ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (129,715)
  • National Academy of Sciences  (13,796)
  • 1995-1999  (143,511)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Energy & Fuels, 12 (2). pp. 191-196.
    Publication Date: 2020-07-31
    Description: An overview is provided of time-independent physical/chemical properties as related to crystal structures. The following two points are illustrated in this review:  (1) Physical and chemical properties of structure I (sI) and structure II (sII) hydrates are well-defined; measurements have begun on sH. Properties of sI and sII are determined by the molecular structures, described by three heuristics:  (i) Mechanical properties approximate those of ice, perhaps because hydrates are 85 mol % water. Yet each volume of hydrate may contain as much as 180 volumes (STP) of the hydrate-forming species. (ii) Phase equilibrium is set by the size ratio of guest molecules within host cages, and three-phase (Lw−H−V) equilibrium pressure depends exponentially upon temperature. (iii) Heats of formation are set by the hydrogen-bonded crystals and are reasonably constant within a range of guest sizes. (2) Fundamental research challenges are (a) to routinely measure the hydrate phase (via diffraction, NMR, Raman, etc.), and (b) to formulate an acceptable model for hydrate formation kinetics. The reader may wish to investigate details of this review further, via references contained in several recent monographs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Journal of Natural Products, 62 (6). pp. 811-816.
    Publication Date: 2020-07-22
    Description: Two new iridoid glucosides, 6-O-acetylajugol (1) and 7,8-epoxy-8-epi-loganic acid (2), together with five known iridoid glucosides, galiridoside (3), ajugoside (4), 10-deoxygeniposidic acid (5), 7-deoxy-8-epi-loganic acid (6), and 8-O-acetylharpagide (7), have been isolated from the aerial parts of Leonurus persicus. Leucosceptoside A (8), eugenyl β-rutinoside (9), and kaempferol 3-O-glucoside (10) were also isolated. The structures of 1 and 2 were elucidated by extensive 1D- and 2D-NMR spectroscopy and molecular modeling. The structure of 3 was confirmed by single-crystal X-ray diffraction. Antimicrobial activity of compounds (1−10) was also evaluated against a panel of Gram-positive and Gram-negative bacteria and two strains of fungi.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Journal of Natural Products, 59 (2). pp. 131-134.
    Publication Date: 2020-07-22
    Description: Six new labdane diterpenoids, leopersin C (1), 15-epi-leopersin C (2), leopersin D (3), leopersin E (4), leopersin F (5), and 7-epi-leopersin F (6) were isolated from the aerial parts of Leonurus persicus. Their structures were elucidated by extensive use of 1D and 2D homonuclear and heteronuclear shift-correlated 1H−13C-NMR spectroscopic methods. Leopersin C (1) and 15-epi-leopersin C (2) were obtained as a C-15 epimeric mixture, and their structures were elucidated on this basis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Journal of Natural Products, 60 (9). pp. 874-879.
    Publication Date: 2020-07-22
    Description: Seven new labdane diterpenoids, leopersin G−L (1−4, 6−7) and 15-epi-leopersin J (5), and two known ones, 13-hydroxyballonigrinolide (8) and ballotenol (9), were isolated from the aerial parts of Leonurus persicus along with β-sitosterol and stigmasterol. The structure determinations were mainly based on 1D and 2D NMR spectra. The stereochemical configuration of ballotenol (9) was reestablished by 2D ROESY spectroscopy and by single-crystal X-ray diffraction analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Chemical Society
    In:  Journal of Natural Products, 58 (10). pp. 1543-1554.
    Publication Date: 2020-07-22
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Chemical Society
    In:  The Journal of Organic Chemistry, 63 (26). pp. 10011-10014.
    Publication Date: 2020-05-11
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Chemical Society
    In:  ACS Division of Fuel Chemistry Preprints, 42 (2). pp. 544-547.
