levels, structure prediction research will move on to other challenges. One of those areas is the prediction of more than one conformation of a protein. Here, we examine the potential of residue–residue distance predictions to be informative of protein flexibility rather than simply static structure. Results We used DMPfold to predict distance distributions for every residue pair in a set of proteins that showed both rigid and flexible behaviour. Residue pairs that were in contact in at least one reference structure were classified as rigid, flexible or neither. The predicted distance distribution of each residue pair was analysed for local maxima of probability indicating the most likely distance or distances between a pair of residues. We found that rigid residue pairs tended to have only a single local maximum in their predicted distance distributions while flexible residue pairs more often had multiple local maxima. These results suggest that the shape of predicted distance distributions contains information on the rigidity or flexibility of a protein and its constituent residues. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-16
    Description: Motivation The well-known fact that protein structures are more conserved than their sequences forms the basis of several areas of computational structural biology. Methods based on the structure analysis provide more complete information on residue conservation in evolutionary processes. This is crucial for the determination of evolutionary relationships between proteins and for the identification of recurrent structural patterns present in biomolecules involved in similar functions. However, algorithmic structural alignment is much more difficult than multiple sequence alignment. This study is devoted to the development and applications of DAMA—a novel effective environment capable to compute and analyze multiple structure alignments. Results DAMA is based on local structural similarities, using local 3D structure descriptors and thus accounts for nearest-neighbor molecular environments of aligned residues. It is constrained neither by protein topology nor by its global structure. DAMA is an extension of our previous study (DEDAL) which demonstrated the applicability of local descriptors to pairwise alignment problems. Since the multiple alignment problem is NP-complete, an effective heuristic approach has been developed without imposing any artificial constraints. The alignment algorithm searches for the largest, consistent ensemble of similar descriptors. The new method is capable to capture most of the biologically significant similarities present in canonical test sets and is discriminatory enough to prevent the emergence of larger, but meaningless, solutions. Tests performed on the test sets, including protein kinases, demonstrate DAMA’s capability of identifying equivalent residues, which should be very useful in discovering the biological nature of proteins similarity. Performance profiles show the advantage of DAMA over other methods, in particular when using a strict similarity measure QC, which is the ratio of correctly aligned columns, and when applying the methods to more difficult cases. Availability and implementation DAMA is available online at http://dworkowa.imdik.pan.pl/EP/DAMA. Linux binaries of the software are available upon request. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-07-30
    Description: Motivation Recent technological advances produce a wealth of high-dimensional descriptions of biological processes, yet extracting meaningful insight and mechanistic understanding from these data remains challenging. For example, in developmental biology, the dynamics of differentiation can now be mapped quantitatively using single-cell RNA sequencing, yet it is difficult to infer molecular regulators of developmental transitions. Here, we show that discovering informative features in the data is crucial for statistical analysis as well as making experimental predictions. Results We identify features based on their ability to discriminate between clusters of the data points. We define a class of problems in which linear separability of clusters is hidden in a low-dimensional space. We propose an unsupervised method to identify the subset of features that define a low-dimensional subspace in which clustering can be conducted. This is achieved by averaging over discriminators trained on an ensemble of proposed cluster configurations. We then apply our method to single-cell RNA-seq data from mouse gastrulation, and identify 27 key transcription factors (out of 409 total), 18 of which are known to define cell states through their expression levels. In this inferred subspace, we find clear signatures of known cell types that eluded classification prior to discovery of the correct low-dimensional subspace. Availability and implementation https://github.com/smelton/SMD. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-26
    Description: Motivation Polymerase chain reaction (PCR) has been a revolutionary biomedical advancement. However, for PCR to be appropriately used, one must spend a significant amount of effort on PCR primer design. Carefully designed PCR primers not only increase sensitivity and specificity, but also decrease effort spent on experimental optimization. Computer software removes the human element by performing and automating the complex and rigorous calculations required in PCR primer design. Classification and review of the available software options and their capabilities should be a valuable resource for any PCR application. Results This paper focuses on currently available free PCR primer design software and their major functions (https://pcrprimerdesign.github.io/). The software are classified according to their PCR applications, such as Sanger sequencing, reverse transcription quantitative PCR, single nucleotide polymorphism detection, splicing variant detection, methylation detection, microsatellite detection, multiplex PCR and targeted next generation sequencing, and conserved/degenerate primers to clone orthologous genes from related species, new gene family members in the same species, or to detect a group of related pathogens. Each software is summarized to provide a technical review of their capabilities and utilities.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-10-18
    Description: Motivation Network diffusion and label propagation are fundamental tools in computational biology, with applications like gene-disease association, protein function prediction and module discovery. More recently, several publications have introduced a permutation analysis after the propagation process, due to concerns that network topology can bias diffusion scores. This opens the question of the statistical properties and the presence of bias of such diffusion processes in each of its applications. In this work, we characterised some common null models behind the permutation analysis and the statistical properties of the diffusion scores. We benchmarked seven diffusion scores on three case studies: synthetic signals on a yeast interactome, simulated differential gene expression on a protein-protein interaction network and prospective gene set prediction on another interaction network. For clarity, all the datasets were based on binary labels, but we also present theoretical results for quantitative labels. Results Diffusion scores starting from binary labels were affected by the label codification, and exhibited a problem-dependent topological bias that could be removed by the statistical normalisation. Parametric and non-parametric normalisation addressed both points by being codification-independent and by equalising the bias. We identified and quantified two sources of bias -mean value and variance- that yielded performance differences when normalising the scores. We provided closed formulae for both and showed how the null covariance is related to the spectral properties of the graph. Despite none of the proposed scores systematically outperformed the others, normalisation was preferred when the sought positive labels were not aligned with the bias. We conclude that the decision on bias removal should be problem and data-driven, i.e. based on a quantitative analysis of the bias and its relation to the positive entities. Availability The code is publicly available at https://github.com/b2slab/diffuBench Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-07-29
    Description: Motivation MicroRNAs (miRNAs) are a class of non-coding RNAs that play critical roles in various biological processes. Many studies have shown that miRNAs are closely related to the occurrence, development and diagnosis of human diseases. Traditional biological experiments are costly and time consuming. As a result, effective computational models have become increasingly popular for predicting associations between miRNAs and diseases, which could effectively boost human disease diagnosis and prevention. Results We propose a novel computational framework, called AEMDA, to identify associations between miRNAs and diseases. AEMDA applies a learning-based method to extract dense and high-dimensional representations of diseases and miRNAs from integrated disease semantic similarity, miRNA functional similarity and heterogeneous related interaction data. In addition, AEMDA adopts a deep autoencoder that does not need negative samples to retrieve the underlying associations between miRNAs and diseases. Furthermore, the reconstruction error is used as a measurement to predict disease-associated miRNAs. Our experimental results indicate that AEMDA can effectively predict disease-related miRNAs and outperforms state-of-the-art methods. Availability and implementation The source code and data are available at https://github.com/CunmeiJi/AEMDA. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-05-19
    Description: Motivation Different from traditional linear RNAs (containing 5′ and 3′ ends), circular RNAs (circRNAs) are a special type of RNAs that have a closed ring structure. Accumulating evidence has indicated that circRNAs can directly bind proteins and participate in a myriad of different biological processes. Results For identifying the interaction of circRNAs with 37 different types of circRNA-binding proteins (RBPs), we develop an ensemble neural network, termed PASSION, which is based on the concatenated artificial neural network (ANN) and hybrid deep neural network frameworks. Specifically, the input of the ANN is the optimal feature subset for each RBP, which has been selected from six types of feature encoding schemes through incremental feature selection and application of the XGBoost algorithm. In turn, the input of the hybrid deep neural network is a stacked codon-based scheme. Benchmarking experiments indicate that the ensemble neural network reaches the average best area under the curve (AUC) of 0.883 across the 37 circRNA datasets when compared with XGBoost, k-nearest neighbor, support vector machine, random forest, logistic regression and Naive Bayes. Moreover, each of the 37 RBP models is extensively tested by performing independent tests, with the varying sequence similarity thresholds of 0.8, 0.7, 0.6 and 0.5, respectively. The corresponding average AUC obtained are 0.883, 0.876, 0.868 and 0.883, respectively, highlighting the effectiveness and robustness of PASSION. Extensive benchmarking experiments demonstrate that PASSION achieves a competitive performance for identifying binding sites between circRNA and RBPs, when compared with several state-of-the-art methods. Availability and implementation A user-friendly web server of PASSION is publicly accessible at http://flagship.erc.monash.edu/PASSION/. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-09-25
    Description: Summary The COVID-19 crisis has elicited a global response by the scientific community that has led to a burst of publications on the pathophysiology of the virus. However, without coordinated efforts to organize this knowledge, it can remain hidden away from individual research groups. By extracting and formalizing this knowledge in a structured and computable form, as in the form of a knowledge graph, researchers can readily reason and analyze this information on a much larger scale. Here, we present the COVID-19 Knowledge Graph, an expansive cause-and-effect network constructed from scientific literature on the new coronavirus that aims to provide a comprehensive view of its pathophysiology. To make this resource available to the research community and facilitate its exploration and analysis, we also implemented a web application and released the KG in multiple standard formats. Availability The COVID-19 Knowledge Graph is publicly available under CC-0 license at https://github.com/covid19kg and https://bikmi.covid19-knowledgespace.de. Supplementary information Supplementary data are available online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-01-30
    Description: Motivation One of the most important problems in drug discovery research is to precisely predict a new indication for an existing drug, i.e. drug repositioning. Recent recommendation system-based methods have tackled this problem using matrix completion models. The models identify latent factors contributing to known drug-disease associations, and then infer novel drug-disease associations by the correlations between latent factors. However, these models have not fully considered the various drug data sources and the sparsity of the drug-disease association matrix. In addition, using the global structure of the drug-disease association data may introduce noise, and consequently limit the prediction power. Results In this work, we propose a novel drug repositioning approach by using Bayesian inductive matrix completion (DRIMC). First, we embed four drug data sources into a drug similarity matrix and two disease data sources in a disease similarity matrix. Then, for each drug or disease, its feature is described by similarity values between it and its nearest neighbors, and these features for drugs and diseases are mapped onto a shared latent space. We model the association probability for each drug-disease pair by inductive matrix completion, where the properties of drugs and diseases are represented by projections of drugs and diseases, respectively. As the known drug-disease associations have been manually verified, they are more trustworthy and important than the unknown pairs. We assign higher confidence levels to known association pairs compared with unknown pairs. We perform comprehensive experiments on three benchmark datasets, and DRIMC improves prediction accuracy compared with six stat-of-the-art approaches. Availability and implementation Source code and datasets are available at https://github.com/linwang1982/DRIMC. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2020-10-24
