ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (3,304)
  • 1990-1994  (3,293)
  • 1955-1959  (11)
  • 1
    Publication Date: 2019-08-28
    Description: We discuss the determination of diurnal and semidiurnal variations in the rotation rate and the direction of rotation axis of Earth from the analysis of 8 years of very long baseline interferometry (VLBI) data. This analysis clearly show that these variations are largely periodic and tidally driven; that is, the periods of the variations correspond to the periods of the largest lunar and solar tides. For rotation rate variations, expressed in terms of changes in universal time (UT), the tidal lines with the largest observed signals are O1 (amplitude 23.5 microseconds in time (microseconds), period 25.82 solar hours); KL (18.9 microseconds, 23.93 hours); M2 (17.9 microseconds, 12.54 hours); and S2 (8.6 microseconds, 12.00 hours). For variations in the direction of the rotation axis (polar motion), significant signals exist in the retrograde semidiurnal band at the M2 and S2 tides (amplitudes 265 and 119 microarc seconds (microarc seconds, respectively); the prograde diurnal band at the O1, K1, and P1 tides (amplitudes 199, 152, and 60 microarc seconds, respectively); and the prograde semidiurnal band at the M2 and K2 tides (amplitudes 58 and 39 microarc seconds, respectively). Variations in the retrograde diurnal band are represented by corrections with previous estimates except that a previously noted discrepancy in the 13.66-day nutation (corresponding to the O1 tide) is largely removed in this new analysis. We estimate that the standard deviations of these estimates are 1.0 microseconds for the UT1 variations and 14-16 microarc seconds for the polar motion terms. These uncertainties correspond to surface displacements of approximately 0.5 mm. From the analysis of atmospheric angular momentum data we conclude that variations in UT1 excited by the atmosphere with subdaily periods are small (approximately 1 microsecond). We find that the average radial tidal displacements of the VLBI sites in the diurnal band are largely consistent with known deficiencies in current tidal models, i.e., deficiencies of up to 0.9 mm in the treatment of the free core nutation resonance. In the semidiurnal band, our analysis yields estimates of the second-degree harmonic radial Love number h(sub 2) at the M2 tide of 0.604 + i0.005 +/- 0.002. The most likely explanation for the rotational variations are the effects of ocean tides, but there may also be some contributions from atmospheric tides, the effects of triaxiality of Earth, and the equatorial second-degree-harmonic components of the core- mantle boundary.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B9; p. 18,051-18,071
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,223-19,234
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: The central Andeean orogen between 12 deg and 32 deg S latitude exhibits a high degree of spatial order: principally an extraordinary bilateral symmetry that is common to the Earth's surface, the underlying Wadati-Benioff zone, and the Nazca/South America plate kinematics, which has been stable since the mid-Tertiary. This spatial order must reflect the physical mechanisms of mountain building in this noncollisional orogen. The shapes of the topography and subduction zone can be reduced to symmetric and antisummeric components relative to any verical symmetry plane; the particular plaen which minimizes the antisymmetry (and maximizes the symmetry) is well resolved and is essentially coincident with the stable Euler equator of Nacza/South America relative motion since the mid-Tertiary. That the topography, subduction geometry, and persistent mid-Tertiary plate kinematics share common spatial and geometric elements suggests that he distribution of topography in this orogen depends strongly on the dynamics of subduction. Other factors that might affect the topography and underlying tectonics, such as climate and inherited strutura fabric, which have different spatial characterisitcs, must be of less significance at a continental scale. Furthermore, the small components of asymmetry among the various elements of the orogen appear to be mutually relate in a simple way; it is possible that this coupled asymmetry is associated with a late Teriary change in plate kinematics. These observations suggest that there is a close connection between plate tectonics and the form of the Earth's surface in this noncollisional setting. It follows hta the distribution of topography near convergent plate boundaries may provide a powerful constraing for understanding the dynamics of subduction.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; B6; p. 12,279-12,288
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: Electromagnetic ion cyclotron (EMIC) waves in the frequency range below the helium gyrofrequency can be excited in the equatorial region of the outer magnetosphere by cyclotron resonant instability with anisotropic ring current H(+) ions. As the unducted waves propagate to higher latitudes, the wave normal should become highly inclined to the ambient magnetic field. Under such conditions, wave energy can be absorbed by cyclotron resonant interactions with ambient O(+), leading to ion heating perpendicular to the ambient magnetic field. Resonant wave absorption peaks in the vicinity of the bi-ion frequency and the second harmonic of the O(+) gyrofrequrency. This absorption should mainly occur at latitudes between 10 deg and 30 deg along auroral field lines (L is greater than or equal to 7) in the postnoon sector. The concomitant ion heating perpendicular to the ambient magnetic field can contribute to the isotropization and geomagnetic trapping of collapsed O(+) ion conics (or beams) that originate from a low-altitude ionospheric source region. During geomagnetic storms when the O(+) content of the magnetosphere is significantly enhanced, the absorption of EMIC waves should become more efficient, and it may contribute to the observed acceleration of O(+) ions of ionospheric origin up to ring current energies.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,275-17,282
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: The path-integrated linear growth of electromagnetic ion cyclotron waves in the outer (L is greater than or equal to 7) magnetosphere is investigated using a realistic thermal plasma distribution with an additional anisotropic energetic ring current H(+) to provide free energy for instability. The results provide a realistic simulation of the recent Active Magneto- spheric Particle Tracer Explorers (AMPTE) observations. For conditions typical of the dayside magnetosphere, high plasma beta effects reduce the group velocity and significantly increase the spatial growth rates for left-handed polarized instabilities just below the helium gyrofrequency Omega(sub He(+)), and on the guided mode above Omega(sub He(+)) but below the cross over frequency omega(sub cr). Relatively high densities, typical of the afternoon local time sector, favor these low group velocity effects for predominantly field-aligned waves. Lower densities, typical of those found in the early morning local time sector, increase the group velocity but allow strong convective instabilities at high normalized frequencies well above Omega(sub He(+)). These waves are reflected in the magnetosphere and can exist for several equatorial transits without significant damping. They are left-handed polarized only on the first equatorial crossing and become linearly polarized for the remainder of the ray path. Consequently, these waves should be observed with basically linear polarization at all frequencies and all latitudes in the early morning local time sector. Wave growth below Omega(sub He(+)) is severely limited owing to the narrow bandwidth for instability and the small resonant path lengths. In the afternoon sector, where plasma densities can exceed 10(exp 7)/cu m, intense convective amplification is possible both above and below Omega(sub He(+)). Waves below Omega(sub He(+)) are not subject to reflection when the O(+) concentration is small and therefore should be observed with left-handed polarization near the equator and essentially linear polarization at higher latitudes. Since the He(+) concentration is usually large in the afternoon sector, guided mode waves above Omega(sub He(+)) reflect to form a background distribution with basically linear polarization. We suggest that the strong left-handed polarized emissions observed by AMPTE in the afternoon sector near the equator are probably due to strongly growing low group velocity waves at frequencies just below Omega(sub He(+)), and on the guided mode above Omega(sub He(+)).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,259-17,273