    Publication Date: 2018-04-11
    Description: Test specimens of methane hydrate were grown under static conditions by combining cold, pressurized CH4 gas with H2O ice grains, then warming the system to promote the reaction CH4 (g) + 6H2O (s???l) ??? CH4??6H2O. Hydrate formation evidently occurs at the nascent ice/liquid water interface, and complete reaction was achieved by warming the system above 271.5 K and up to 289 K, at 25-30 MPa, for approximately 8 hours. The resulting material is pure methane hydrate with controlled grain size and random texture. Fabrication conditions placed the H2O ice well above its melting temperature before reaction completed, yet samples and run records showed no evidence for bulk melting of the ice grains. Control experiments using Ne, a non-hydrate-forming gas, verified that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting is easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably at temperatures well above its melting point. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T= 140-200 K, Pc= 50-100 MPa, and ????= 10-4-10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to a higher degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; x-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-11
    Description: We describe a new and efficient technique to grow aggregates of pure methane hydrate in quantities suitable for physical and material properties testing. Test specimens were grown under static conditions by combining cold, pressurized CH4 gas with granulated H2O ice, and then warming the reactants to promote the reaction CH4(g) + 6H2O(s→l) → CH4·6H2O (methane hydrate). Hydrate formation evidently occurs at the nascent ice/liquid water interface on ice grain surfaces, and complete reaction was achieved by warming the system above the ice melting point and up to 290 K, at 25−30 MPa, for approximately 8 h. The resulting material is pure, cohesive, polycrystalline methane hydrate with controlled grain size and random orientation. Synthesis conditions placed the H2O ice well above its melting temperature while reaction progressed, yet samples and run records showed no evidence for bulk melting of the unreacted portions of ice grains. Control experiments using Ne, a non-hydrate-forming gas, showed that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting are easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably to temperatures well above its ordinary melting point while reacting to form hydrate. Direct observations of the hydrate growth process in a small, high-pressure optical cell verified these conclusions and revealed additional details of the hydrate growth process. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T = 140−200 K, Pc = 50−100 MPa, and ε = 10-4−10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to an unusually high degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; X-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 92 (22). pp. 10237-10241.
    Publication Date: 2016-11-14
    Description: The eukaryotic green alga Dunaliella tertiolecta acclimates to decreased growth irradiance by increasing cellular levels of light-harvesting chlorophyll protein complex apoproteins associated with photosystem II (LHCIIs), whereas increased growth irradiance elicits the opposite response. Nuclear run-on transcription assays and measurements of cab mRNA stability established that light intensity-dependent changes in LHCII are controlled at the level of transcription. cab gene transcription in high-intensity light was partially enhanced by reducing plastoquinone with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), whereas it was repressed in low-intensity light by partially inhibiting the oxidation of plastoquinol with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). Uncouplers of photosynthetic electron transport and inhibition of water splitting had no effect on LHCII levels. These results strongly implicate the redox state of the plastoquinone pool in the chloroplast as a photon-sensing system that is coupled to the light-intensity regulation of nuclear-encoded cab gene transcription. The accumulation of cellular chlorophyll at low-intensity light can be blocked with cytoplasmically directed phosphatase inhibitors, such as okadaic acid, microcystin L-R, and tautomycin. Gel mobility-shift assays revealed that cells grown in high-intensity light contained proteins that bind to the promoter region of a cab gene carrying sequences homologous to higher plant light-responsive elements. On the basis of these experimental results, we propose a model for a light intensity signaling system where cab gene expression is reversibly repressed by a phosphorylated factor coupled to the redox status of plastoquinone through a chloroplast protein kinase.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 94 (3). pp. 934-939.
    Publication Date: 2015-08-27
    Description: In vivo expression technology (IVET) has been used to identify 〉100 Salmonella typhimurium genes that are specifically expressed during infection of BALB/c mice and/or murine cultured macrophages. Induction of these genes is shown to be required for survival in the animal under conditions of the IVET selection. One class of in vivo induced (ivi) genes, iviVI-A and iviVI-B, constitute an operon that resides in a region of the Salmonella genome with low G+C content and presumably has been acquired by horizontal transfer, These ipi genes encode predicted proteins that are similar to adhesins and invasins from prokaryotic and eukaryotic pathogens (Escherichia coli [tia], Plasmodium falciparum [PfEMP1]) and have coopted the PhoPQ regulatory circuitry of Salmonella virulence genes. Examination of the in vivo induction profile indicates (i) many ivi genes encode regulatory functions (e.g., phoPQ and pmrAB) that serve to enhance the sensitivity and amplitude of virulence gene expression (e.g., spvB); (ii) the biochemical function of many metabolic genes may not represent their sole contribution to virulence; (iii) the host ecology can be inferred from the biochemical functions of ipi genes; and (iv) nutrient limitation plays a dual signaling role in pathogenesis: to induce metabolic functions that complement host nutritional deficiencies and to induce virulence functions required for immediate survival and spread to subsequent host sites
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...