ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (8,388)
  • LUNAR AND PLANETARY EXPLORATION  (3,867)
  • GEOPHYSICS  (3,293)
  • 1990-1994  (15,548)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-08-28
    Description: We discuss the determination of diurnal and semidiurnal variations in the rotation rate and the direction of rotation axis of Earth from the analysis of 8 years of very long baseline interferometry (VLBI) data. This analysis clearly show that these variations are largely periodic and tidally driven; that is, the periods of the variations correspond to the periods of the largest lunar and solar tides. For rotation rate variations, expressed in terms of changes in universal time (UT), the tidal lines with the largest observed signals are O1 (amplitude 23.5 microseconds in time (microseconds), period 25.82 solar hours); KL (18.9 microseconds, 23.93 hours); M2 (17.9 microseconds, 12.54 hours); and S2 (8.6 microseconds, 12.00 hours). For variations in the direction of the rotation axis (polar motion), significant signals exist in the retrograde semidiurnal band at the M2 and S2 tides (amplitudes 265 and 119 microarc seconds (microarc seconds, respectively); the prograde diurnal band at the O1, K1, and P1 tides (amplitudes 199, 152, and 60 microarc seconds, respectively); and the prograde semidiurnal band at the M2 and K2 tides (amplitudes 58 and 39 microarc seconds, respectively). Variations in the retrograde diurnal band are represented by corrections with previous estimates except that a previously noted discrepancy in the 13.66-day nutation (corresponding to the O1 tide) is largely removed in this new analysis. We estimate that the standard deviations of these estimates are 1.0 microseconds for the UT1 variations and 14-16 microarc seconds for the polar motion terms. These uncertainties correspond to surface displacements of approximately 0.5 mm. From the analysis of atmospheric angular momentum data we conclude that variations in UT1 excited by the atmosphere with subdaily periods are small (approximately 1 microsecond). We find that the average radial tidal displacements of the VLBI sites in the diurnal band are largely consistent with known deficiencies in current tidal models, i.e., deficiencies of up to 0.9 mm in the treatment of the free core nutation resonance. In the semidiurnal band, our analysis yields estimates of the second-degree harmonic radial Love number h(sub 2) at the M2 tide of 0.604 + i0.005 +/- 0.002. The most likely explanation for the rotational variations are the effects of ocean tides, but there may also be some contributions from atmospheric tides, the effects of triaxiality of Earth, and the equatorial second-degree-harmonic components of the core- mantle boundary.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B9; p. 18,051-18,071
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: A thermal model that can be easily adapted to craters of arbitrary shape is developed and applied to high-latitude impact craters on Mercury and the Moon, Chao Meng Fu crater at -87.5 deg L on Mercury, an unnamed bowl-shaped crater at 86.7 deg L on Mercury, and Peary crater at 88.6 deg L on the Moon. For an assumed input topography and grid of surface elements, the model computes for each element the irradiation from direct insolation and reflected and emitted radiation from other elements, taking into account shadowing by walls of the crater, partial obscuration of the solar disk near the poles and the diurnal, orbital, and seasonal cycles. Temperatures are computed over the surface grid as functions of depth and time from the surface to a specified depth and over the pertinent astronomical cycles, including the effects of direct and indirect surface irradiation, infrared radiation, heat conduction, and interior heating. Vapor fluxes and ice recession times are computed as functions of ice depth over the surface grid. Temperatures profiles, vapor fluxes, and ice recession times were computed for flat surfaces not associated with craters near the poles of Mercury and the Moon. It was found that water ice could have existed throughout geologic time within the maximum radar detection depth of recent observation of Mercury (J. K. Harmon and M. A. Slade, 1992, Science 258, 640-643) poleward of approximately 87 - 88 deg L on Mercury and poleward of approximately 73 deg L on the Moon. For Chao Meng Fu crater it was found that approximately 40% of the crater floor is permanently shadowed from direct solar insolation, while the remainder of the crater floor is periodically illuminated by a partially obscured Sun. Temperatures at the upper levels of the south wall can slightly exceed 550 K. Surface temperatures in the permanently shadowed region of the crater floor are under approximately 130 K, which could have allowed water ice to exist throughout geologic time within the radar detection depth of recent observation of Mercury. For small bowl-shaped crater on Mercury, it was found that most of the crater is permanently shadowed from direct solar radiation, except for a narrow semicircular band bordering the north rim. However, temperatures in the permanently shadowed region periodically reach a maximum near approximately 315 K due to efficient heating of the small crater by thermal emission and reflection from the small sunlit region, which periodically reaches temperatures exceeding 630 K. Water ice could not have existed throughout geologic time anywhere in this crater within the radar detection depth. For Peary crater on the Moon, the entire crater floor is permanently shadowed from direct solar insolation with maximum temperature under 120 K. The upper level of the north wall periodically reaches a maximum temperature near 310 K. The low temperatures on the crater floor would have allowed water ice to exist near the surface throughout geologic time, provided that the Moon's obliquity was always as low as it is at present.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 111; 2; p. 441-455