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: We present a simple analytic model of the interaction of cold convective downwelling currents with an endothermic phase change. The model describes the ponding and lateral spreading of downflows along the phase transition interface. A simple comparison of the vertical forces on the ponding material provides a necessary condition for a downflow to penetrate the phase boundary. This condition is fundamentally dependent on the geometry of the downflow. For planar downwellings, the model predicts a minimum ponding time before the structure can penetrate the phase boundary. For columnar (axisymmetric) downflows, there is no minimum time of spreading required before penetration can proceed. The model thus provides an explanation for the observation that in numerical models of three-dimensional convection with an endothermic phase change, cylindrical downflows penetrate the phase interface while planar ones do not. Since descending slabs in the Earth's mantle display a wide spectrum of geometries between planar and cylindrical (given various trench curvatures, as well as intersections of two or more subduction zones), this phenomenon may explain, in part, why some slabs appear to extend into the lower mantle while others are deflected at the 660 km discontinuity.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 23; p. 2599-2602
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: Collection of electrons by a satellite at a relatively high potential in low Earth orbit, including the effects of the satellite's orbital motion, remains a poorly understood phenomenon. Using a test particle simulation in which charged particle motion is tracked in prescribed electric fields, we calculate here the current collection and the nature of the energy distribution function of the electrons collected by the satellite, including the effects of the satellite orbital motion. Calculations of the collected current without the orbital motion show an excellent agreement with the current from the Parker-Murphy model, but with the orbital motion of the satellite the current collection is enhanced, the degree of enhancement depending on the size of the satellite sheath extending along the magnetic field line. In the latter case, the flow of electrons around the satellite shows some interesting behaviors including azimuthal E x B drift around the satellite, axial trapping along the magnetic field, and formation of field-aligned flow of electrons in the wake region. The total energy of the collected electrons is approximately equal e phi(sub 0), where phi(sub 0) is the satellite potential, but the partition of the energy into components parallel (W(sub parallel)) and perpendicular (W(sub perpendicular)) to the magnetic field shows interesting features. For the magnetic field along the polar axis Z, the energy distributions near the poles are perfectly field aligned, that is, the parallel energy (W(sub parallel) = e phi(sub 0). The perpendicular component (W(sub perpendicular)) progressively increases toward the 'equator' of the spherical satellite. For a sufficiently large bias potential phi(sub 0), the equatorial energy distributions f(W(sub parallel)) and f(W(sub perpendicular)) show fine structures having multiple peaks. These features of the distribution functions result from the chaotic motion of electrons and the associated coupling between the electron motions parallel and perpendicular to the magnetic field in strongly nonuniform electric fields near the satellite.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 469-478
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: Four numerical simulations have been performed, at equinox, using a coupled thermosphere-ionosphere model, to illustrate the response of the upper atmosphere to geomagnetic storms. The storms are characterized by an increase in magnetospheric energy input at high latitude for a 12-hour period; each storm commences at a different universal time (UT). The initial response at high latitude is that Joule heating raises the temperature of the upper thermosphere and ion drag drives high-velocity neutral winds. The heat source drives a global wind surge, from both polar regions, which propagates to low latitudes and into the opposite hemisphere. The surge has the character of a large-scale gravity wave with a phase speed of about 600 m/s. Behind the surge a global circulation of magnitude 100 m/s is established at middle latitudes, indicating that the wave and the onset of global circulation are manifestations of the same phenomena. A dominant feature of the response is the penetration of the surge into the opposite hemisphere where it drives poleward winds for a few hours. The global wind surge has a preference for the night sector and for the longitude of the magnetic pole and therefore depends on the UT start time of the storm. A second phase of the meridional circulation develops after the wave interaction but is also restricted, in this case by the buildup of zonal winds via the Coriolis interaction. Conservation of angular momentum may limit the buildup of zonal wind in extreme cases. The divergent wind field drives upwelling and composition change on both height and pressure surfaces. The composition bulge responds to both the background and the storm-induced horizontal winds; it does not simply rotate with Earth. During the storm the disturbance wind modulates the location of the bulge; during the recovery the background winds induce a diurnal variation in its position. Equatorward winds in sunlight produce positive ionospheric changes during the main driving phase of the storm. Negative ionospheric phases are caused by increases of molecular nitrogen in regions of sunlight, the strength of which depends on longitude and the local time of the sector during the storm input. Regions of positive phase in the ionosphere persist in the recovery period due to decreases in mean molecular mass in regions of previous downwelling. Ion density changes, expressed as a ratio of disturbed to quiet values, exhibit a diurnal variation that is driven by the location of the composition bulge; this variation explains the ac component of the local time variation of the observed negative storm phase.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A3; p. 3893-3914
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A2; p. 2429-2442
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: High latitude ion outflows mostly consist of upward streaming O(+) and He(+) emanating from the ionosphere. At heights above 1000 km, these flows consist of cold and hot components which resonantly scatter solar extreme ultraviolet (EUV) light, however, the ion populations respond differently to Doppler shifting resulting from the large relative velocities between the ions and the Sun. The possibility of optical detection of the Doppler effect on the scattering rate will be discussed for the O(+) (83.4 nm) ions. We have contrasted the EUV solar resonance images of these outflows by simulations of the 30.4 nm He(+) and 83.4 nm O(+) emissions for both quiet and disturbed geomagnetic conditions. Input data for the 1000 km level has been obtained from the EICS instrument aboard the Dynamics Explorer (DE) satellite. Our results show emission rates of 50 and 56 milli-Rayleighs at 30.4 nm for quiet and disturbed conditions and 65 and 75 milli-Rayleighs at 83.4 nm for quiet and disturbed conditions, respectively, obtained for a polar orbiting satellite and viewing radially outward. We also find that an imager at an equatorial distance of 9 R(sub E) or more is in a favorable position for detecting ion outflows, particularly when the plasmapause is depressed in latitude. However, an occultation disk is necessary to obscure the bright plasmaspheric emissions.
