ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOPHYSICS  (2,446)
  • 1995-1999  (219)
  • 1975-1979  (2,227)
  • 1
    Publication Date: 2019-08-28
    Description: Low altitude (less than 1000 km) measurements of ions precipitating into the morning auroral region are presented and analyzed. The ion fluxes exhibited time-energy signatures consistent with impulsive injection onto high-altitude field lines, followed by time-of-flight dispersion. The origin of these ions is investigated through the detailed examination of these signatures in conjunction with simultaneous measurements of precipitating electrons and a magnetic field model. A model is developed which indicates that the source for these particles was located in or near the magnetopause boundary layer, with the position deduced to be in the midlatitude flank region about 20-30 R(sub E) tailward of the Earth. The model explains the existence of multiple injections on a given field line as due to a quasi-periodic source, with the periodicity being about 100-200 s at the source. Several mechanisms are examined in an attempt to explain the injections, with a mechanism related to the propagation of waves on the surface of the boundary layer found to be the most plausible. The observations and results are compared to those of similar experiments and some unifying ideas are discussed.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 12,133-12,149
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The assimilative mapping of ionospheric electrodynamics (AMIE) technique has been used to estimate global distributions of high-latitude ionospheric convection and field-aligned current by combining data obtained nearly simultaneously both from ground and from space. Therefore, unlike the statistical patterns, the 'snapshot' distributions derived by AMIE allow us to examine in more detail the distinctions between field-aligned current systems associated with separate magnetospheric processes, especially in the dayside cusp region. By comparing the field-aligned current and ionospheric convection patterns with the corresponding spectrograms of precipitating particles, the following signatures have been identified: (1) For the three cases studied, which all had an IMF with negative y and z components, the cusp precipitation was encountered by the DMSP satellites in the postnoon sector in the northern hemisphere and in the prenoon sector in the southern hemisphere. The equatorward part of the cusp in both hemispheres is in the sunward flow region and marks the beginning of the flow rotation from sunward to antisunward. (2) The pair of field-aligned currents near local noon, i.e., the cusp/mantle currents, are coincident with the cusp or mantle particle precipitation. In distinction, the field-aligned currents on the dawnside and duskside, i.e., the normal region 1 currents, are usually associated with the plasma sheet particle precipitation. Thus the cusp/mantle currents are generated on open field lines and the region 1 currents mainly on closed field lines. (3) Topologically, the cusp/mantle currents appear as an expansion of the region 1 currents from the dawnside and duskside and they overlap near local noon. When B(sub y) is negative, in the northern hemisphere the downward field-aligned current is located poleward of the upward current; whereas in the southern hemisphere the upward current is located poleward of the downward current. (4) Under the assumption of quasi-steady state reconnection, the location of the separatrix in the ionosphere is estimated and the reconnection velocity is calculated to be between 400 and 550 m/s. The dayside separatrix lies equatorward of the dayside convection throat in the two cases examined.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 11,845-11,861
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: The existence of localized regions of intense lower hybrid waves in the auroral ionosphere recently observed by rocket and satellite experiments can be understood by the study of a non-linear two-timescale coupling process. In this Letter, we demonstrate that the leading non-linear term in the standard Musher-Sturman equation vanishes identically in strict two-dimensions (normal to the magnetic field). Instead, the new two-dimensional equation is characterized by a much weaker non-linear term which arises from the ponderomotive force perpendicular to the magnetic field, particularly that due to the ions. The old and new equations are compared by means of time-evolution calculations of wave fields. The results exhibit a remarkable difference in the evolution of the waves as governed by the two equations. Such dissimilar outcomes motivate our investigation of the limitation of Musher-Sturman equation in quasi-two-dimensions. Only within all these limits can Musher-Sturman equation adequately describe the collapse of lower hybrid waves.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 9; p. 1125-1128
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: The field line interhemispheric plasma (FLIP) model is used to study the 6300 A line intensity measured during three morning twilights from the McDonald Observatory in Texas. The Imaging Spectrometric Observatory (ISO) measured the 6300 A intensity during the winter of 1987 and the spring and summer of 1988. The FLIP model reproduces the measured intensity and its variation through the twilight well on each day using neutral densities from the MSIS-86 empirical model. This is in spite of the fact that different component sources dominate the integrated volume emission rate on each of the days analyzed. The sensitivity of the intensity to neutral composition is computed by varying the N2, O2, and O densities in the FLIP model and comparing to the intensity computed with the unmodified MSIS-86 densities. The ion densities change self-consistently. Thus the change in neutral composition also changes the electron density. The F2 peak height is unchanged in the model runs for a given day. The intensity changes near 100 deg SZA are comparable to within 10% when either (O2), (N2), or (O) is changed, regardless of which component source is dominant. There is strong sensitivity to changes in (N2) when dissociative recombination is dominant, virtually no change in the nighttime (SZA greater than or equal to 108 deg) intensity with (O2) doubled, and sensitivity of over 50% to doubling or halving (O) at night. When excitation by conjugate photoelectrons is the dominant nighttime component source, the relative intensity change with (O) doubled or halved is very small. This study shows the strong need for simultaneous measurements of electron density and of emissions proportional to photoelectron fluxes if the 6300 A twilight airglow is to be used to retrieve neutral densities.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A5; p. 7839-7853