    Description: Motivation Neural methods to extract drug-drug interactions (DDIs) from literature require a large number of annotations. In this study, we propose a novel method to effectively utilize external drug database information as well as information from large-scale plain text for DDI extraction. Specifically, we focus on drug description and molecular structure information as the drug database information. Results We evaluated our approach on the DDIExtraction 2013 shared task data set. We obtained the following results. First, large-scale raw text information can greatly improve the performance of extracting DDIs when combined with the existing model and it shows the state-of-the-art performance. Second, each of drug description and molecular structure information is helpful to further improve the DDI performance for some specific DDI types. Finally, the simultaneous use of the drug description and molecular structure information can significantly improve the performance on all the DDI types. We showed that the plain text, the drug description information, and molecular structure information are complementary and their effective combination are essential for the improvement. Availability https://github.com/tticoin/DESC_MOL-DDIE
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-04-24
    Description: Summary Bulk RNA sequencing studies have demonstrated that human leukocyte antigen (HLA) genes may be expressed in a cell type-specific and allele-specific fashion. Single-cell gene expression assays have the potential to further resolve these expression patterns, but currently available methods do not perform allele-specific quantification at the molecule level. Here, we present scHLAcount, a post-processing workflow for single-cell RNA-seq data that computes allele-specific molecule counts of the HLA genes based on a personalized reference constructed from the sample’s HLA genotypes. Availability and implementation scHLAcount is available under the MIT license at https://github.com/10XGenomics/scHLAcount. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-03-30
    Description: Motivation Protein domains are subunits that can fold and function independently. Correct domain boundary assignment is thus a critical step toward accurate protein structure and function analyses. There is, however, no efficient algorithm available for accurate domain prediction from sequence. The problem is particularly challenging for proteins with discontinuous domains, which consist of domain segments that are separated along the sequence. Results We developed a new algorithm, FUpred, which predicts protein domain boundaries utilizing contact maps created by deep residual neural networks coupled with coevolutionary precision matrices. The core idea of the algorithm is to retrieve domain boundary locations by maximizing the number of intra-domain contacts, while minimizing the number of inter-domain contacts from the contact maps. FUpred was tested on a large-scale dataset consisting of 2549 proteins and generated correct single- and multi-domain classifications with a Matthew’s correlation coefficient of 0.799, which was 19.1% (or 5.3%) higher than the best machine learning (or threading)-based method. For proteins with discontinuous domains, the domain boundary detection and normalized domain overlapping scores of FUpred were 0.788 and 0.521, respectively, which were 17.3% and 23.8% higher than the best control method. The results demonstrate a new avenue to accurately detect domain composition from sequence alone, especially for discontinuous, multi-domain proteins. Availability and implementation https://zhanglab.ccmb.med.umich.edu/FUpred. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-04-07
    Description: Motivation Protein structure and function are essentially determined by how the side-chain atoms interact with each other. Thus, accurate protein side-chain packing (PSCP) is a critical step toward protein structure prediction and protein design. Despite the importance of the problem, however, the accuracy and speed of current PSCP programs are still not satisfactory. Results We present FASPR for fast and accurate PSCP by using an optimized scoring function in combination with a deterministic searching algorithm. The performance of FASPR was compared with four state-of-the-art PSCP methods (CISRR, RASP, SCATD and SCWRL4) on both native and non-native protein backbones. For the assessment on native backbones, FASPR achieved a good performance by correctly predicting 69.1% of all the side-chain dihedral angles using a stringent tolerance criterion of 20°, compared favorably with SCWRL4, CISRR, RASP and SCATD which successfully predicted 68.8%, 68.6%, 67.8% and 61.7%, respectively. Additionally, FASPR achieved the highest speed for packing the 379 test protein structures in only 34.3 s, which was significantly faster than the control methods. For the assessment on non-native backbones, FASPR showed an equivalent or better performance on I-TASSER predicted backbones and the backbones perturbed from experimental structures. Detailed analyses showed that the major advantage of FASPR lies in the optimal combination of the dead-end elimination and tree decomposition with a well optimized scoring function, which makes FASPR of practical use for both protein structure modeling and protein design studies. Availability and implementation The web server, source code and datasets are freely available at https://zhanglab.ccmb.med.umich.edu/FASPR and https://github.com/tommyhuangthu/FASPR. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-04-21
    Description: Motivation Next-generation sequencing is rapidly improving diagnostic rates in rare Mendelian diseases, but even with whole genome or whole exome sequencing, the majority of cases remain unsolved. Increasingly, RNA sequencing is being used to solve many cases that evade diagnosis through sequencing alone. Specifically, the detection of aberrant splicing in many rare disease patients suggests that identifying RNA splicing outliers is particularly useful for determining causal Mendelian disease genes. However, there is as yet a paucity of statistical methodologies to detect splicing outliers. Results We developed LeafCutterMD, a new statistical framework that significantly improves the previously published LeafCutter in the context of detecting outlier splicing events. Through simulations and analysis of real patient data, we demonstrate that LeafCutterMD has better power than the state-of-the-art methodology while controlling false-positive rates. When applied to a cohort of disease-affected probands from the Mayo Clinic Center for Individualized Medicine, LeafCutterMD recovered all aberrantly spliced genes that had previously been identified by manual curation efforts. Availability and implementation The source code for this method is available under the opensource Apache 2.0 license in the latest release of the LeafCutter software package available online at http://davidaknowles.github.io/leafcutter. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-04-04
    Description: Motivation Programmed DNA elimination (PDE) plays a crucial role in the transitions between germline and somatic genomes in diverse organisms ranging from unicellular ciliates to multicellular nematodes. However, software specific for the detection of DNA splicing events is scarce. In this paper, we describe Accurate Deletion Finder (ADFinder), an efficient detector of PDEs using high-throughput sequencing data. ADFinder can predict PDEs with relatively low sequencing coverage, detect multiple alternative splicing forms in the same genomic location and calculate the frequency for each splicing event. This software will facilitate research of PDEs and all down-stream analyses. Results By analyzing genome-wide DNA splicing events in two micronuclear genomes of Oxytricha trifallax and Tetrahymena thermophila, we prove that ADFinder is effective in predicting large scale PDEs. Availability and implementation The source codes and manual of ADFinder are available in our GitHub website: https://github.com/weibozheng/ADFinder. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2020-10-29
    Description:   The development of new drugs is costly, time consuming, and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug–target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug–target affinity. We show that graph neural networks not only predict drug–target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug–target binding affinity prediction, and that representing drugs as graphs can lead to further improvements. Availability of data and materials The proposed models are implemented in Python. Related data, pre-trained models, and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post-hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2020-04-06
    Description: Summary Fully realizing the promise of personalized medicine will require rapid and accurate classification of pathogenic human variation. Multiplexed assays of variant effect (MAVEs) can experimentally test nearly all possible variants in selected gene targets. Planning a MAVE study involves identifying target genes with clinical impact, and identifying scalable functional assays for that target. Here, we describe MaveQuest, a web-based resource enabling systematic variant effect mapping studies by identifying potential functional assays, disease phenotypes and clinical relevance for nearly all human protein-coding genes. Availability and implementation MaveQuest service: https://mavequest.varianteffect.org/. MaveQuest source code: https://github.com/kvnkuang/mavequest-front-end/. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-10-16
    Description: Motivation Nearly 40% of the genes in sequenced genomes have no experimentally- or computationally-derived functional annotations. To fill this gap, we seek to develop methods for network-based gene function prediction that can integrate heterogeneous data for multiple species with experimentally-based functional annotations and systematically transfer them to newly-sequenced organisms on a genomewide scale. However, the large sizes of such networks pose a challenge for the scalability of current methods. Results We develop a label propagation algorithm called FastSinkSource. By formally bounding its rate of progress, we decrease the running time by a factor of 100 without sacrificing accuracy. We systematically evaluate many approaches to construct multi-species bacterial networks and apply FastSinkSource and other state-of-the-art methods to these networks. We find that the most accurate and efficient approach is to pre-compute annotation scores for species with experimental annotations, and then to transfer them to other organisms. In this manner, FastSinkSource runs in under three minutes for 200 bacterial species. Availability and Implementation An implementation of our framework and all data used in this research are available at https://github.com/Murali-group/multi-species-GOA-prediction. Contact murali@cs.vt.edu Supplementary Information Supplementary information is available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-10-16
    Description: Motivation Infection with strains of different subtypes and the subsequent crossover reading between the two strands of genomic RNAs by host cells’ reverse transcriptase are the main causes of the vast HIV-1 sequence diversity. Such inter-subtype genomic recombinants can become circulating recombinant forms (CRFs) after widespread transmissions in a population. Complete prediction of all the subtype sources of a CRF strain is a complicated machine learning problem. It is also difficult to understand whether a strain is an emerging new subtype and if so, how to accurately identify the new components of the genetic source. Results We introduce a multi-label learning algorithm for the complete prediction of multiple sources of a CRF sequence as well as the prediction of its chronological number. The prediction is strengthened by a voting of various multi-label learning methods to avoid biased decisions. In our steps, frequency and position features of the sequences are both extracted to capture signature patterns of pure subtypes and CRFs. The method was applied to 7185 HIV-1 sequences, comprising 5530 pure subtype sequences and 1655 CRF sequences. Results have demonstrated that the method can achieve very high accuracy (reaching 99%) in the prediction of the complete set of labels of HIV-1 recombinant forms. A few wrong predictions are actually incomplete predictions, very close to the complete set of genuine labels. Availability https://github.com/Runbin-tang/The-source-of-HIV-CRFs-prediction Contact yuzuguo@aliyun.com;jinyan.li@uts.edu.au Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-08-05
    Description: Motivation Despite of the lack of folded structure, intrinsically disordered regions (IDRs) of proteins play versatile roles in various biological processes, and many nonsynonymous single nucleotide variants (nsSNVs) in IDRs are associated with human diseases. The continuous accumulation of nsSNVs resulted from the wide application of NGS has driven the development of disease-association prediction methods for decades. However, their performance on nsSNVs in IDRs remains inferior, possibly due to the domination of nsSNVs from structured regions in training data. Therefore, it is highly demanding to build a disease-association predictor specifically for nsSNVs in IDRs with better performance. Results We present IDRMutPred, a machine learning-based tool specifically for predicting disease-associated germline nsSNVs in IDRs. Based on 17 selected optimal features that are extracted from sequence alignments, protein annotations, hydrophobicity indices and disorder scores, IDRMutPred was trained using three ensemble learning algorithms on the training dataset containing only IDR nsSNVs. The evaluation on the two testing datasets shows that all the three prediction models outperform 17 other popular general predictors significantly, achieving the ACC between 0.856 and 0.868 and MCC between 0.713 and 0.737. IDRMutPred will prioritize disease-associated IDR germline nsSNVs more reliably than general predictors. Availability and implementation The software is freely available at http://www.wdspdb.com/IDRMutPred. Contact yezq@pku.org.cn or ydwu@pku.edu.cn Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2020-10-29