    Keywords: GEOPHYSICS
    Type: Annales Geophysicae (ISSN 0992-7689); 12; 3-Feb; p. 169-182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-28
    Description: Electron density profiles acquired with the EISCAT radar at 0.2 s time resolution, together with TV images and photometric intensities, were used to study the characteristics of thin (less than 1 km) auroral arc structures that drifted through the field of view of the instruments. It is demonstrated that both high time and space resolution are essential for deriving the input parameters of the electron flux responsible for the elemental auroral structures. One such structure required a 400 mW/sq m (erg/sq cm s) downward energy flux carried by an 8 keV monochromatic electron flux equivalent to a current density of 50 micro Angstrom/sq m.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 25; p. 2789-2792
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-28
    Description: An MHD theory is developed for the stand-off distance a(sub s) of the bow shock and the thickness delta(sub ms) of the magnetosheath, using the empirical Spreiter et al. relation delta(sub ms) = kX and the MHD density ratio X across the shock. The theory includes as special cases the well-known gasdynamic theory and associated phenomenological MHD-like models for delta(sub ms) and a(sub s). In general, however, MHD effects produce major differences from previous models, especially at low Alfven (M(sub A)) and sonic (M(sub S)) Mach numbers. The magnetic field orientation, M(sub A), M(sub S) and the ratio of specific heats gamma are all important variables of the theory. Three principal conclusions are reached. First, the gasdynamic and phenomenological models miss important dependances on field orientation and M(sub S) and generally provide poor approximations to the MHD results. Second, changes in field orientation and M(sub S) are predicted to cause factor of approximately 4 changes in delta(sub ms) at low M(sub A). Third, using Spreiter et al.'s value for k in the MHD theory leads to maximum a(sub s) values at low M(sub A) and nominal M(sub S) that are much smaller than observations and MHD simulations require. Resolving this problem requires either the modified Spreiter-like relation and larger k found in recent MHD simulations and/or breakdown in the Spreiter-like relation at very low M(sub A).
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 25; p. 2781-2784
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-28
    Description: Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 7; p. 633-636
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-28
    Description: Data from the Solar Mesosphere Explorer (SME) is used to track the time, latitude, and altitude (above 18 km) development of the aerosol cloud injected into the stratosphere by the eruption of el Chichon. This unique data set, using scattering data from the near-infrared (1.27 and 1.87 microns) and visible (440 nm) spectrometers on SME, covers the period from the initial injection in April 1982 through the end of 1986. Although the bulk of the mass is contained in the latitude band from 10 deg S to 30 deg N for the entire duration of the measurements, transport of material to high latitudes is apparent in the data in the post eruption period. The times aerosol density maxima vary greatly as a function of altitude and latitude.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D10; p. 20,525-20,532
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-28
    Description: This paper investigates the properties of a one-dimensional fluid model of plasma convection in the equatorial F region ionosphere. The model equations are similar in form to Burgers equation except for additional higher-order spatial derivatives. Like Burgers equation, solution to the model have the form of propagating, shocklike structures. Numerical simulations of the model closely resemble the steepened structures observed by sounding rocket plasma density probes within equatorial spread F. Simulated denstiy power spectra, like the spectra computed from in situ data, seem to possess power law forms with a break at wavelengths of about 100 m. The precise wavenumber of the spectral break is determined by the ambipolar diffusion coefficient. The model predicts that electric field fluctuations perpendicular to the direction of plasma steepening should be proportional to the plasma density fluctuations. Electric field fluctuations parallel to the steepening will be due primarily to the ambipolar field and have a Boltzmann relationship with density (square of the absolute value of delta E) approximately equal to (K(exp 2))(square of the absolute value of (delta n/n)). At wavelengths less than about 300 m, the ambipolar field should be the dominant component of the total field intensity.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 8841-8850
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The rate of merging and the strength of the region 1 Birkeland currents increase during periods of southward interplanetary magnetic field (IMF). Fringe fields of the Birkeland currents depress dayside magnetospheric magnetic field strengths and remove magnetic flux from the dayside magnetophere, thereby allowing the dayside magnetopause to move inward and the cusp equatorward. We use previously derived fits to the magnetospause location as a function of IMF B(sub z), the condition of pressure balance at the magnetopause, and an idealized model of region 1 Birkeland currents to estimate that strong southward IMF turnings will produce approximately 13- to 26-nT depressions in the geosynchronous magnetic field strength over periods of 30-60 min. We then present three case studies of geosynchronous magnetic field strength variations during periods of nearly constant solar wind dynamic pressure and southward IMF. The dayside magnetospheric magnetic field strength was depressed approximately 10 nT during a period of strongly southward IMF (B(sub z) = -6 nT), but only approximately 5 nT during two more typical periods of slightly southward IMF (B(sub z) = -2 to -3 nT). The depressions correspond to periods of enhanced AL index, which we interpret as evidence for directly driven solar wind-magnetosphere interaction rather than the unloading of energy stored within the magnetotail. Dayside geosynchronous magnetic field strengths are weakly correlated with IMF B(sub z).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 8513-8529
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-28
    Description: We compare the DE-2 electric field measurements used by HEPPNER and MAYNARD (1987) to illustrate strongly distorted, BC convection patterns for interplanetary magnetic field (IMF) B(sub z) greater than 0 and large absolute value of B(sub y), with simultaneous detections of particle spectra, plasma drifts and magnetic perturbations. Measured potentials greater than 50 keV, driven by the solar wind speeds exceeding 500 km/s, are greater than published correlation analysis predictions by up to 27%. The potential distributions show only two extrema and thus support the basic conclusion that under these conditions the solar wind/IMF drives two-rather than four-cell convection patterns. However, several aspects of the distorted two-cell convection pattern must be revised. In addition to the strong east-west convection in the vicinity of the cusp, indicated by Heppner and Maynard, we also detect comparable components of sunward (equatorward) plasma flow. Combined equipotential and particle precipitation distributions indicate the presence of a lobe cell embedded within the larger, afternoon reconnection cell. Both types rotate in the same sense, with the lobe cell carrying 20-40% of the total afternoon cell potential. We detected no lobe cell within morning convection cell.