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: We examine the effects of the loss of Mars atmospheric constituents by solar-wind-induced sputtering and by photochemical escape during the past 3.8 billion years. Sputtering is capable of efficiently removing species from the upper atmosphere, including the light noble gases; nitrogen and oxygen are removed by photochemical processes as well. Due to diffusive separation (by mass) above the homopause, removal from the top of the atmosphere will fractionate the isotopes of each species, with the lighter mass being preferentially lost. For carbon and oxygen, this allows us to determine the size of nonatmospheric reservoirs which mix with the atmosphere; these reservoirs can be CO2 adsorbed in the regolith and H2O in the polar ice caps. We have constructed both simple analytical models and time-dependent models of the loss of volatiles from and supply to the martian atmosphere. Both argon and neon require continued replenishment from outgassing over geologic time. For argon, sputtering loss explains the fractionation of (Ar-36)/(Ar-38) without requiring a distinct epoch of hydrodynamic escape (although fractionation of Xe isotopes still requires very early hydrodynamic loss). For neon, the current (Ne-22)/(Ne-20) ratio represents a balance between loss to space and continued resupply from the interior; the similarity of the ratio to the terrestrial value is coincidental. For nitrogen, the loss by both sputtering and photochemical escape would produce a fractionation of (N-15)/(N-14) larger than observed; an early, thicker carbon dioxide atmosphere could mitigate the nitrogen loss and produce the observed fractionation, as could continued outgassing of juvenile nitorgen. Based on the isotopic constraints, the total amount of carbon dioxide lost over geologic time is probably on the order of tens of millibars rather than a substantial fraction of a bar. The total loss from solar-wind-induced sputtering and photochemical escape, therefore, does not seem able to explain the loss of a putative thick, early atmosphere withput requiring formation of extensive surface carbonate deposits or other nonatmospheric reservoirs for CO2.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 111; 2; p. 271-288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,223-19,234
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: The central Andeean orogen between 12 deg and 32 deg S latitude exhibits a high degree of spatial order: principally an extraordinary bilateral symmetry that is common to the Earth's surface, the underlying Wadati-Benioff zone, and the Nazca/South America plate kinematics, which has been stable since the mid-Tertiary. This spatial order must reflect the physical mechanisms of mountain building in this noncollisional orogen. The shapes of the topography and subduction zone can be reduced to symmetric and antisummeric components relative to any verical symmetry plane; the particular plaen which minimizes the antisymmetry (and maximizes the symmetry) is well resolved and is essentially coincident with the stable Euler equator of Nacza/South America relative motion since the mid-Tertiary. That the topography, subduction geometry, and persistent mid-Tertiary plate kinematics share common spatial and geometric elements suggests that he distribution of topography in this orogen depends strongly on the dynamics of subduction. Other factors that might affect the topography and underlying tectonics, such as climate and inherited strutura fabric, which have different spatial characterisitcs, must be of less significance at a continental scale. Furthermore, the small components of asymmetry among the various elements of the orogen appear to be mutually relate in a simple way; it is possible that this coupled asymmetry is associated with a late Teriary change in plate kinematics. These observations suggest that there is a close connection between plate tectonics and the form of the Earth's surface in this noncollisional setting. It follows hta the distribution of topography near convergent plate boundaries may provide a powerful constraing for understanding the dynamics of subduction.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B6; p. 12,279-12,288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,275-17,282