    Description: Motivation The rapid development of sequencing technologies has enabled us to generate a large number of metagenomic reads from genetic materials in microbial communities, making it possible to gain deep insights into understanding the differences between the genetic materials of different groups of microorganisms, such as bacteria, viruses, plasmids, etc. Computational methods based on k-mer frequencies have been shown to be highly effective for classifying metagenomic sequencing reads into different groups. However, such methods usually use all the k-mers as features for prediction without selecting relevant k-mers for the different groups of sequences, i.e, unique nucleotide patterns containing biological significance. Results To select k-mers for distinguishing different groups of sequences with guaranteed false discovery rate (FDR) control, we develop KIMI, a general framework based on model-X Knockoffs regarded as the state-of-the-art statistical method for false discovery rate (FDR) control, for sequence motif discovery with arbitrary target FDR level, such that reproducibility can be theoretically guaranteed. KIMI is shown through simulation studies to be effective in simultaneously controlling FDR and yielding high power, outperforming the broadly used Benjamini-Hochberg (B-H) procedure and the q-value method for FDR control. To illustrate the usefulness of KIMI in analyzing real datasets, we take the viral motif discovery problem as an example and implement KIMI on a real dataset consisting of viral and bacterial contigs. We show that the accuracy of predicting viral and bacterial contigs can be increased by training the prediction model only on relevant k-mers selected by KIMI. Availability Our implementation of KIMI is available at https://github.com/xinbaiusc/KIMI. Supplementary information Supplementary Materials are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-04-14
    Description: Motivation Therapeutic peptides failing at clinical trials could be attributed to their toxicity profiles like hemolytic activity, which hamper further progress of peptides as drug candidates. The accurate prediction of hemolytic peptides (HLPs) and its activity from the given peptides is one of the challenging tasks in immunoinformatics, which is essential for drug development and basic research. Although there are a few computational methods that have been proposed for this aspect, none of them are able to identify HLPs and their activities simultaneously. Results In this study, we proposed a two-layer prediction framework, called HLPpred-Fuse, that can accurately and automatically predict both hemolytic peptides (HLPs or non-HLPs) as well as HLPs activity (high and low). More specifically, feature representation learning scheme was utilized to generate 54 probabilistic features by integrating six different machine learning classifiers and nine different sequence-based encodings. Consequently, the 54 probabilistic features were fused to provide sufficiently converged sequence information which was used as an input to extremely randomized tree for the development of two final prediction models which independently identify HLP and its activity. Performance comparisons over empirical cross-validation analysis, independent test and case study against state-of-the-art methods demonstrate that HLPpred-Fuse consistently outperformed these methods in the identification of hemolytic activity. Availability and implementation For the convenience of experimental scientists, a web-based tool has been established at http://thegleelab.org/HLPpred-Fuse. Contact glee@ajou.ac.kr or watshara.sho@mahidol.ac.th or bala@ajou.ac.kr Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-10-28
    Description: Motivation Identification of blood-brain barrier (BBB) permeability of a compound is a major challenge in neurotherapeutic drug discovery. Conventional approaches for BBB permeability measurement are expensive, time-consuming, and labor-intensive. BBB permeability is associated with diverse chemical properties of compounds. However, BBB permeability prediction models have been developed using small datasets and limited features, which are usually not practical due to their low coverage of chemical diversity of compounds. Aim of this study is to develop a BBB permeability prediction model using a large dataset for practical applications. This model can be used for facilitated compound screening in the early stage of brain drug discovery. Results A dataset of 7162 compounds with BBB permeability (5453 BBB+ and 1709 BBB-) was compiled from the literature, where BBB+ and BBB- denote BBB-permeable and non-permeable compounds, respectively. We trained a machine learning model based on Light Gradient Boosting Machine (LightGBM) algorithm and achieved an overall accuracy of 89%, an area under the curve (AUC) of 0.93, specificity of 0.77, and sensitivity of 0.93, when ten-fold cross-validation was performed. The model was further evaluated using 74 central nerve system (CNS) compounds (39 BBB+ and 35 BBB-) obtained from the literature and showed an accuracy of 90%, sensitivity of 0.85, and specificity of 0.94. Our model outperforms over existing BBB permeability prediction models. Availability The prediction server is available at http://ssbio.cau.ac.kr/software/bbb.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-01-08
    Description: Summary ChemBioServer 2.0 is the advanced sequel of a web server for filtering, clustering and networking of chemical compound libraries facilitating both drug discovery and repurposing. It provides researchers the ability to (i) browse and visualize compounds along with their physicochemical and toxicity properties, (ii) perform property-based filtering of compounds, (iii) explore compound libraries for lead optimization based on perfect match substructure search, (iv) re-rank virtual screening results to achieve selectivity for a protein of interest against different protein members of the same family, selecting only those compounds that score high for the protein of interest, (v) perform clustering among the compounds based on their physicochemical properties providing representative compounds for each cluster, (vi) construct and visualize a structural similarity network of compounds providing a set of network analysis metrics, (vii) combine a given set of compounds with a reference set of compounds into a single structural similarity network providing the opportunity to infer drug repurposing due to transitivity, (viii) remove compounds from a network based on their similarity with unwanted substances (e.g. failed drugs) and (ix) build custom compound mining pipelines. Availability and implementation http://chembioserver.vi-seem.eu.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-10-27
    Description: Motivation Structured semantic resources, for example, biological knowledge bases (KBs) and ontologies, formally define biological concepts, entities and their semantic relationships, manifested as structured axioms and unstructured texts (e.g., textual definitions). The resources contain accurate expressions of biological reality and have been used by machine-learning models to assist intelligent applications like knowledge discovery. The current methods use both the axioms and definitions as plain texts in representation learning. However, since the axioms are machine-readable while the natural language is human-understandable, difference in meaning of token and structure impedes the representations to encode desirable biological knowledge. Results We propose ERBK, a representation learning model of bio-entities. Instead of using the axioms and definitions as a textual corpus, our method uses knowledge graph embedding method and deep convolutional neural models to encode the axioms and definitions respectively. The representations could not only encode more underlying biological knowledge but also be further applied to zero-shot circumstance where existing approaches fall short. Experimental evaluations show that ERBK outperforms the existing methods for predicting protein-protein interactions and gene-disease associations. Moreover, it shows that ERBK still maintains promising performance under the zero-shot circumstance. We believe the representations and the method have certain generality and could extend to other types of bio-relation. Availability The source code is available at the gitlab repository https://gitlab.com/BioAI/erbk Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-10-14
    Description: Motivation Despite widespread prevalence of somatic structural variations (SV) across most tumor types, understanding of their molecular implications often remains poor. SVs are extremely heterogeneous in size and complexity, hindering the interpretation of their pathogenic role. Tools integrating large SV datasets across platforms are required to fully characterize the cancer’s somatic landscape. Results svpluscnv R package is a swiss army knife for the integration and interpretation of orthogonal datasets including copy number variant (CNV) segmentation profiles and sequencing-based structural variant calls (SVC). The package implements analysis and visualization tools to evaluate chromosomal instability and ploidy, identify genes harboring recurrent SVs and detects complex rearrangements such as chromothripsis and chromoplexia. Further, it allows systematic identification of hot-spot shattered genomic regions, showing reproducibility across alternative detection methods and datasets. Availability https://github.com/ccbiolab/svpluscnv Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2020-10-14
    Description: Motivation We present flexiMAP (flexible Modeling of Alternative PolyAdenylation), a new beta-regression-based method implemented in R, for discovering differential alternative polyadenylation events in standard RNA-seq data. Results We show, using both simulated and real data, that flexiMAP exhibits a good balance between specificity and sensitivity and compares favourably to existing methods, especially at low fold changes. In addition, the tests on simulated data reveal some hitherto unrecognised caveats of existing methods. Importantly, flexiMAP allows modeling of multiple known covariates that often confound the results of RNA-seq data analysis. Availability The flexiMAP R package is available at: https://github.com/kszkop/flexiMAP Scripts and data to reproduce the analysis in this paper are available at: https://doi.org/10.5281/zenodo.3689788 Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2020-10-14
    Description: Motivation The complete characterization of enzymatic activities between molecules remains incomplete, hindering biological engineering and limiting biological discovery. We develop in this work a technique, Enzymatic Link Prediction (ELP), for predicting the likelihood of an enzymatic transformation between two molecules. ELP models enzymatic reactions catalogued in the KEGG database as a graph. ELP is innovative over prior works in using graph embedding to learn molecular representations that capture not only molecular and enzymatic attributes but also graph connectivity. Results We explore transductive (test nodes included in the training graph) and inductive (test nodes not part of the training graph) learning models. We show that ELP achieves high AUC when learning node embeddings using both graph connectivity and node attributes. Further, we show that graph embedding improves link prediction by 30% in AUC over fingerprint-based similarity approaches and by 8% over Support Vector Machines. We compare ELP against rule-based methods. We also evaluate ELP for predicting links in pathway maps and for reconstruction of edges in reaction networks of four common gut microbiota phyla: actinobacteria, bacteroidetes, firmicutes and proteobacteria. To emphasize the importance of graph embedding in the context of biochemical networks, we illustrate how graph embedding can guide visualization. Availability The code and datasets are available through https://github.com/HassounLab/ELP
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2020-10-14
    Description: Summary Electronic health records (EHRs) linked with a DNA biobank provide unprecedented opportunities for biomedical research in precision medicine. The Phenome-wide association study (PheWAS) is a widely used technique for the evaluation of relationships between genetic variants and a large collection of clinical phenotypes recorded in EHRs. PheWAS analyses are typically presented as static tables and charts of summary statistics obtained from statistical tests of association between a genetic variant and individual phenotypes. Comorbidities are common and typically lead to complex, multivariate gene-disease association signals that are challenging to interpret. Discovering and interrogating multimorbidity patterns and their influence in PheWAS is difficult and time-consuming. We present PheWAS-ME: an interactive dashboard to visualize individual-level genotype and phenotype data side-by-side with PheWAS analysis results, allowing researchers to explore multimorbidity patterns and their associations with a genetic variant of interest. We expect this application to enrich PheWAS analyses by illuminating clinical multimorbidity patterns present in the data. Availability A demo PheWAS-ME application is publicly available at https://prod.tbilab.org/phewas_me/. Sample datasets are provided for exploration with the option to upload custom PheWAS results and corresponding individual-level data. Online versions of the appendices are available at https://prod.tbilab.org/phewas_me_info/. The source code is available as an R package on GitHub (https://github.com/tbilab/multimorbidity_explorer). Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2020-10-14
    Description: Motivation Over the past years, many computational methods have been developed to incorporate information about phenotypes for disease gene prioritization task. These methods generally compute the similarity between a patient’s phenotypes and a database of gene-phenotype to find the most phenotypically similar match. The main limitation in these methods is their reliance on knowledge about phenotypes associated with particular genes, which is not complete in humans as well as in many model organisms such as the mouse and fish. Information about functions of gene products and anatomical site of gene expression is available for more genes and can also be related to phenotypes through ontologies and machine learning models. Results We developed a novel graph-based machine learning method for biomedical ontologies which is able to exploit axioms in ontologies and other graph-structured data. Using our machine learning method, we embed genes based on their associated phenotypes, functions of the gene products, and anatomical location of gene expression. We then develop a machine learning model to predict gene–disease associations based on the associations between genes and multiple biomedical ontologies, and this model significantly improves over state of the art methods. Furthermore, we extend phenotype-based gene prioritization methods significantly to all genes which are associated with phenotypes, functions, or site of expression. Availability Software and data are available at https://github.com/bio-ontology-research-group/DL2Vec.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2020-10-14
    Description: Summary Here we present PhyloWGA, an open source R package for conducting phylogenetic analysis and investigation of whole genome data Availability Available at Github (https://github.com/radamsRHA/PhyloWGA).