    Keywords: GEOPHYSICS
    Type: Journal of Atmospheric and Terrestrial Physics (ISSN 0021-9169); 56; 2; p. 209-221
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-28
    Description: Modification of the nighttime D region electron density (N(sub e)) due to heating by very-low-frequency (VLF) transmitters is investigated theoretically using a four-species model of the ion chemistry. The effects of a 100 kW, a 265 kW, and a 1000 kW VLF transmitter are calculated for three ambient N(sub e) profiles. Results indicate that N(sub e) is reduced by up to 26% at approximately 80 km altitude over a 1000 kW transmitter.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 21; 2; p. 93-96
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-28
    Description: We have simulated plasma transport processes in the presence of a quasi-two-dimensional current filament, that generated kV potential structure in the auroral region. The simulation consists of a set of one-dimensional flux tube simulations with different imposed time-dependent, field-aligned currents. The model uses the 16 moment system of equations and simultaneously solves coupled continuity and momentum equations and equations describing the transport along the magnetic field lines of parallel and perpendicular thermal energy and heat flows for each species. The lower end of the simulation is at an altitude of 800 km, in the collisional topside ionosphere, while the upper end is at 10 R(sub E) in the magnetosphere. The plasma consists of hot electrons and protons of magnetospheric origin and low-energy electrons, protons, and oxygen ions of ionospheric origin. The dynamical interaction of the individual current filaments with ionospheric and magnetospheric plasma generates a potential structure in the horizontal direction and kilovolt field-aligned potential drops along the field lines. The side-by-side display exhibits the evolution of the implied potential structure in the horizontial direction. In the presence of this potential structure and parallel electric field ionospheric plasma density is depleted and velocity is reduced, while density enhancement and increased velocity is observed in magnetospheric plasma. The ionospheric and magnetospheric electron temperatures increase below 2 R(sub E) due to magnetic mirror force on converging geomagnetic field lines. The primary cross-field motion produced by the horizontal E field (E x B drift) is perpendicular to both of the significant spatial directions and is thus ignorable in this geometry. The effects of other cross-field drift processes are discussed. The simulation thus provides insight into the dynamical evolution of two-dimensional potential structures driven by an imposed finite width, field-aligned current profile.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A4; p. 5761-5770
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-28
    Description: We use results of guiding-center simulations of ion transport to map phase space densities of the stormtime proton ring current. We model a storm as a sequence of substorm-associated enhancements in the convection electric field. Our pre-storm phase space distribution is an analytical solution to a steady-state transport model in which quiet-time radial diffusion balances charge exchange. This pre-storm phase space spectra at L approximately 2 to 4 reproduce many of the features found in observed quiet-time spectra. Using results from simulations of ion transport during model storms having main phases of 3, 6, and 12 hr, we map phase space distributions from the pre-storm distribution in accordance with Liouville's theorem. We find stormtime enhancements in the phase space densities at energies E approximately 30-160 keV for L approximately 2.5 to 4. These enhancements agree well with the observed stormtime ring current. For storms with shorter main phases (approximately 3 hr), the enhancements are caused mainly by the trapping of ions injected from open night side trajectories, and diffusive transport of higher-energy (greater than or approximately 160 keV) ions contributes little to the stormtime ring current. However, the stormtime ring current is augmented also by the diffusive transport of higher-energy ions (E greater than or approximately 160 keV) durinng stroms having longer main phases (greater than or approximately 6 hr). In order to account for the increase in Dst associated with the formation of the stormtime ring current, we estimate the enhancement in particle-energy content that results from stormtime ion transport in the equatorial magnetosphere. We find that transport alone cannot account for the entire increase in absolute value of Dst typical of a major storm. However, we can account for the entire increase in absolute value of Dst by realistically increasing the stormtime outer boundary value of the phase space density relative to the quiet-time value. We compute the magnetic field produced by the ring current itself and find that radial profiles of the magnetic field depression resemble those obtained from observational data.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A4; p. 5745-5759
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-28
    Description: Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced dissipation of auroral currents. The participation of the ionosphere in the substorm energization processes seems to be closely, although not solely, associated with the solar wind/magnetosphere coupling. That is, the ionosphere influences actively the substorm energization processes by responding to the increased solar wind/magnetosphere coupling as well as to the unloading dissipation of stored energy, with the increased feeding of new material into the magnetosphere.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A4; p. 5691-5703
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-28
    Description: As part of the LAtitudinal DIstribution of Middle Atmosphere Structure (LADIMAS) campaign, measurements of mesospheric and upper stratospheric water vapor concentration were made over a latitudinal range from 53 N to 63 S. The 22-GHz emission line of water vapor was observed by a new, portable, cryogenically cooled microwave radiometer that was carried on board the German research vessel Polarstern as it sailed from Bremerhaven, Germany, to the Antarctic during November and December, 1991. Water vapor profiles were obtained at approximately 5 deg latitude intervals for an altitude range of 40 to 80 km.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 14; 9; p. (9)181-(9)184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: In this video there are scenes of damage from the Northridge Earthquake and interviews with Dr. Andrea Donnelan, Geophysics at JPL, and Dr. Jim Dolan, earthquake geologist from Cal. Tech. The interviews discuss earthquake forecasting by tracking changes in the earth's crust using antenna receiving signals from a series of satellites called the Global Positioning System (GPS).