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: The path-integrated linear growth of electromagnetic ion cyclotron waves in the outer (L is greater than or equal to 7) magnetosphere is investigated using a realistic thermal plasma distribution with an additional anisotropic energetic ring current H(+) to provide free energy for instability. The results provide a realistic simulation of the recent Active Magneto- spheric Particle Tracer Explorers (AMPTE) observations. For conditions typical of the dayside magnetosphere, high plasma beta effects reduce the group velocity and significantly increase the spatial growth rates for left-handed polarized instabilities just below the helium gyrofrequency Omega(sub He(+)), and on the guided mode above Omega(sub He(+)) but below the cross over frequency omega(sub cr). Relatively high densities, typical of the afternoon local time sector, favor these low group velocity effects for predominantly field-aligned waves. Lower densities, typical of those found in the early morning local time sector, increase the group velocity but allow strong convective instabilities at high normalized frequencies well above Omega(sub He(+)). These waves are reflected in the magnetosphere and can exist for several equatorial transits without significant damping. They are left-handed polarized only on the first equatorial crossing and become linearly polarized for the remainder of the ray path. Consequently, these waves should be observed with basically linear polarization at all frequencies and all latitudes in the early morning local time sector. Wave growth below Omega(sub He(+)) is severely limited owing to the narrow bandwidth for instability and the small resonant path lengths. In the afternoon sector, where plasma densities can exceed 10(exp 7)/cu m, intense convective amplification is possible both above and below Omega(sub He(+)). Waves below Omega(sub He(+)) are not subject to reflection when the O(+) concentration is small and therefore should be observed with left-handed polarization near the equator and essentially linear polarization at higher latitudes. Since the He(+) concentration is usually large in the afternoon sector, guided mode waves above Omega(sub He(+)) reflect to form a background distribution with basically linear polarization. We suggest that the strong left-handed polarized emissions observed by AMPTE in the afternoon sector near the equator are probably due to strongly growing low group velocity waves at frequencies just below Omega(sub He(+)), and on the guided mode above Omega(sub He(+)).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,259-17,273
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E12; p. 26105-26028
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an absence of surface water ice deposits, which is consistent with Viking Mars atmospheric water detector (MAWD) measurements which show low atmospheric water vapor abundances throughout the summer season.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; E12; p. 25993-26013
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: Venusian canali, outflow channels, and associated volcanic deposits resemble fluvial landforms more than they resmeble volcanic features on Earth and Mars. Some canali have meandering habits and features indicative of channel migration that are very similar to meandering river channels and flood plains on Earth, venusian outflow channels closely resemble water-carved outflow channels on Mars and the Channeled Scabland in Washington, collapsed terrains at the sources of some venusian channels resemble chaotic terrains at the sources of martian outflow channels, venusian lava deltas are similar to bird's-foot deltas such as the Mississippi delta, and venusian valley networks indicate sapping. We have developed an alternative possibility that the lava had a water-like rheology and a melting point slightly greater than Venus' surface temperature, thus accounting for the unusual behavior of the lava. Unlike silicate lavas, some carbonatites (including carbonate-sulfate-rich liquids) have these properties; thus they can flow great distances while retaining a high fluidity, significant mechanical erosiveness, and substantial capacity to transport and deposit sediment. Venusian geochemistry and petrology are consistent with extensive eruptions of carbonatite lavas, which could have crustal and/or mantle origins. Venus' atmosphere (especially CO2, HCl, and HF abundances) and rocks may be in local chemical equilibrium, which suggests that the upper crust contains large amounts of calcite, anhydrite, and other salts. Chemical analyses indicate, according to some models, that Venusian rocks may contain 4-19% calcite and anhydrite. Mixtures of crustal salts could melt at temperatures a few tens to a few hundred Kelvins higher than Venus' surface temperature; hence, melting may be induced by modest endogenetic or impact heating. Salts may have many of the same geologic roles on Venus as water and ice have on Mars. A molten salt (carbonatite) 'aquifer' may exist beneath a few hundred meters to several kilometers of solidified salt-rich 'permafrost.' Many geologic features can be explained by carbonatite magmatism: (1) impact melting of crustal salts can explain crater outflows, (2) small, sustained eruptions from molten salt aquifers can explain sapping valleys, (3) large, sustained eruptions may explain canali and their flood plans, and (4) catastrophic outbursts amy have formed outflow channels and chaotic terrain. Landforms created by carbonate-rich lavas would be thermally stable on Venus' surface, though some minerals may weather to other solid substances.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 112; 1; p. 219-252
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...