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2020-10-14
    Description: Motivation Efficient and accurate alignment of DNA/RNA sequence reads to each other or to a reference genome/transcriptome is an important problem in genomic analysis. Nanopore sequencing has emerged as a major sequencing technology and many long-read aligners have been designed for aligning nanopore reads. However, the high error rate makes accurate and efficient alignment difficult. Utilizing the noise and error characteristics inherent in the sequencing process properly can play a vital role in constructing a robust aligner. In this paper, we design QAlign, a pre-processor that can be used with any long-read aligner for aligning long reads to a genome/transcriptome or to other long reads. The key idea in QAlign is to convert the nucleotide reads into discretized current levels that capture the error modes of the nanopore sequencer before running it through a sequence aligner. Results We show that QAlign is able to improve alignment rates from around 80% up to 90% with nanopore reads when aligning to the genome. We also show that QAlign improves the average overlap quality by 9.2%, 2.5% and 10.8% andin three real datasets for read-to-read alignment. Read-to-transcriptome alignment rates are improved from 51.6% to 75.4% and 82.6% to 90% in two real datasets. Availability https://github.com/joshidhaivat/QAlign.git Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-10-14
    Description: Motivation A phylogenetic tree reconciliation is a mapping of one phylogenetic tree onto another which represents the co-evolution of two sets of taxa (eg. parasite-host co-evolution, gene-species co-evolution). The reconciliation framework was extended to allow modeling the co-evolution of three sets of taxa such as transcript-gene-species co-evolutions. Several web-based tools have been developed for the display and manipulation of phylogenetic trees and co-phylogenetic trees involving two trees, but there currently exists no tool for visualizing the joint reconciliation between three phylogenetic trees. Results Here, we present DoubleRecViz, a web-based tool for visualizing double reconciliations between phylogenetic trees at three levels: transcript, gene and species. DoubleRecViz extends the RecPhyloXML model –developed for gene-species tree reconciliation– to represent joint transcript-gene and gene-species tree reconciliations. It is implemented using the Dash library, which is a toolbox that provides dynamic visualization functionalities for web data visualization in Python. Availability and implementation DoubleRecViz is available through a web server at https://doublerecviz.cobius.usherbrooke.ca. The source code and information about installation procedures are also available at https://github.com/UdeS-CoBIUS/DoubleRecViz. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2020-10-13
    Description: Summary FCSlib is an open-source R tool for Fluorescence Fluctuation Spectroscopy data analysis. It encompasses techniques such as Fluorescence Correlation Spectroscopy, Number and Brightness, Pair Correlation Function and Pair Correlation of Molecular Brightness. Availability https://cran.r-project.org/web/packages/FCSlib/ for Linux, Windows and macOS platforms. Supplementary information Available at https://github.com/FCSlib/FCSlib and Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2020-10-14
    Description: Motivation Recent advancements in high-dimensional single-cell technologies, such as mass cytometry, enable longitudinal experiments to track dynamics of cell populations and identify change points where the proportions vary significantly. However, current research is limited by the lack of tools specialized for analyzing longitudinal mass cytometry data. In order to infer cell population dynamics from such data, we developed a statistical framework named CYBERTRACK2.0. The framework’s analytic performance was validated against synthetic and real data, showing that its results are consistent with previous research. Availability CYBERTRACK2.0 is available at https://github.com/kodaim1115/CYBERTRACK2. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2020-01-23
    Description: Motivation The development of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has provided a simple yet powerful system for targeted genome editing. In recent years, this system has been widely used for various gene editing applications. The CRISPR editing efficacy is mainly dependent on the single guide RNA (sgRNA), which guides Cas9 for genome cleavage. While there have been multiple attempts at improving sgRNA design, there is a pressing need for greater sgRNA potency and generalizability across various experimental conditions. Results We employed a unique plasmid library expressed in human cells to quantify the potency of thousands of CRISPR/Cas9 sgRNAs. Differential sequence and structural features among the most and least potent sgRNAs were then used to train a machine learning algorithm for assay design. Comparative analysis indicates that our new algorithm outperforms existing CRISPR/Cas9 sgRNA design tools. Availability and implementation The new sgRNA design tool is freely accessible as a web application, http://crispr.wustl.edu. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2020-01-06
    Description: Summary ipyrad is a free and open source tool for assembling and analyzing restriction site-associated DNA sequence datasets using de novo and/or reference-based approaches. It is designed to be massively scalable to hundreds of taxa and thousands of samples, and can be efficiently parallelized on high performance computing clusters. It is available both as a command line interface and as a Python package with an application programming interface, the latter of which can be used interactively to write complex, reproducible scripts and implement a suite of downstream analysis tools. Availability and implementation ipyrad is a free and open source program written in Python. Source code is available from the GitHub repository (https://github.com/dereneaton/ipyrad/), and Linux and MacOS installs are distributed through the conda package manager. Complete documentation, including numerous tutorials, and Jupyter notebooks demonstrating example assemblies and applications of downstream analysis tools are available online: https://ipyrad.readthedocs.io/.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-01-17
    Description: Motivation The birth-death (BD) model constitutes the theoretical backbone of most phylogenetic tools for reconstructing speciation/extinction dynamics over time. Performing simulations of reconstructed trees (linking extant taxa) under the BD model in backward time, conditioned on the number of species sampled at present day and, in some cases, a specific time interval since the most recent common ancestor (MRCA), is needed for assessing the performance of reconstruction tools, for parametric bootstrapping and for detecting data outliers. The few simulation tools that exist scale poorly to large modern phylogenies, which can comprise thousands or even millions of tips (and rising). Results Here I present efficient software for simulating reconstructed phylogenies under time-dependent BD models in backward time, conditioned on the number of sampled species and (optionally) on the time since the MRCA. On large trees, my software is 1000–10 000 times faster than existing tools. Availability and implementation The presented software is incorporated into the R package ‘castor’, which is available on The Comprehensive R Archive Network (CRAN). Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2020-01-23
    Description: Motivation Systematic identification of molecular targets among known drugs plays an essential role in drug repurposing and understanding of their unexpected side effects. Computational approaches for prediction of drug–target interactions (DTIs) are highly desired in comparison to traditional experimental assays. Furthermore, recent advances of multiomics technologies and systems biology approaches have generated large-scale heterogeneous, biological networks, which offer unexpected opportunities for network-based identification of new molecular targets among known drugs. Results In this study, we present a network-based computational framework, termed AOPEDF, an arbitrary-order proximity embedded deep forest approach, for prediction of DTIs. AOPEDF learns a low-dimensional vector representation of features that preserve arbitrary-order proximity from a highly integrated, heterogeneous biological network connecting drugs, targets (proteins) and diseases. In total, we construct a heterogeneous network by uniquely integrating 15 networks covering chemical, genomic, phenotypic and network profiles among drugs, proteins/targets and diseases. Then, we build a cascade deep forest classifier to infer new DTIs. Via systematic performance evaluation, AOPEDF achieves high accuracy in identifying molecular targets among known drugs on two external validation sets collected from DrugCentral [area under the receiver operating characteristic curve (AUROC) = 0.868] and ChEMBL (AUROC = 0.768) databases, outperforming several state-of-the-art methods. In a case study, we showcase that multiple molecular targets predicted by AOPEDF are associated with mechanism-of-action of substance abuse disorder for several marketed drugs (such as aripiprazole, risperidone and haloperidol). Availability and implementation Source code and data can be downloaded from https://github.com/ChengF-Lab/AOPEDF. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-07-03
    Description: Motivation The Robinson–Foulds (RF) metric is widely used by biologists, linguists and chemists to quantify similarity between pairs of phylogenetic trees. The measure tallies the number of bipartition splits that occur in both trees—but this conservative approach ignores potential similarities between almost-identical splits, with undesirable consequences. ‘Generalized’ RF metrics address this shortcoming by pairing splits in one tree with similar splits in the other. Each pair is assigned a similarity score, the sum of which enumerates the similarity between two trees. The challenge lies in quantifying split similarity: existing definitions lack a principled statistical underpinning, resulting in misleading tree distances that are difficult to interpret. Here, I propose probabilistic measures of split similarity, which allow tree similarity to be measured in natural units (bits). Results My new information-theoretic metrics outperform alternative measures of tree similarity when evaluated against a broad suite of criteria, even though they do not account for the non-independence of splits within a single tree. Mutual clustering information exhibits none of the undesirable properties that characterize other tree comparison metrics, and should be preferred to the RF metric. Availability and implementation The methods discussed in this article are implemented in the R package ‘TreeDist’, archived at https://dx.doi.org/10.5281/zenodo.3528123. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2020-10-26
    Description: Motivation The existence of more than 100 public Galaxy servers with service quotas is indicative of the need for an increased availability of compute resources for Galaxy to use. The GalaxyCloudRunner enables a Galaxy server to easily expand its available compute capacity by sending user jobs to cloud resources. User jobs are routed to the acquired resources based on a set of configurable rules and the resources can be dynamically acquired from any of 4 popular cloud providers (AWS, Azure, GCP, or OpenStack) in an automated fashion. Availability GalaxyCloudRunner is implemented in Python and leverages Docker containers. The source code is MIT licensed and available at https://github.com/cloudve/galaxycloudrunner. The documentation is available at http://gcr.cloudve.org/.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-05-21
    Description: Motivation Recent developments in technology have enabled researchers to collect multiple OMICS datasets for the same individuals. The conventional approach for understanding the relationships between the collected datasets and the complex trait of interest would be through the analysis of each OMIC dataset separately from the rest, or to test for associations between the OMICS datasets. In this work we show that integrating multiple OMICS datasets together, instead of analysing them separately, improves our understanding of their in-between relationships as well as the predictive accuracy for the tested trait. Several approaches have been proposed for the integration of heterogeneous and high-dimensional (p≫n) data, such as OMICS. The sparse variant of canonical correlation analysis (CCA) approach is a promising one that seeks to penalize the canonical variables for producing sparse latent variables while achieving maximal correlation between the datasets. Over the last years, a number of approaches for implementing sparse CCA (sCCA) have been proposed, where they differ on their objective functions, iterative algorithm for obtaining the sparse latent variables and make different assumptions about the original datasets. Results Through a comparative study we have explored the performance of the conventional CCA proposed by Parkhomenko et al., penalized matrix decomposition CCA proposed by Witten and Tibshirani and its extension proposed by Suo et al. The aforementioned methods were modified to allow for different penalty functions. Although sCCA is an unsupervised learning approach for understanding of the in-between relationships, we have twisted the problem as a supervised learning one and investigated how the computed latent variables can be used for predicting complex traits. The approaches were extended to allow for multiple (more than two) datasets where the trait was included as one of the input datasets. Both ways have shown improvement over conventional predictive models that include one or multiple datasets. Availability and implementation https://github.com/theorod93/sCCA. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2020-10-12
    Description: Motivation The combinatorial sequential Monte Carlo (CSMC) has been demonstrated to be an efficient complementary method to the standard Markov chain Monte Carlo (MCMC) for Bayesian phylogenetic tree inference using biological sequences. It is appealing to combine the CSMC and MCMC in the framework of the particle Gibbs (PG) sampler to jointly estimate the phylogenetic trees and evolutionary parameters. However, the Markov chain of the particle Gibbs may mix poorly for high dimensional problems (e.g. phylogenetic trees). Some remedies, including the particle Gibbs with ancestor sampling and the interacting particle MCMC, have been proposed to improve the PG. But they either cannot be applied to or remain inefficient for the combinatorial tree space. Results We introduce a novel CSMC method by proposing a more efficient proposal distribution. It also can be combined into the particle Gibbs sampler framework to infer parameters in the evolutionary model. The new algorithm can be easily parallelized by allocating samples over different computing cores. We validate that the developed CSMC can sample trees more efficiently in various particle Gibbs samplers via numerical experiments. Availability Our implementation is available at https://github.com/liangliangwangsfu/phyloPMCMC Supplementary information Supplementary materials are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2020-10-12