    Keywords: GEOPHYSICS
    Type: NASA-TM-110112 , NASA-ASR-270 , NONP-NASA-VT-95-35012
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-28
    Description: The buried Chicxulub impact structure in Mexico, which is linked to the Cretaceous-Tertiary (K-T) boundary layer, may be significantly larger than previously suspected. Reprocessed gravity data over Northern Yucatan reveal three major rings and parts of a fourth ring, spaced similarly to those observed at multiring impact basins on other planets. The outer ring, probably corresponding to the basin's topographic rim, is almost 300 kilometers in diameter, indicating that Chicxulub may be one of the largest impact structures produced in the inner solar system since the period of early bombardment ended nearly 4 billion years ago.
    Keywords: GEOPHYSICS
    Type: Science (ISSN 0036-8075); 261; 5128; p. 1564-1567.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-28
    Description: Three of four Plinian eruptions from Ksudach Volcano are among the four largest explosive eruptions in southern Kamchatka during the past 2000 years. The earliest of the eruptions was voluminous and was accompanied by an ignimbrite and the fifth and most recent C~ddera collapse event at Ksudach. The isopach pattern is consistent with a column height of 23 km. The three more recent and smaller eruptions were from the Shtyubel' Cone, within the fifth caldera. Using isopach and grain size isopleth patterns, column heights ranged from 〉10 to 22 kin. Although the oldest eruption may have produced a large acidity peak in the Greenland ice, the three Shtyubel' events may not be related to major acid deposition. Thus it is possible that few if any of the uncorrelated acidity peaks of the past 2000 years in Greenland ice cores result from eruptions in southern Kamchatka.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 17; p. 1815-1818.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-28
    Description: We estimate ion heating in the topside ionosphere directly over thunderstorm cells. The primary heating is due to lower hybrid waves excited through linear mode coupling as intense electromagnetic (EM) whistler mode radiation from lightning is scattered from small scale (2 - 20 m) magnetic-field-aligned plasma density irregularities in the topside ionosphere. For typical radiated EM fields, we find that suprathermal H+ ions in the 6 eV and greater energy range can be heated by 20 to 40 eV as a result of a single lightning discharge. We also show how the number density of 6 eV and greater H(+) ions is enhanced by preheating resulting from the absorption of proton whistlers in the 500-1000 km altitude range. For lightning discharge rates of one or more per second over a 10 exp 4 sq km area, our model predicts a total energy gain for the H(+) ions of 400 eV to 2 KeV and a perpendicular ion flux of about 10 exp 5 to 10 exp 6/sq cm sec. These fluxes should be observable on low altitude spacecraft using presently available instrumentation.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8534); 20; 18; p. 1991-1994.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-28
    Description: New, 3D ray tracing of Pc 3 compressional waves from the magnetosheath reveals that the magnetosphere can present a major propagation barrier to the penetration of these waves to the plasmasphere. This barrier is the ion-ion cutoff between the He(+) and O(+) gyroresonances. As a result of the frequency-dependent location of this cutoff, the magnetosphere behaves like a filter for Pc 3 compressional waves, and only low-frequency components of Pc 3 compressional waves can penetrate to inner magnetosphere. Results are in agreement with previous satellite observations. This 'filter action' strongly depends on the relative concentration of He(+) and O(+) and is therefore sensitive to solar and magnetic activity. Ray-tracing results are based on a cold plasma dispersion relation, a semiempirical model of plasma density, and the Mead-Fairfield (1975) magnetic field model.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A9; p. 15,403-15,410.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-28
    Description: In situ measurements of chlorine monoxide, bromine monoxide, and ozone are extrapolated globally, with the use of meteorological tracers, to infer the loss rates for ozone in the Arctic lower stratosphere during the Airborne Arctic Stratospheric Expedition II (AASE II) in the winter of 1991-1992. The analysis indicates removal of 15 to 20 percent of ambient ozone because of elevated concentrations of chlorine monoxide and bromine monoxide. Observations during AASE II define rates of removal of chlorine monoxide attributable to reaction with nitrogen dioxide (produced by photolysis of nitric acid) and to production of hydrochloric acid. Ozone loss ceased in March as concentrations of chlorine monoxide declined. Ozone losses could approach 50 percent if regeneration of nitrogen dioxide were inhibited by irreversible removal of nitrogen oxides (denitrification), as presently observed in the Antarctic, or without denitrification if inorganic chlorine concentrations were to double.