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: Ion drift meter observations from the Atmosphere Explorer E (AE-E) satellite during the period of January 1977 to December 1979 are used to study the dependence of equatorial (dip latitudes less than or equal to 7.5 deg) F region vertical plasma drifts (east-west electric fields) on solar activity, season, and longitude. The satellite-observed ion drifts show large day-to-day and seasonal variations. Solar cycle effects are most pronounced near the dusk sector with a large increase of the prereversal velocity enhancement from solar minimum to maximum. The diuurnal, seasonal, and solar cycle dependence of the logitudinally averaged drifts are consistent with results from the Jicamarca radar except near the June solstice when the AE-E nighttime downward velocities are significantly smaller than those observed by the radar. Pronounced presunrise downward drift enhancements are often observed over a large longituudinal range but not in the Peruvian equatorial region. The satellite data indicate that longitudinal variations are largest near the June solstice, particularly near dawn and dusk but are virtually absent during equinox. The longitudinal dependence of the AE-E vertical drifts is consistent with results from ionosonde data. These measurements were also used to develop a description of equatorial F region vertical drifts in four longitudinal sectors.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5769-5776
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: By comparing data from the Special Sensor Microwave Imager (SSM/I) to field data, a melt threshold of the cross-polarized gradient ratio (XPGR), which is a normalized difference between the 19 GHz horizontally-polarized and 37 GHz vertically polarized brightness temperatures, is determined. This threshold, XPGR = -0.025, is used to classify dry and wet snow. The annual areal extent of melt is mapped for the years 1988 through 1991, and inter-annual variations of melt extent are examined. The results show that the melt extent varied from a low of 38.3% of the ice sheet (1990) to a high of 41.7% (1991) during the years 1988-1991.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 787-790
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: Dynamic isolation of the winter Arctic circumpolar vortex during 1992-1993 and 1993-1994 (the second and third northern hemisphere winters of the UARS mission) is studied using quasi-horizontal isentropic trajectories. Ejection of vortex air and entrainment of mid-latitude air into the vortex are quantified and compared with climatological values obtained from the analysis of 16 Arctic winters. A number of unusual features of both winters are discussed. The most notable features are the anomalous isolation experienced by the vortex during December 1992 and the unusual degree of isolation and persistence of the vortex during February and March of both years. the 1992-1993 winter season is the most consistently isolated vortex on record. Only during January 1993, when entrainment is large, is this pattern of extreme isolation broken.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1237-1240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: We present a statisical survey of Prognoz 10 solar wind observations at the times of transient (step function and impulsive) variations in the dayside magnetospheric magnetic field strength measured by the GOES 5 and 6 geosynchronous satellites. The results indicate that 51% of the magnetospheric events can be associated with corresponding variations in the solar wind dynamic pressure. A further 17% of the events can be associated with fluctuations in the interplanetary magnetic field orientation in the sense previously associated with foreshock pressure pulses. We find no tendency for impulsive events at dayside geosynchronous orbit to be associated with north/south fluctuations in the interplanetary magnetic field (IMF) orientation, nor for the events to occur primarily during intervals of southward IMF. The success rate for associating transient events at dayside geosynchronous orbit with solar wind features decreases as Prognoz 10 moves farther from the Earth-Sun line. The observations indicate that variations in the solar wind dynamic pressure and foreshock pressure pulses associated with variations in the IMF cone angle are the predominant causes of large-amplitude transient events observed at dayside geosynchronous orbit.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5643-5656
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: Plasmoids are thought to occur as a consequence of the formation of a near-Earth neutral line during the evolution of a geomagnetic substorm. Using a 3D, global MHD simulation of the interaction of the Earth's magnetosphere with the solar wind, we initiate a substorm by a southward turning of the Interplanetary Magnetic Field (IMF) after a long period of steady northward field. A large plasmoid is formed and ejected. We show field line maps of its shape and relate its formation time to the progress of the substorm as indicated by the cross polar potential. Because of the large region of closed field in the magnetotail at the time of the substorm, this plasmoid is longer in axial dimension than is typically observed. We compare the simulation results with the type of satellite observations which have been used to argue for the existence of plasmoids or of traveling compression regions (TCRs) in the lobes or magnetosheath. The simulation predicts that plasmoid passage would result in a strong signal in the cross tail electric field.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 859-862
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: Plasma and magnetic field data from the International Sun Earth Explorer (ISEE) 2 spacecraft recorded on 29 Oct 1979 provide evidence for a slow shock (SS) in the reconnection layer of the dayside magnetopause. This layer is bounded on the magnetosheath side by the SS and on the magnetospheric side by a rotational discontinuity (RD). The direction of the accelerated plasma flow, the earthward sense of the normal magnetic field across both discontinuities, and the relative orientation of the SS and the RD all indicate that the reconnection site was located south of the spacecraft. Examination of the substantial pressure anisotropy downstream of the SS explains two unusual properties of the shock: (1) the slow-mode and intermediate-mode phase speeds are inverted downstream of the SS such that the RD propagates behind the SS rather than ahead of it; (2) the magnetic wave polarization reserves such that the SS initially displays a left-handed polarization and then switches to a right-handed polarization inside the shock structure.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 9-Aug; p. 501-506
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...