    Description: Summary The C ++ library HOPS (Highly-Optimized Polytope Sampling) provides implementations of efficient and scalable algorithms for sampling convex-constrained models that are equipped with arbitrary target functions. For uniform sampling, substantial performance gains were achieved compared to the state-of-the-art. The ease of integration and utility of non-uniform sampling is showcased in a Bayesian inference setting, demonstrating how HOPS interoperates with third-party software. Availability and Implementation Source code is available at https://github.com/modsim/hops/, tested on Linux and MS Windows, includes unit tests, detailed documentation, example applications, and a Dockerfile. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2020-10-08
    Description: Motivation Since its launch in 2010, Identifiers.org has become an important tool for the annotation and cross-referencing of Life Science data. In 2016, we established the Compact Identifier (CID) scheme (prefix: accession) to generate globally unique identifiers for data resources using their locally assigned accession identifiers. Since then, we have developed and improved services to support the growing need to create, reference and resolve CIDs, in systems ranging from human readable text to cloud based e-infrastructures, by providing high availability and low latency cloud-based services, backed by a high quality, manually curated resource. Results We describe a set of services that can be used to construct and resolve CIDs in Life Sciences and beyond. We have developed a new front end for accessing the Identifiers.org registry data and APIs to simplify integration of Identifiers.org CID services with third party applications. We have also deployed the new Identifiers.org infrastructure in a commercial cloud environment, bringing our services closer to the data. Availability https://identifiers.org Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2020-10-08
    Description: Here we present an automated pipeline for downloading NCBI GenBank entries (DONE) and continuous updating of a local sequence database based on user-specified queries. The database can be created with either protein or nucleotide sequences containing all entries or complete genomes only. The pipeline can automatically clean the database by removing entries with matches to a database of user-specified sequence contaminants. The default contamination entries include sequences from the UniVec database of plasmids, marker genes and sequencing adapters from NCBI, an E. coli genome, rRNA sequences, vectors and satellite sequences. Furthermore, duplicates are removed and the database is automatically screened for sequences from green fluorescent protein (GFP), luciferase and antibiotic resistance genes that might be present in some GenBank viral entries, and could lead to false positives in virus identification. For utilizing the database we present a useful opportunity for dealing with possible human contamination. We show the applicability of DONE by downloading a virus database comprising 37 virus families. We observed an average increase of 16,776 new entries downloaded per month for the 37 families. Additionally, we demonstrate the utility of a custom database compared to a standard reference database for classifying both simulated and real sequence data. Availability The DONE pipeline for downloading and cleaning is deposited in a publicly available repository (https://bitbucket.org/genomicepidemiology/done/src/master/). Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-10-08
    Description: Summary Population studies such as genome-wide association study (GWAS) have identified a variety of genomic variants associated with human diseases. To further understand potential mechanisms of disease variants, recent statistical methods associate functional omic data (e.g., gene expression) with genotype and phenotype and link variants to individual genes. However, how to interpret molecular mechanisms from such associations, especially across omics, is still challenging. To address this problem, we developed an interpretable deep learning method, Varmole, to simultaneously reveal genomic functions and mechanisms while predicting phenotype from genotype. In particular, Varmole embeds multi-omic networks into a deep neural network architecture and prioritizes variants, genes and regulatory linkages via biological drop-connect without needing prior feature selections. Availability and implementation Varmole is available as a Python tool on GitHub at https://github.com/daifengwanglab/Varmole. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2020-07-02
    Description: Summary Advances in single-cell technologies have enabled the investigation of T-cell phenotypes and repertoires at unprecedented resolution and scale. Bioinformatic methods for the efficient analysis of these large-scale datasets are instrumental for advancing our understanding of adaptive immune responses. However, while well-established solutions are accessible for the processing of single-cell transcriptomes, no streamlined pipelines are available for the comprehensive characterization of T-cell receptors. Here, we propose single-cell immune repertoires in Python (Scirpy), a scalable Python toolkit that provides simplified access to the analysis and visualization of immune repertoires from single cells and seamless integration with transcriptomic data. Availability and implementation Scirpy source code and documentation are available at https://github.com/icbi-lab/scirpy. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2020-10-07
    Description: We present LipidFinder 2.0, incorporating four new modules that apply artefact filters, remove lipid and contaminant stacks, in-source fragments and salt clusters, and a new isotope deletion method which is significantly more sensitive than available open-access alternatives. We also incorporate a novel false discovery rate (FDR) method, utilizing a target-decoy strategy, which allows users to assess data quality. A renewed lipid profiling method is introduced which searches three different databases from LIPID MAPS and returns bulk lipid structures only, and a lipid category scatter plot with color blind friendly pallet. An API interface with XCMS Online is made available on LipidFinder’s online version. We show using real data that LipidFinder 2.0 provides a significant improvement over non-lipid metabolite filtering and lipid profiling, compared to available tools. Availability LipidFinder 2.0 is freely available at https://github.com/ODonnell-Lipidomics/LipidFinder and http://lipidmaps.org/resources/tools/lipidfinder. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2020-07-16
    Description: Motivation The transcriptomic data are being frequently used in the research of biomarker genes of different diseases and biological states. The most common tasks there are the data harmonization and treatment outcome prediction. Both of them can be addressed via the style transfer approach. Either technical factors or any biological details about the samples which we would like to control (gender, biological state, treatment, etc.) can be used as style components. Results The proposed style transfer solution is based on Conditional Variational Autoencoders, Y-Autoencoders and adversarial feature decomposition. To quantitatively measure the quality of the style transfer, neural network classifiers which predict the style and semantics after training on real expression were used. Comparison with several existing style-transfer based approaches shows that proposed model has the highest style prediction accuracy on all considered datasets while having comparable or the best semantics prediction accuracy. Availability and implementation https://github.com/NRshka/stvae-source. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2020-09-11
    Description: Summary Drug discovery targeting G protein-coupled receptors (GPCRs), the largest known class of therapeutic targets, is challenging. To facilitate the rapid discovery and development of GPCR drugs, we built a system, PanGPCR, to predict multiple potential GPCR targets and their expression locations in the tissues, side effects and possible repurposing of GPCR drugs. With PanGPCR, the compound of interest is docked to a library of 36 experimentally determined crystal structures comprising of 46 docking sites for human GPCRs, and a ranked list is generated from the docking studies to assess all GPCRs and their binding affinities. Users can determine a given compound’s GPCR targets and its repurposing potential accordingly. Moreover, potential side effects collected from the SIDER (Side-Effect Resource) database and mapped to 45 tissues and organs are provided by linking predicted off-targets and their expressed sequence tag profiles. With PanGPCR, multiple targets, repurposing potential and side effects can be determined by simply uploading a small ligand. Availability and implementation PanGPCR is freely accessible at https://gpcrpanel.cmdm.tw/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2020-10-06
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2020-07-21
    Description: Motivation Genetically engineering food crops involves introducing proteins from other species into crop plant species or modifying already existing proteins with gene editing techniques. In addition, newly synthesized proteins can be used as therapeutic protein drugs against diseases. For both research and safety regulation purposes, being able to assess the potential toxicity of newly introduced/synthesized proteins is of high importance. Results In this study, we present ToxDL, a deep learning-based approach for in silico prediction of protein toxicity from sequence alone. ToxDL consists of (i) a module encompassing a convolutional neural network that has been designed to handle variable-length input sequences, (ii) a domain2vec module for generating protein domain embeddings and (iii) an output module that classifies proteins as toxic or non-toxic, using the outputs of the two aforementioned modules. Independent test results obtained for animal proteins and cross-species transferability results obtained for bacteria proteins indicate that ToxDL outperforms traditional homology-based approaches and state-of-the-art machine-learning techniques. Furthermore, through visualizations based on saliency maps, we are able to verify that the proposed network learns known toxic motifs. Moreover, the saliency maps allow for directed in silico modification of a sequence, thus making it possible to alter its predicted protein toxicity. Availability and implementation ToxDL is freely available at http://www.csbio.sjtu.edu.cn/bioinf/ToxDL/. The source code can be found at https://github.com/xypan1232/ToxDL. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2020-07-17
    Description: Summary Allele-specific expression (ASE) is involved in many important biological mechanisms. We present a python package BYASE and its graphical user interface (GUI) tool BYASE-GUI for the identification of ASE from single-end and paired-end RNA-seq data based on Bayesian inference, which can simultaneously report differences in gene-level and isoform-level expression. BYASE uses both phased SNPs and non-phased SNPs, and supports polyploid organisms. Availability and implementation The source codes of BYASE and BYASE-GUI are freely available at https://github.com/ncjllld/byase and https://github.com/ncjllld/byase_gui. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2020-08-17
    Description: Motivation The emergence of a novel strain of betacoronavirus, SARS-CoV-2, has led to a pandemic that has been associated with over 700 000 deaths as of August 5, 2020. Research is ongoing around the world to create vaccines and therapies to minimize rates of disease spread and mortality. Crucial to these efforts are molecular characterizations of neutralizing antibodies to SARS-CoV-2. Such antibodies would be valuable for measuring vaccine efficacy, diagnosing exposure and developing effective biotherapeutics. Here, we describe our new database, CoV-AbDab, which already contains data on over 1400 published/patented antibodies and nanobodies known to bind to at least one betacoronavirus. This database is the first consolidation of antibodies known to bind SARS-CoV-2 as well as other betacoronaviruses such as SARS-CoV-1 and MERS-CoV. It contains relevant metadata including evidence of cross-neutralization, antibody/nanobody origin, full variable domain sequence (where available) and germline assignments, epitope region, links to relevant PDB entries, homology models and source literature. Results On August 5, 2020, CoV-AbDab referenced sequence information on 1402 anti-coronavirus antibodies and nanobodies, spanning 66 papers and 21 patents. Of these, 1131 bind to SARS-CoV-2. Availabilityand implementation CoV-AbDab is free to access and download without registration at http://opig.stats.ox.ac.uk/webapps/coronavirus. Community submissions are encouraged. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2020-02-25
    Description: Motivation Reverse vaccinology (RV) is a milestone in rational vaccine design, and machine learning (ML) has been applied to enhance the accuracy of RV prediction. However, ML-based RV still faces challenges in prediction accuracy and program accessibility. Results This study presents Vaxign-ML, a supervised ML classification to predict bacterial protective antigens (BPAgs). To identify the best ML method with optimized conditions, five ML methods were tested with biological and physiochemical features extracted from well-defined training data. Nested 5-fold cross-validation and leave-one-pathogen-out validation were used to ensure unbiased performance assessment and the capability to predict vaccine candidates against a new emerging pathogen. The best performing model (eXtreme Gradient Boosting) was compared to three publicly available programs (Vaxign, VaxiJen, and Antigenic), one SVM-based method, and one epitope-based method using a high-quality benchmark dataset. Vaxign-ML showed superior performance in predicting BPAgs. Vaxign-ML is hosted in a publicly accessible web server and a standalone version is also available. Availability and implementation Vaxign-ML website at http://www.violinet.org/vaxign/vaxign-ml, Docker standalone Vaxign-ML available at https://hub.docker.com/r/e4ong1031/vaxign-ml and source code is available at https://github.com/VIOLINet/Vaxign-ML-docker. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2020-07-01
    Description: Motivation In this work we present REINDEER, a novel computational method that performs indexing of sequences and records their abundances across a collection of datasets. To the best of our knowledge, other indexing methods have so far been unable to record abundances efficiently across large datasets. Results We used REINDEER to index the abundances of sequences within 2585 human RNA-seq experiments in 45 h using only 56 GB of RAM. This makes REINDEER the first method able to record abundances at the scale of ∼4 billion distinct k-mers across 2585 datasets. REINDEER also supports exact presence/absence queries of k-mers. Briefly, REINDEER constructs the compacted de Bruijn graph of each dataset, then conceptually merges those de Bruijn graphs into a single global one. Then, REINDEER constructs and indexes monotigs, which in a nutshell are groups of k-mers of similar abundances. Availability and implementation https://github.com/kamimrcht/REINDEER. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2020-10-24