    Keywords: GEOPHYSICS
    Type: Science (ISSN 0036-8075); 261; 5125; p. 1146-1149.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-28
    Description: We analyze over a century of geodetic data to study crustal deformation and plate motion around the Japanese Islands, using the block-fault model for crustal deformation developed by Matsu'ura et al. (1986). We model the area including the Japanese Islands with 19 crustal blocks and 104 faults based on the distribution of active faults and seismicity. Geodetic data are used to obtain block motions and average slip rates of faults. This geodetic model predicts that the Pacific plate moves N deg 69 +/- 2 deg W at about 80 +/- 3 mm/yr relative to the Eurasian plate which is much lower than that predicted in geologic models. Substantial aseismic slip occurs on the subduction boundaries. The block containing the Izu Peninsula may be separated from the rigid part of the Philippine Sea plate. The faults on the coast of Japan Sea and the western part of the Median Tectonic Line have slip rates exceeding 4 mm/yr, while the Fossa Magna does not play an important role in the tectonics of the central Japan. The geodetic model requires the division of northeastern Japan, contrary to the hypothesis that northeastern Japan is a part of the North American plate. Owing to rapid convergence, the seismic risk in the Nankai trough may be larger than that of the Tokai gap.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; B9; p. 16,149-16,166.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-08-28
    Description: Theoretical steady state semikinetic polar wind density profiles, based on DE1/RIMS polar wind data (up to 3700 km), were obtained which agree very well with the power law electron density profile measured by the DE1/PWI for high altitudes. The polar wind is found to be O(+) dominated for the full altitude range considered (up to 8 R(E)). Multiple solutions are obtained for various combinations of base altitude ion temperatures and electron temperatures, such that the densities fit the Persoon et al. (1983) profile. For example, good fits to measured density profile are found for low base ion temperatures (5000 K) and high electron temperatures (9000 K), and also for unheated H(+) and O(+)(3000 K) with electron temperatures of 11,000 K. Below 2.8 R(E) the theoretical polar wind density deviates somewhat from the r exp -3.85 power law. It is concluded that this theoretical polar wind density profile, with a sum of base electron and ion temperatures of 14,000 K, yields a close match with the measured DE-1 electron density profile.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 16; p. 1715-1717.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-08-28
    Description: We use AMPTE/IRM and ISEE 2 data to study the properties of the high beta plasma sheet, the inner plasma sheet (IPS). Bursty bulk flows (BBFs) are excised from the two databases, and the average flow pattern in the non-BBF (quiet) IPS is constructed. At local midnight this ensemble-average flow is predominantly duskward; closer to the flanks it is mostly earthward. The flow pattern agrees qualitatively with calculations based on the Tsyganenko (1987) model (T87), where the earthward flow is due to the ensemble-average cross tail electric field and the duskward flow is the diamagnetic drift due to an inward pressure gradient. The IPS is on the average in pressure equilibrium with the lobes. Because of its large variance the average flow does not represent the instantaneous flow field. Case studies also show that the non-BBF flow is highly irregular and inherently unsteady, a reason why earthward convection can avoid a pressure balance inconsistency with the lobes. The ensemble distribution of velocities is a fundamental observable of the quiet plasma sheet flow field.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 16; p. 1711-1714.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-28
    Description: The combined effects of stress field rotation and material rotation were found in the Lake Mead, Nevada Fault System (LMFS). Fault inversion results imply an apparent 60 deg clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast, structural data from the Great Basin suggest only a 30 deg CW stress field rotation. By incorporating paleomagnetic declination anomalies, it is inferred that slip on faults caused a local 30 deg counterclockwise rotation of blocks and faults in the Lake Mead area, so that the inferred 60 deg CW rotation of the stress field in the LMFS is actually only 30 deg.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 16; p. 1703-1706.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-28
    Description: The stable carbon isotopic composition of CH4 is used to study the processes that affect it during transport through plants from sediment to the atmosphere. The enhancement of CH4 flux from Cladium and Eleocharis over the flux from open water or clipped sites indicated that these plants served as gas conduits between the sediments and the atmosphere. Lowering of the water table below the sediment surface caused an Everglades sawgrass marsh to shift from emission of CH4 to consumption of atmospheric CH4. Cladium transported gases passively mainly via molecular diffusion and/or effusion instead of actively via bulk flow. Stable isotropic data gave no evidence that CH4 oxidation was occurring in the rhizosphere of Cladium. Both CH4 stable carbon isotope and flux data indicated a lack of CH4 oxidation at the sediment-water interface in Everglades marl soils and its presence in peat soils where 40 to 92 percent of the flux across the sediment-water interface was oxidized.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D8; p. 14,771-14,782.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-28
    Description: Between 1979 and 1992 we took some 120,000 measurements of atmospheric methane at Cape Meares on the Oregon coast. The site is representative of methane concentrations in the northern latitudes (from 30 deg N to 90 deg N). The average concentration during the experiment was 1698 parts per billion by volume (ppbv). Methane concentration increased by 190 ppbv (or 11.9 percent) during the 13-year span of the experiment. The rate of increase was about 20 +/- 4 ppbv/yr in the first 2 yr and 10 +/- 2 ppbv/yr in the last 2 yr of the experiment, suggesting a substantial decline in the trend at northern middle and high latitudes. Prominent seasonal cycles were observed. During the year, the concentration stays more or less constant until May and then starts falling, reaching lowest levels in July and August, then rises rapidly to nearly maximum concentrations in October. Interannual variations with small amplitudes of 2-3 ppbv occur with periods of 1.4 and 6.5 yr.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; D8; p. 14,753-14,770.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-28
    Description: Spherical harmonic expansions to degree 360 have been developed that combine satellite potential coefficient information, terrestrial gravity data, satellite altimeter information as a direct tracking data type and topographic information. These models define improved representations of the Earth's gravitational potential beyond that available from just satellite or terrestrial data. The development of the degree 360 models, however, does not imply a uniform accuracy in the determination of the gravity field as numerous geographic areas are devoid of terrestrial data or the resolution of such data is limited to, for example, 100 km. This paper will consider theoretical and numerical questions related to the combination of the various data types. Various models of the combination process are discussed with a discussion of various correction terms for the different models. Various sources of gravity data will be described. The new OSU91 360 model will be discussed with comparisons made to previous 360 models and to other potential coefficient models that are complete to degree 50. Future directions in high degree potential coefficient models will be discussed.