    Description: Motivation Data normalization is an important step in processing proteomics data generated in mass spectrometry (MS) experiments, which aims to reduce sample-level variation and facilitate comparisons of samples. Previously published methods for normalization primarily depend on the assumption that the distribution of protein expression is similar across all samples. However, this assumption fails when the protein expression data is generated from heterogenous samples, such as from various tissue types. This led us to develop a novel data-driven method for improved normalization to correct the systematic bias meanwhile maintaining underlying biological heterogeneity. Methods To robustly correct the systematic bias, we used the density-power-weight method to down-weigh outliers and extended the one-dimensional robust fitting method described in the previous work of (Windham, 1995, Fujisawa and Eguchi, 2008) to our structured data. We then constructed a robustness criterion and developed a new normalization algorithm, called RobNorm. Results In simulation studies and analysis of real data from the genotype-tissue expression (GTEx) project, we compared and evaluated the performance of RobNorm against other normalization methods. We found that the RobNorm approach exhibits the greatest reduction in systematic bias while maintaining across-tissue variation, especially for datasets from highly heterogeneous samples. Availability https://github.com/mwgrassgreen/RobNorm
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2020-10-05
    Description: Motivation High-throughput RNA sequencing has revolutionized the scope and depth of transcriptome analysis. Accurate reconstruction of a phenotype-specific transcriptome is challenging due to the noise and variability of RNA-seq data. This requires computational identification of transcripts from multiple samples of the same phenotype, given the underlying consensus transcript structure. Results We present a Bayesian method, Integrated Assembly of Phenotype-specific Transcripts (IntAPT), that identifies phenotype-specific isoforms from multiple RNA-seq profiles. IntAPT features a novel two-layer Bayesian model to capture the presence of isoforms at the group layer and to quantify the abundance of isoforms at the sample layer. A spike-and-slab prior is used to model the isoform expression and to enforce the sparsity of expressed isoforms. Dependencies between the existence of isoforms and their expression are modeled explicitly to facilitate parameter estimation. Model parameters are estimated iteratively using Gibbs sampling to infer the joint posterior distribution, from which the presence and abundance of isoforms can reliably be determined. Studies using both simulations and real data sets show that IntAPT consistently outperforms existing methods for the integrated assembly of phenotype-specific transcripts. Experimental results demonstrate that, despite sequencing errors, IntAPT exhibits a robust performance among multiple samples, resulting in notably improved identification of expressed isoforms of low abundance. Availability The IntAPT package is available at http://github.com/henryxushi/IntAPT. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2020-10-05
    Description: Motivation With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature their performance in terms of recall (sensitivity) and precision (PPV) is limited in a context where the number of variables by far exceeds the number of observations or in a highly correlated setting. Results In this article, we propose a general algorithm which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data. We then apply it in two different ways to improve biological network reverse-engineering. Availability Code is available as the SelectBoost package on the CRAN, https://cran.r-project.org/package=SelectBoost. Some network reverse-engineering functionalities are available in the Patterns CRAN package, https://cran.r-project.org/package=Patterns. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2020-10-05
    Description: Motivation Researchers and practitioners use a number of popular sequence comparison tools that use many alignment-based techniques. Due to high time and space complexity and length-related restrictions, researchers often seek alignment-free tools. Recently, some interesting ideas, namely, Minimal Absent Words (MAW) and Relative Absent Words (RAW), have received much interest among the scientific community as distance measures that can give us alignment-free alternatives. This drives us to structure a framework for analyzing biological sequences in an alignment-free manner. Results In this application note, we present ADACT (Alignment-free Dissimilarity Analysis & Comparison Tool), a simple web based tool that computes the analogy among sequences using a varied number of indexes through the distance matrix, species relation list and phylogenetic tree. This tool basically combines absent word (MAW or RAW) computation, dissimilarity measures, species relationship and thus brings all required software in one platform for the ease of researchers and practitioners alike in the field of bioinformatics. We have also developed a restful API. Availability ADACT has been hosted at http://research.buet.ac.bd/ADACT/
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2020-10-05
    Description: The possibility that RNA transcripts from clinical samples contain plenty of virus RNAs has not been pursued actively so far. We here developed a new tool for analyzing virus-transcribed mRNAs, not virus copy numbers, in the data of bulk and single-cell RNA-sequencing of human cells. Our pipeline, named VIRTUS (VIRal Transcript Usage Sensor), was able to detect 762 viruses including herpesviruses, retroviruses, and even SARS-CoV-2 (COVID-19), and quantify their transcripts in the sequence data. This tool thus enabled simultaneously detecting infected cells, the composition of multiple viruses within the cell, and the endogenous host gene expression profile of the cell. This bioinformatics method would be instrumental in addressing the possible effects of covertly infecting viruses on certain diseases and developing new treatments to target such viruses. Availability VIRTUS is implemented using Common Workflow Language and Docker under a CC-NC license. VIRTUS is freely available at https://github.com/yyoshiaki/VIRTUS. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2020-07-01
    Description: Motivation Protein model quality estimation, in many ways, informs protein structure prediction. Despite their tight coupling, existing model quality estimation methods do not leverage inter-residue distance information or the latest technological breakthrough in deep learning that has recently revolutionized protein structure prediction. Results We present a new distance-based single-model quality estimation method called QDeep by harnessing the power of stacked deep residual neural networks (ResNets). Our method first employs stacked deep ResNets to perform residue-level ensemble error classifications at multiple predefined error thresholds, and then combines the predictions from the individual error classifiers for estimating the quality of a protein structural model. Experimental results show that our method consistently outperforms existing state-of-the-art methods including ProQ2, ProQ3, ProQ3D, ProQ4, 3DCNN, MESHI, and VoroMQA in multiple independent test datasets across a wide-range of accuracy measures; and that predicted distance information significantly contributes to the improved performance of QDeep. Availability and implementation https://github.com/Bhattacharya-Lab/QDeep. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2020-06-24
    Description: Motivation As the cost of sequencing decreases, the amount of data being deposited into public repositories is increasing rapidly. Public databases rely on the user to provide metadata for each submission that is prone to user error. Unfortunately, most public databases, such as non-redundant (NR), rely on user input and do not have methods for identifying errors in the provided metadata, leading to the potential for error propagation. Previous research on a small subset of the NR database analyzed misclassification based on sequence similarity. To the best of our knowledge, the amount of misclassification in the entire database has not been quantified. We propose a heuristic method to detect potentially misclassified taxonomic assignments in the NR database. We applied a curation technique and quality control to find the most probable taxonomic assignment. Our method incorporates provenance and frequency of each annotation from manually and computationally created databases and clustering information at 95% similarity. Results We found more than two million potentially taxonomically misclassified proteins in the NR database. Using simulated data, we show a high precision of 97% and a recall of 87% for detecting taxonomically misclassified proteins. The proposed approach and findings could also be applied to other databases. Availability and implementation Source code, dataset, documentation, Jupyter notebooks and Docker container are available at https://github.com/boalang/nr. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2020-10-03
    Description: Motivation Visualization of cellular processes and pathways is a key recurring requirement for effective biological data analysis. There is a considerable need for sophisticated web-based pathway viewers and editors operating with widely accepted standard formats, using the latest visualization techniques and libraries. Results We developed a web-based tool named Newt for viewing, constructing, and analyzing biological maps in standard formats such as SBGN, SBML, and SIF. Availability Newt’s source code is publicly available on GitHub and freely distributed under the GNU LGPL. Ample documentation on Newt can be found on http://newteditor.org and on YouTube.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2020-10-03
    Description: Summary The PyMod project is designed to act as a fully integrated interface between the popular molecular graphics viewer PyMOL, and some of the most frequently used tools for structural bioinformatics, e.g. BLAST, HMMER, Clustal, MUSCLE, PSIPRED, DOPE and MODELLER. Here we report its latest release, PyMod 3, which has been completely renewed with a graphical interface written in PyQt, to make it compatible with the most recent PyMOL versions, and has been extended with a large set of new functionalities compared to its predecessor, i.e. PyMod 2. Starting from the amino acid sequence of a target protein, users can take advantage of PyMod 3 to carry out all the steps of the homology modeling process (i.e., template searching, target-template sequence alignment, model building and quality assessment). Additionally, the integrated tools in PyMod 3 may also be used alone, in order to extend PyMOL with a wide range of capabilities. Sequence similarity searches, multiple sequence/structure alignment building, phylogenetic trees and evolutionary conservation analyses, domain parsing, single/multiple chains and loop modeling can be performed in the PyMod 3/PyMOL environment. Availability A cross-platform PyMod 3 installer package for Windows, Linux and Mac OS X, and a complete user guide with tutorials, are available at https://github.com/pymodproject/pymod. Supplementary information online-only Supplementary data available at the journal's web site.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2020-10-03
    Description: Motivation Even though genome mining tools have successfully identified large numbers of Nonribosomal Peptide Synthetase (NRPS) and Polyketide Synthase (PKS) biosynthetic gene clusters (BGCs) in bacterial genomes, currently no tool can predict the chemical structure of the secondary metabolites biosynthesized by these BGCs. Lack of algorithms for predicting complex macrocyclization patterns of linear PK/NRP biosynthetic intermediates has been the major bottleneck in deciphering the final bioactive chemical structures of PKs/NRPs by genome mining. Results Using a large dataset of known chemical structures of macrocyclized PKs/NRPs, we have developed a machine learning (ML) algorithm for distinguishing the correct macrocyclization pattern of PKs/NRPs from the library of all theoretically possible cyclization patterns. Benchmarking of this ML classifier on completely independent datasets has revealed ROC-AUC and PR-AUC values of 0.82 and 0.81 respectively. This cyclization prediction algorithm has been used to develop SBSPKSv3, a genome mining tool for completely automated prediction of macrocyclized structures of NRPs/PKs. SBSPKSv3 has been extensively benchmarked on a dataset of over 100 BGCs with known PKs/NRPs products. Availability and implementation The macrocyclization prediction pipeline and all the datasets used in this study are freely available at http://www.nii.ac.in/sbspks3.html Supplementary information Supplementary data are available at journal site online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2020-02-28
    Description: Motivation DNA N4-methylcytosine (4mC) is a crucial epigenetic modification. However, the knowledge about its biological functions is limited. Effective and accurate identification of 4mC sites will be helpful to reveal its biological functions and mechanisms. Since experimental methods are cost and ineffective, a number of machine learning-based approaches have been proposed to detect 4mC sites. Although these methods yielded acceptable accuracy, there is still room for the improvement of the prediction performance and the stability of existing methods in practical applications. Results In this work, we first systematically assessed the existing methods based on an independent dataset. And then, we proposed DNA4mC-LIP, a linear integration method by combining existing predictors to identify 4mC sites in multiple species. The results obtained from independent dataset demonstrated that DNA4mC-LIP outperformed existing methods for identifying 4mC sites. To facilitate the scientific community, a web server for DNA4mC-LIP was developed. We anticipated that DNA4mC-LIP could serve as a powerful computational technique for identifying 4mC sites and facilitate the interpretation of 4mC mechanism. Availability and implementation http://i.uestc.edu.cn/DNA4mC-LIP/. Contact hlin@uestc.edu.cn or hj@uestc.edu.cn or chenweiimu@gmail.com Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2020-07-29
    Description: Motivation Functional genomics data are becoming clinically actionable, raising privacy concerns. However, quantifying privacy leakage via genotyping is difficult due to the heterogeneous nature of sequencing techniques. Thus, we present FANCY, a tool that rapidly estimates the number of leaking variants from raw RNA-Seq, ATAC-Seq and ChIP-Seq reads, without explicit genotyping. FANCY employs supervised regression using overall sequencing statistics as features and provides an estimate of the overall privacy risk before data release. Results FANCY can predict the cumulative number of leaking SNVs with an average 0.95 R2 for all independent test sets. We realize the importance of accurate prediction when the number of leaked variants is low. Thus, we develop a special version of the model, which can make predictions with higher accuracy when the number of leaking variants is low. Availability and implementation A python and MATLAB implementation of FANCY, as well as custom scripts to generate the features can be found at https://github.com/gersteinlab/FANCY. We also provide jupyter notebooks so that users can optimize the parameters in the regression model based on their own data. An easy-to-use webserver that takes inputs and displays results can be found at fancy.gersteinlab.org. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2020-06-24
    Description: Motivation Advanced publicly available sequencing data from large populations have enabled informative genome-wide association studies (GWAS) that associate SNPs with phenotypic traits of interest. Many publicly available tools able to perform GWAS have been developed in response to increased demand. However, these tools lack a comprehensive pipeline that includes both pre-GWAS analysis, such as outlier removal, data transformation and calculation of Best Linear Unbiased Predictions or Best Linear Unbiased Estimates. In addition, post-GWAS analysis, such as haploblock analysis and candidate gene identification, is lacking. Results Here, we present Holistic Analysis with Pre- and Post-Integration (HAPPI) GWAS, an open-source GWAS tool able to perform pre-GWAS, GWAS and post-GWAS analysis in an automated pipeline using the command-line interface. Availability and implementation HAPPI GWAS is written in R for any Unix-like operating systems and is available on GitHub (https://github.com/Angelovici-Lab/HAPPI.GWAS.git). Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2020-06-23
    Description: Motivation High-quality dynamic visuals are needed at all levels of science communication, from the conference hall to the classroom. As scientific journals embrace new article formats, many key concepts—particularly, in structural biology—are also more easily conveyed as videos than still frames. Notwithstanding, the design and rendering of a complex molecular movie remain an arduous task. Here, we introduce Molywood, a robust and intuitive tool that builds on the capabilities of Visual Molecular Dynamics (VMD) to automate all stages of movie rendering. Results Molywood is a Python-based script that uses an integrated workflow to give maximal flexibility in movie design. It implements the basic concepts of actions, layers, grids and concurrency and requires no programming experience to run. Availability and implementation The script is freely available on GitLab (gitlab.com/KomBioMol/molywood) and PyPI (through pip), and features an extended documentation, tutorial and gallery hosted on mmb.irbbarcelona.org/molywood.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2020-06-29
    Description: Motivation Human microbes play critical roles in drug development and precision medicine. How to systematically understand the complex interaction mechanism between human microbes and drugs remains a challenge nowadays. Identifying microbe–drug associations can not only provide great insights into understanding the mechanism, but also boost the development of drug discovery and repurposing. Considering the high cost and risk of biological experiments, the computational approach is an alternative choice. However, at present, few computational approaches have been developed to tackle this task. Results In this work, we leveraged rich biological information to construct a heterogeneous network for drugs and microbes, including a microbe similarity network, a drug similarity network and a microbe–drug interaction network. We then proposed a novel graph convolutional network (GCN)-based framework for predicting human Microbe–Drug Associations, named GCNMDA. In the hidden layer of GCN, we further exploited the Conditional Random Field (CRF), which can ensure that similar nodes (i.e. microbes or drugs) have similar representations. To more accurately aggregate representations of neighborhoods, an attention mechanism was designed in the CRF layer. Moreover, we performed a random walk with restart-based scheme on both drug and microbe similarity networks to learn valuable features for drugs and microbes, respectively. Experimental results on three different datasets showed that our GCNMDA model consistently achieved better performance than seven state-of-the-art methods. Case studies for three microbes including SARS-CoV-2 and two antimicrobial drugs (i.e. Ciprofloxacin and Moxifloxacin) further confirmed the effectiveness of GCNMDA in identifying potential microbe–drug associations. Availability and implementation Python codes and dataset are available at: https://github.com/longyahui/GCNMDA. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-06-27
    Description: Motivation The high resolution of single-cell DNA sequencing (scDNA-seq) offers great potential to resolve intratumor heterogeneity (ITH) by distinguishing clonal populations based on their mutation profiles. However, the increasing size of scDNA-seq datasets and technical limitations, such as high error rates and a large proportion of missing values, complicate this task and limit the applicability of existing methods. Results Here, we introduce BnpC, a novel non-parametric method to cluster individual cells into clones and infer their genotypes based on their noisy mutation profiles. We benchmarked our method comprehensively against state-of-the-art methods on simulated data using various data sizes, and applied it to three cancer scDNA-seq datasets. On simulated data, BnpC compared favorably against current methods in terms of accuracy, runtime and scalability. Its inferred genotypes were the most accurate, especially on highly heterogeneous data, and it was the only method able to run and produce results on datasets with 5000 cells. On tumor scDNA-seq data, BnpC was able to identify clonal populations missed by the original cluster analysis but supported by Supplementary Experimental Data. With ever growing scDNA-seq datasets, scalable and accurate methods such as BnpC will become increasingly relevant, not only to resolve ITH but also as a preprocessing step to reduce data size. Availability and implementation BnpC is freely available under MIT license at https://github.com/cbg-ethz/BnpC. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2020-01-23
    Description: Motivation Rapid development in long-read sequencing and scaffolding technologies is accelerating the production of reference-quality assemblies for large eukaryotic genomes. However, haplotype divergence in regions of high heterozygosity often results in assemblers creating two copies rather than one copy of a region, leading to breaks in contiguity and compromising downstream steps such as gene annotation. Several tools have been developed to resolve this problem. However, they either focus only on removing contained duplicate regions, also known as haplotigs, or fail to use all the relevant information and hence make errors. Results Here we present a novel tool, purge_dups, that uses sequence similarity and read depth to automatically identify and remove both haplotigs and heterozygous overlaps. In comparison with current tools, we demonstrate that purge_dups can reduce heterozygous duplication and increase assembly continuity while maintaining completeness of the primary assembly. Moreover, purge_dups is fully automatic and can easily be integrated into assembly pipelines. Availability and implementation The source code is written in C and is available at https://github.com/dfguan/purge_dups. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2020-09-30
    Description: Motivation BRENDA is the largest enzyme functional database, containing information of 84,000 experimentally characterised enzyme entries. This database is an invaluable resource for researchers in the biological field, which classifies enzyme–related information in categories that are very useful to obtain specific functional and protein engineering information for enzyme families. However, the BRENDA web interface, the most used by researchers with a non-informatic background, does not allow the user to cross-reference data from different categories or sub-categories in the database. Obtaining information in an easy and fast way, in a friendly web interface, without the necessity to have a deep informatics knowledge, will facilitate and improve research in the enzymology and protein engineering field. Results We developed the Brenda Easy Search Tool (BEST), an interactive Shiny/R application that enables querying the BRENDA database for complex cross–tabulated characteristics, and retrieving enzyme–related parameters and information readily and efficiently, which can be used for the study of enzyme function or as an input for other bioinformatics tools. Availability BEST and its tutorial are freely available from https://pesb2.cl/best/
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2020-09-29
    Description: Motivation The discovery of sequence motifs mediating DNA-protein binding usually implies the determination of binding sites using high-throughput sequencing and peak calling. The determination of peaks, however, depends strongly on data quality and is susceptible to noise. Results Here we present a novel approach to reliably identify transcription factor binding motifs from ChIP-Seq data without peak detection. By evaluating the distributions of sequencing reads around the different k-mers in the genome, we are able to identify binding motifs in ChIP-Seq data that yield no results in traditional pipelines. Availability NoPeak is published under the GNU General Public License and available as a standalone console based Java application at https://github.com/menzel/nopeak Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-05-29
    Description: Motivation As the COVID-19 pandemic is spreading around the world, the SARS-CoV-2 virus is evolving with mutations that potentially change and fine-tune functions of the proteins coded in its genome. Results Coronavirus3D website integrates data on the SARS-CoV-2 virus mutations with information about 3D structures of its proteins, allowing users to visually analyze the mutations in their 3D context. Availability and implementation Coronavirus3D server is freely available at https://coronavirus3d.org.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2020-07-22
    Description: Motivation Inferring gene regulatory networks (GRNs) from expression data is a significant systems biology problem. A useful inference algorithm should not only unveil the global structure of the regulatory mechanisms but also the details of regulatory interactions such as edge direction (from regulator to target) and sign (activation/inhibition). Many popular GRN inference algorithms cannot infer edge signs, and those that can infer signed GRNs cannot simultaneously infer edge directions or network cycles. Results To address these limitations of existing algorithms, we propose Polynomial Lasso Bagging (PoLoBag) for signed GRN inference with both edge directions and network cycles. PoLoBag is an ensemble regression algorithm in a bagging framework where Lasso weights estimated on bootstrap samples are averaged. These bootstrap samples incorporate polynomial features to capture higher-order interactions. Results demonstrate that PoLoBag is consistently more accurate for signed inference than state-of-the-art algorithms on simulated and real-world expression datasets. Availability and implementation Algorithm and data are freely available at https://github.com/gourabghoshroy/PoLoBag. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2020-05-21
    Description: Summary Biological pathways are fundamental for learning about healthy and disease states. Many existing formats support automatic software analysis of biological pathways, e.g. BioPAX (Biological Pathway Exchange). Although some algorithms are available as web application or stand-alone tools, no general graphical application for the parsing of BioPAX pathway data exists. Also, very few tools can perform pathway enrichment analysis (PEA) using pathway encoded in the BioPAX format. To fill this gap, we introduce BiP (BioPAX-Parser), an automatic and graphical software tool aimed at performing the parsing and accessing of BioPAX pathway data, along with PEA by using information coming from pathways encoded in BioPAX. Availability and implementation BiP is freely available for academic and non-profit organizations at https://gitlab.com/giuseppeagapito/bip under the LGPL 2.1, the GNU Lesser General Public License. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2020-05-16
    Description: Motivation Transposable elements (TEs) classification is an essential step to decode their roles in genome evolution. With a large number of genomes from non-model species becoming available, accurate and efficient TE classification has emerged as a new challenge in genomic sequence analysis. Results We developed a novel tool, DeepTE, which classifies unknown TEs using convolutional neural networks (CNNs). DeepTE transferred sequences into input vectors based on k-mer counts. A tree structured classification process was used where eight models were trained to classify TEs into super families and orders. DeepTE also detected domains inside TEs to correct false classification. An additional model was trained to distinguish between non-TEs and TEs in plants. Given unclassified TEs of different species, DeepTE can classify TEs into seven orders, which include 15, 24 and 16 super families in plants, metazoans and fungi, respectively. In several benchmarking tests, DeepTE outperformed other existing tools for TE classification. In conclusion, DeepTE successfully leverages CNN for TE classification, and can be used to precisely classify TEs in newly sequenced eukaryotic genomes. Availability and implementation DeepTE is accessible at https://github.com/LiLabAtVT/DeepTE. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-05-28
    Description: Summary AlphaFamImpute is an imputation package for calling, phasing and imputing genome-wide genotypes in outbred full-sib families from single nucleotide polymorphism (SNP) array and genotype-by-sequencing (GBS) data. GBS data are increasingly being used to genotype individuals, especially when SNP arrays do not exist for a population of interest. Low-coverage GBS produces data with a large number of missing or incorrect naïve genotype calls, which can be improved by identifying shared haplotype segments between full-sib individuals. Here, we present AlphaFamImpute, an algorithm specifically designed to exploit the genetic structure of full-sib families. It performs imputation using a two-step approach. In the first step, it phases and imputes parental genotypes based on the segregation states of their offspring (i.e. which pair of parental haplotypes the offspring inherited). In the second step, it phases and imputes the offspring genotypes by detecting which haplotype segments the offspring inherited from their parents. With a series of simulations, we find that AlphaFamImpute obtains high-accuracy genotypes, even when the parents are not genotyped and individuals are sequenced at
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-06-02
    Description: Summary A number of methods have been devised to address the need for targeted genomic resequencing. One of these methods, region-specific extraction (RSE) is characterized by the capture of long DNA fragments (15–20 kb) by magnetic beads, after enzymatic extension of oligonucleotides hybridized to selected genomic regions. Facilitating the selection of the most appropriate capture oligos for targeting a region of interest, satisfying the properties of temperature (Tm) and entropy (ΔG), while minimizing the formation of primer-dimers in a pooled experiment, is therefore necessary. Manual design and selection of oligos becomes very challenging, complicated by factors such as length of the target region and number of targeted regions. Here we describe, AnthOligo, a web-based application developed to optimally automate the process of generation of oligo sequences used to target and capture the continuum of large and complex genomic regions. Apart from generating oligos for RSE, this program may have wider applications in the design of customizable internal oligos to be used as baits for gene panel analysis or even probes for large-scale comparative genomic hybridization array processes. AnthOligo was tested by capturing the Major Histocompatibility Complex (MHC) of a random sample. The application provides users with a simple interface to upload an input file in BED format and customize parameters for each task. The task of probe design in AnthOligo commences when a user uploads an input file and concludes with the generation of a result-set containing an optimal set of region-specific oligos. AnthOligo is currently available as a public web application with URL: http://antholigo.chop.edu. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-05-28