    Keywords: GEOPHYSICS
    Type: In: From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results (A93-55951 24-46); p. 93-106.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-28
    Description: The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A8; p. 13,523-13,528.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-28
    Description: Comparisons are made between transport and semikinetic models in a study of the time evolution of plasma density perturbations in the polar wind. The situations modeled include plasma expansion into a low-density region and time evolution of localized density enhancements and cavities. The results show that the semikinetic model generally yields smoother profiles in density, drift velocity, and ion temperature than the transport model, principally because of ion velocity dispersion. While shocks frequently develop in the results of the transport model, they do not occur in the semikinetic results. In addition, in the semikinetic results, two ion streams, or double-humped distributions, frequently develop. In the transport model results the bulk parameters, at a given time, often have a one-to-one correspondence in the locations of their local minima or maxima. This is a consequence of the coupling of the fluid equations. There is, however, no such relationship among the moments produced by the semikinetic model where the local moment maxima and minima are often shifted in altitude. In general, incorporation of enhanced heat fluxes in the transport model leads to somewhat improved agreement with the semikinetic results.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A8; p. 13,581-13,593.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-28
    Description: The study reports the detection by the Goddard Space Flight Center medium energy cosmic ray experiment of bursts of 0.2-2.0-MeV electrons with durations of less than 1 hr during the ISEE 3 geotail mission in October 1982 to November 1983. Bursts are observed in all tail regions, with the majority (about 60 percent) associated with encounters with the plasma sheet, about 20 percent occurring in the tail lobes and a similar number in the magnetosheath. The electron burst intensity and occurrence rate fall abruptly by around an order of magnitude at about 80-90 R(E) downtail. The majority (about 64 percent) of plasma sheet electron bursts are associated with northward B(z). Plasma sheet electron bursts associated with southward B(z) are rare (6 percent of all plasma sheet events). It is suggested that temporal variations in the electron intensity associated with substorms may be present, in addition to spatial variations reflecting the average quiet-time tail configuration.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A8; p. 13,441-13,451.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-28
    Description: The linear stability properties of collisionless drift instabilities are analyzed in a Harris equilibrium model of the plasma sheet boundary layer (PSBL). The strearmng ions with drift-type instabilities driven in the PSBL are considered. The fluid approximation leads to growth but predicts that the mode width approaches the gyroradius of the energetic ions. Thus an integral equation theory for the modes is developed taking into account that in the PSBL the curvature drift is weak compared with the grad-B drift. The exact wave particle resonance is kept in the nonlocal response functions. Plasma density, temperature, and magnetic gradient drift motions are taken into account. The drift modes produce an anomalous cross-field momentum transport mixing the PSBL ions on the time scale of tens of seconds. A nonlinear simulation is performed which shows the coalescence of the small scale, fast growing modes into large-scale vortices. The relation between these collective modes and plasma sheet transport phenomena is discussed including the comparison with the competing plasma mixing from single-particle stochasticity.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A8; p. 13,377-13,393.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-28
    Description: During a prolonged period of southward IMF on October 30, 1978, the ISEE 2 spacecraft observed an unusually prolonged and distinct region of ion energy-time dispersion in the dayside dawn magnetosphere. Observed plasma features included the (1) presence of magnetosheath electrons and initial absence of magnetosheath ions and (2) subsequent arrival and energy-time dispersion of magnetosheath ions as the spacecraft transited outbound from 6.03 to 7.66 Earth radii. We use ISEE 2 ion measurements to illustrate these dispersive time-of-flight effects and to support our interpretation of a location in the north magnetospheric cusp. Ion energy dispersion persists for about 35 min and includes well-resolved sequences of magnetosheath and magnetospheric ion distributions. We focus primarily on observations and time-of-flight analysis of ions from the magnetosheath, which are observed simultaneously entering and exiting the cusp at different energies. We discuss the observational support and shortcomings of various ion injection locations and durations and conclude that quasi-steady merging at the dayside magnetopause, with ion dispersion caused by spacecraft motion away from the last closed field line, is the most likely scenario.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A8; p. 13,429-13,440.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-28
    Description: As shown from ground-based measurements and satellite-borne imagers, one type of global auroral pattern characteristic of quiet (usually northward IMF) intervals is that of a contracted but thickened emission region of a pattern referred to as 'horse-collar' aurora (Hones et al., 1989). In this report we use the Dynamics Explorer data set to examine a case in which this horse-collar pattern was observed by the DE-1 auroral imager, while at the same time DE-2, at lower altitude, measured precipitating particles, electric and magnetic fields, and plasma drifts. Our analysis shows that, in general, there is close agreement between the optical signatures and the particle precipitation patterns. In many instances, over scales ranging from tens to a few hundred kilometers, electron precipitation features and upward field-aligned currents are observed at locations where the plasma flow gradients indicate negative V-average x E. The particle, plasma, and field measurements made along the satellite track and the 2D perspective of the imager provide a means of determining the configuration of convective flows in the high-latitude ionosphere during this interval of northward IMF. Recent mapping studies are used to relate the low-altitude observations to possible magnetospheric source regions.
    Keywords: GEOPHYSICS
    Type: Journal of Geomagnetism and Geoelectricity (ISSN 0022-1392); p. 1225-1237.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-28
    Description: Results of two studies of the effect of changing CH4 fluxes on global tropospheric oxidant levels, O3, OH, and H2O2, performed with a multibox photochemical model, are presented. A sensitivity study is conducted by scaling back CH4, CO, and NO emissions relative to the present-day budget. When the CH4 ice core record is compared to calculated CH4 abundances, corresponding CH4 fluxes for the preindustrial Holocene (PIH) and Last Glacial Maximum (LGM) are fairly well-constrained: 175-225 Tg CH/4/yr for PIH and 100-130 Tg CH4/yr for LGM. Specific scenarios for CH4/CO/NO are selected to represent sources for the PIH and LGM. The CH4 budget is taken from an evaluation of wetlands and other natural sources.