    Description: Summary Skyline is a Windows application for targeted mass spectrometry method creation and quantitative data analysis. Like most graphical user interface (GUI) tools, it has a complex user interface with many ways for users to edit their files which makes the task of logging user actions challenging and is the reason why audit logging of every change is not common in GUI tools. We present an object comparison-based approach to audit logging for Skyline that is extensible to other GUI tools. The new audit logging system keeps track of all document modifications made through the GUI or the command line and displays them in an interactive grid. The audit log can also be uploaded and viewed in Panorama, a web repository for Skyline documents that can be configured to only accept documents with a valid audit log, based on embedded hashes to protect log integrity. This makes workflows involving Skyline and Panorama more reproducible. Availability and implementation Skyline is freely available at https://skyline.ms. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2020-01-06
    Description: Motivation Polyadenylation plays a regulatory role in transcription. The recognition of polyadenylation signal (PAS) motif sequence is an important step in polyadenylation. In the past few years, some statistical machine learning-based and deep learning-based methods have been proposed for PAS identification. Although these methods predict PAS with success, there is room for their improvement on PAS identification. Results In this study, we proposed a deep neural network-based computational method, called SANPolyA, for identifying PAS in human and mouse genomes. SANPolyA requires no manually crafted sequence features. We compared our method SANPolyA with several previous PAS identification methods on several PAS benchmark datasets. Our results showed that SANPolyA outperforms the state-of-art methods. SANPolyA also showed good performance on leave-one-motif-out evaluation. Availability and implementation https://github.com/yuht4/SANPolyA. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2020-07-30
    Description: Motivation Accurate classification of patients into molecular subgroups is critical for the development of effective therapeutics and for deciphering what drives these subgroups to cancer. The availability of multiomics data catalogs for large cohorts of cancer patients provides multiple views into the molecular biology of the tumors with unprecedented resolution. Results We develop Pathway-based MultiOmic Graph Kernel clustering (PAMOGK) that integrates multiomics patient data with existing biological knowledge on pathways. We develop a novel graph kernel that evaluates patient similarities based on a single molecular alteration type in the context of a pathway. To corroborate multiple views of patients evaluated by hundreds of pathways and molecular alteration combinations, we use multiview kernel clustering. Applying PAMOGK to kidney renal clear cell carcinoma (KIRC) patients results in four clusters with significantly different survival times (P-value =1.24e−11). When we compare PAMOGK to eight other state-of-the-art multiomics clustering methods, PAMOGK consistently outperforms these in terms of its ability to partition KIRC patients into groups with different survival distributions. The discovered patient subgroups also differ with respect to other clinical parameters such as tumor stage and grade, and primary tumor and metastasis tumor spreads. The pathways identified as important are highly relevant to KIRC. Availability and implementation github.com/tastanlab/pamogk. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2020-07-27
    Description: Summary Dysfunctional regulations of gene expression programs relevant to fundamental cell processes can drive carcinogenesis. Therefore, systematically identifying dysregulation events is an effective path for understanding carcinogenesis and provides insightful clues to build predictive signatures with mechanistic interpretability for cancer precision medicine. Here, we implemented a machine learning-based gene dysregulation analysis framework in an R package, DysRegSig, which is capable of exploring gene dysregulations from high-dimensional data and building mechanistic signature based on gene dysregulations. DysRegSig can serve as an easy-to-use tool to facilitate gene dysregulation analysis and follow-up analysis. Availability and implementation The source code and user’s guide of DysRegSig are freely available at Github: https://github.com/SCBIT-YYLab/DysRegSig. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2020-09-17
    Description: Summary Transposon calling cards is a genomic assay for identifying transcription factor binding sites in both bulk and single cell experiments. Here we describe the qBED format, an open, text-based standard for encoding and analyzing calling card data. In parallel, we introduce the qBED track on the WashU Epigenome Browser, a novel visualization that enables researchers to inspect calling card data in their genomic context. Finally, through examples, we demonstrate that qBED files can be used to visualize non-calling card datasets, such as CADD scores and GWAS/eQTL hits, and thus may have broad utility to the genomics community. Availability and Implementation The qBED track is available on the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/browser), beginning with version 46. Source code for the WashU Epigenome Browser with qBED support is available on GitHub (http://github.com/arnavm/eg-react and http://github.com/lidaof/eg-react). A complete definition of the qBED format is available as part of the WashU Epigenome Browser documentation (https://eg.readthedocs.io/en/latest/tracks.html#qbed-track). We have also released a tutorial on how to upload qBED data to the browser (http://dx.doi.org/10.17504/protocols.io.bca8ishw). Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-09-15
    Description: Summary Gene co-expression networks can be constructed in multiple different ways, both in the use of different measures of co-expression, and in the thresholds applied to the calculated co-expression values, from any given dataset. It is often not clear which co-expression network construction method should be preferred. COGENT provides a set of tools designed to aid the choice of network construction method without the need for any external validation data. Availability and implementation https://github.com/lbozhilova/COGENT Supplementary information Supplementary information is available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2020-04-20
    Description: Summary Phigaro is a standalone command-line application that is able to detect prophage regions taking raw genome and metagenome assemblies as an input. It also produces dynamic annotated ‘prophage genome maps’ and marks possible transposon insertion spots inside prophages. It is applicable for mining prophage regions from large metagenomic datasets. Availability and implementation Source code for Phigaro is freely available for download at https://github.com/bobeobibo/phigaro along with test data. The code is written in Python. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-01-13
    Description: Motivation miRNA isoforms (isomiRs) are produced from the same arm as the archetype miRNA with a few nucleotides different at 5 and/or 3 termini. These well-conserved isomiRs are functionally important and have contributed to the evolution of miRNA genes. Accurate detection of differential expression of miRNAs can bring new insights into the cellular function of miRNA and a further improvement in miRNA-based diagnostic and prognostic applications. However, very few methods take isomiR variations into account in the analysis of miRNA differential expression. Results To overcome this challenge, we developed a novel approach to take advantage of the multidimensional structure of isomiR data from the same miRNAs, termed as a multivariate differential expression by Hotelling’s T2 test (MDEHT). The utilization of the information hidden in isomiRs enables MDEHT to increase the power of identifying differentially expressed miRNAs that are not marginally detectable in univariate testing methods. We conducted rigorous and unbiased comparisons of MDEHT with seven commonly used tools in simulated and real datasets from The Cancer Genome Atlas. Our comprehensive evaluations demonstrated that the MDEHT method was robust among various datasets and outperformed other commonly used tools in terms of Type I error rate, true positive rate and reproducibility. Availability and implementation The source code for identifying and quantifying isomiRs and performing miRNA differential expression analysis is available at https://github.com/amanzju/MDEHT. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-02-04
    Description: Summary We present genesis, a library for working with phylogenetic data, and gappa, an accompanying command-line tool for conducting typical analyses on such data. The tools target phylogenetic trees and phylogenetic placements, sequences, taxonomies and other relevant data types, offer high-level simplicity as well as low-level customizability, and are computationally efficient, well-tested and field-proven. Availability and implementation Both genesis and gappa are written in modern C++11, and are freely available under GPLv3 at http://github.com/lczech/genesis and http://github.com/lczech/gappa. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-09-14
    Description: Motivation Recent advances in high throughput RNA-Seq technologies allow to produce massive datasets. When a study focuses only on a handful of genes, most reads are not relevant and degrade the performance of the tools used to analyze the data. Removing irrelevant reads from the input dataset leads to improved efficiency without compromising the results of the study. Results We introduce a novel computational problem, called gene assignment and we propose an efficient alignment-free approach to solve it. Given an RNA-Seq sample and a panel of genes, a gene assignment consists in extracting from the sample the reads that most probably were sequenced from those genes. The problem becomes more complicated when the sample exhibits evidence of novel alternative splicing events. We implemented our approach in a tool called Shark and assessed its effectiveness in speeding up differential splicing analysis pipelines. This evaluation shows that Shark is able to significantly improve the performance of RNA-Seq analysis tools without having any impact on the final results. Availability The tool is distributed as a stand-alone module and the software is freely available at https://github.com/AlgoLab/shark. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-02-24
    Description: Summary We present Nubeam-dedup, a fast and RAM-efficient tool to de-duplicate sequencing reads without reference genome. Nubeam-dedup represents nucleotides by matrices, transforms reads into products of matrices, and based on which assigns a unique number to a read. Thus, duplicate reads can be efficiently removed by using a collisionless hash function. Compared with other state-of-the-art reference-free tools, Nubeam-dedup uses 50–70% of CPU time and 10–15% of RAM. Availability and implementation Source code in C++ and manual are available at https://github.com/daihang16/nubeamdedup and https://haplotype.org. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2020-07-13
    Description: Motivation The growing complexity of reaction-based models necessitates early detection and resolution of model errors. Considerable work has been done on the detection of mass balance errors, especially atomic mass analysis (AMA) (which compares the counts of atoms in the reactants and products) and Linear Programming analysis (which detects stoichiometric inconsistencies). This article extends model error checking to include: (i) certain structural errors in reaction networks and (ii) error isolation. First, we consider the balance of chemical structures (moieties) between reactants and products. This balance is expected in many biochemical reactions, but the imbalance of chemical structures cannot be detected if the analysis is done in units of atomic masses. Second, we improve on error isolation for stoichiometric inconsistencies by identifying a small number of reactions and/or species that cause the error. Doing so simplifies error remediation. Results We propose two algorithms that address isolating structural errors in reaction networks. Moiety analysis finds imbalances of moieties using the same algorithm as AMA, but moiety analysis works in units of moieties instead of atomic masses. We argue for the value of checking moiety balance, and discuss two approaches to decomposing chemical species into moieties. Graphical Analysis of Mass Equivalence Sets (GAMES) provides isolation for stoichiometric inconsistencies by constructing explanations that relate errors in the structure of the reaction network to elements of the reaction network. We study the effectiveness of moiety analysis and GAMES on curated models in the BioModels repository. We have created open source codes for moiety analysis and GAMES. Availability and implementation Our project is hosted at https://github.com/ModelEngineering/SBMLLint, which contains examples, documentation, source code files and build scripts used to create SBMLLint. Our source code is licensed under the MIT open source license. Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-09-14
    Description: Summary Current tools to annotate the predicted effect of genetic variants are heavily biased towards protein-coding sequence. Variants outside of these regions may have a large impact on protein expression and/or structure and can lead to disease, but this effect can be challenging to predict. Consequently, these variants are poorly annotated using standard tools. We have developed a plugin to the Ensembl Variant Effect Predictor, the UTRannotator, that annotates variants in 5’untranslated regions (5’UTR) that create or disrupt upstream open reading frames (uORFs). We investigate the utility of this tool using the ClinVar database, providing an annotation for 31.9% of all 5’UTR (likely) pathogenic variants, and highlighting 31 variants of uncertain significance as candidates for further follow-up. We will continue to update the UTRannotator as we gain new knowledge on the impact of variants in UTRs. Availability and implementation UTRannotator is freely available on Github: https://github.com/ImperialCardioGenetics/UTRannotator Supplementary information Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-06-15
    Description: Motivation Determining the relative contributions of functional genetic categories is fundamental to understanding the genetic etiology of complex human traits and diseases. Here, we present Annotation Informed-MiXeR, a likelihood-based method for estimating the number of variants influencing a phenotype and their effect sizes across different functional annotation categories of the genome using summary statistics from genome-wide association studies. Results Extensive simulations demonstrate that the model is valid for a broad range of genetic architectures. The model suggests that complex human phenotypes substantially differ in the number of causal variants, their localization in the genome and their effect sizes. Specifically, the exons of protein-coding genes harbor more than 90% of variants influencing type 2 diabetes and inflammatory bowel disease, making them good candidates for whole-exome studies. In contrast,
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...