    Keywords: GEOPHYSICS
    Type: Tellus, Series B - Chemical and Physical Meteorology (ISSN 0280-6509); 45B; 3; p. 242-257.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-28
    Description: An estimate of the distribution of wetland area and associated CH4 emission is presented for the Last Glacial Maximum (LGM, 18 kyr BP, kiloyear Before Present) and the Pre-Industrial Holocene (PIH, 9000-200 years BP). The wetland source, combined with estimates of the other biogenic sources and sink, yields total source strengths of 120 and 180 Tg CH4/yr for LGM and PIH respectively. These source strengths are shown to be consistent with source estimates inferred from a photochemical model, and point to changes in wetland CH4 source as a major factor driving the atmospheric CH4 increase from LGM to PIH.
    Keywords: GEOPHYSICS
    Type: Tellus, Series B - Chemical and Physical Meteorology (ISSN 0280-6509); 45B; 3; p. 228-241.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-28
    Description: Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.
    Keywords: GEOPHYSICS
    Type: Science (ISSN 0036-8075); 261; 5122; p. 739-742.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-28
    Description: A tandem dual-beam spectrometer has been developed to determine ozone absorption cross sections for 13 selected wavelengths between 750 and 975 nm at room temperature. The increasingly pronounced structure in this region may interfere with atmospheric trace gas transitions that are useful for remote sensing and complicate the measurement of aerosols. Ozone concentrations were determined by absorption at the common HeNe laser transition near 632.8 nm using the absolute cross section reported previously. The overall accuracy of these room temperature measurements is generally better than 2 percent. A synoptic near-IR spectrum scaled to these measurements is employed for comparison with results of previous studies.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 15; p. 1579-1582.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-28
    Description: A Boltzmann formulation of the electron distribution function and Maxwell's equations for the EM fields are used to simulate the interaction of lightning radiated EM pulses with the lower ionosphere. Ionization and dissociative attachment induced by the heated electrons cause significant changes in the local electron density, N(e). Due to 'slow' field changes of typical lightning EM pulses over time scales of tens of microsec, the distribution function follows the quasi-equilibrium solution of the Boltzmann equation in the altitude range of interest (70 to 100 km). The EM pulse is simulated as a planar 100 microsec long single period oscillation of a 10 kHz wave injected at 70 km. Under nighttime conditions, individual pulses of intensity 10-20 V/m (normalized to 100 km horizontal distance) produce changes in N(e) of 1-30 percent while a sequence of pulses leads to strong modification of N(e) at altitudes less than 95 km. The N(e) changes produce a 'sharpening' of the lower ionospheric boundary by causing a reduction in electron density at 75-85 km (due to attachment) and a substantial increase at 85-95 km (due to ionization) (e.g., the scale height decreases by a factor of about 2 at about 85 km for a single 20 V/m EM pulse). No substantial N(e) changes occur during daytime.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 15; p. 1539-1542.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-28
    Description: ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 14; p. 1459-1462.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-28
    Description: Data are presented showing that calc-alkaline high-K ignimbrites from the Altiplano-Puna Volcanic Complex of the Central Volcanic Zone of the Andes, showing a variety of compositional zonations. The characteristics of the juvenile material from the zoned and heterogenous ignimbrites suggest that crystallization of the observed phenocrysts occurred in prezoned magma chambers consisting of two or more layers. It is suggested that the width/height ratio of a magma chamber plays a critical role in the control of the style of zonation that may develop in a closed magma chamber.
    Keywords: GEOPHYSICS
    Type: ; : Problems in the ae
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-28
    Description: It is shown that the pattern of temperature trend with height in the upper troposphere and lower stratosphere is consistent with that calculated from a model incorporating the observed ozone changes. The magnitude of the observed temperature decrease is less than that determined from the numerical model. It is found that the obverse ozone-temperature relationship does not hold. If the temperature at 20 km decreases, this by itself would result in an increase in the ozone values through the inverse temperature sensitivity of the chemical reactions. In the lower stratosphere a positive correlation between ozone and temperature tends to exist through the dynamics. Ozone-rich air moving downward undergoes an increase in temperature through adiabatic compression and vice-versa. That the temperature trends indicate no apparent variation with latitude suggests a nondynamic cause.
    Keywords: GEOPHYSICS
    Type: In: Conference on the Middle Atmosphere, 8th, Atlanta, GA, Jan. 5-10, 1992, Preprints (A93-49361 21-47); p. 70-73.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The weakly nonlinear theory for internal solitary waves is reviewed, and theoretical results of the vertical and horizontal structure of temperature, vertical displacements, and vertical and horizontal perturbations to the wind field associated with steadily propagating solitary waves are presented in two idealized atmospheric configurations. One configuration is representative of solitary waves observed in the lower troposphere and the other of solitary waves that occupy the entire troposphere. The important results of the theory are presented in a form that can be readily used by observationalists. The results obtained are then analyzed using actual rawinsonde data for two well-documented observations of atmospheric solitary waves, which are analogous to the two idealized configurations. The importance and difficulties of properly identifying the waveguide within which the solitary wave is confined are discussed. The fundamental role of a critical level in ducting the disturbances and thus in defining the thickness of the waveguide is illustrated in the example dealing with the solitary wave occupying the entire troposphere. Together, these two examples illustrate the decisions and compromises that must be made in applying the theory to the real atmosphere.
    Keywords: GEOPHYSICS
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 50; 14; p. 2116-2136.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...