ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (3,706)
  • 2000-2004  (3,706)
  • 11
    Publication Date: 2011-08-24
    Description: Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology (ISSN 1531-1074); Volume 3; 4; 771-84
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Extraterrestrial organic matter may have been chemically altered into forms more ameanable for prebiotic chemistry in the wake of a meteor after ablation. We measured the rate of cooling of the plasma in the meteor wake from the intensity decay just behind a meteoroid by freezing its motion in high frame-rate 1000 frames/s video images, with an intensified camera that has a short phosphor decay time. Though the resulting cooling rate was found to be lower than theoretically predicted, our calculations indicated that there would have been insufficient collisions to break apart large organic compounds before most reactive radicals and electrons were lost from the air plasma. Organic molecules delivered from space to the early Earth via meteors might therefore have survived in a chemically altered form. In addition, we discovered that relatively small meteoroids generated far-ultraviolet emission that is absorbed in the immediate environment of the meteoroid, which may chemically alter the atmosphere over a much larger region than previously recognized.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology (ISSN 1531-1074); Volume 4; 1; 95-108
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: We detected hydrogen Balmer-alpha (H(alpha)) emission in the spectra of bright meteors and investigated its potential use as a tracer for exogenous delivery of organic matter. We found that it is critical to observe the meteors with high enough spatial resolution to distinguish the 656.46 nm H(alpha) emission from the 657.46 nm intercombination line of neutral calcium, which was bright in the meteor afterglow. The H(alpha) line peak stayed in constant ratio to the atmospheric emissions of nitrogen during descent of the meteoroid. If all of the hydrogen originates in the Earth's atmosphere, the hydrogen atoms are expected to have been excited at T = 4400 K. In that case, we measured an H(2)O abundance in excess of 150 +/- 20 ppm at 80-90 km altitude (assuming local thermodynamic equilibrium in the air plasma). This compares with an expected 〈20 ppm from H(2)O in the gas phase. Alternatively, meteoric refractory organic matter (and water bound in meteoroid minerals) could have caused the observed H(alpha) emission, but only if the line is excited in a hot T approximately 10000 K plasma component that is unique to meteoric ablation vapor emissions such as Si(+). Assuming that the Si(+) lines of the Leonid spectrum would need the same hot excitation conditions, and a typical [H]/[C] = 1 in cometary refractory organics, we calculated an abundance ratio [C]/[Si] = 3.9 +/- 1.4 for the dust of comet 55P/Tempel-Tuttle. This range agreed with the value of [C]/[Si] = 4.4 measured for comet 1P/Halley dust. Unless there is 10 times more water vapor in the upper atmosphere than expected, we conclude that a significant fraction of the hydrogen atoms in the observed meteor plasma originated in the meteoroid.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology (ISSN 1531-1074); Volume 4; 1; 123-34
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The Composite Infrared Spectrometer observed Jupiter in the thermal infrared during the swing-by of the Cassini spacecraft. Results include the detection of two new stratospheric species, the methyl radical and diacetylene, gaseous species present in the north and south auroral infrared hot spots; determination of the variations with latitude of acetylene and ethane, the latter a tracer of atmospheric motion; observations of unexpected spatial distributions of carbon dioxide and hydrogen cyanide, both considered to be products of comet Shoemaker-Levy 9 impacts; characterization of the morphology of the auroral infrared hot spot acetylene emission; and a new evaluation of the energetics of the northern auroral infrared hot spot.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 305; 5690; 1582-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 306; 5702; 1750-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: Infrared spectral images of Jupiter's volcanic moon Io, acquired during the October and November 1999 and February 2000 flybys of the Galileo spacecraft, were used to study the thermal structure and sulfur dioxide distribution of active volcanoes. Loki Patera, the solar system's most powerful known volcano, exhibits large expanses of dark, cooling lava on its caldera floor. Prometheus, the site of long-lived plume activity, has two major areas of thermal emission, which support ideas of plume migration. Sulfur dioxide deposits were mapped at local scales and show a more complex relationship to surface colors than previously thought, indicating the presence of other sulfur compounds.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 288; 5469; 1201-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-24
    Description: GC-MS on the Viking 1976 Mars missions did not detect organic molecules on the Martian surface, even those expected from meteorite bombardment. This result suggested that the Martian regolith might hold a potent oxidant that converts all organic molecules to carbon dioxide rapidly relative to the rate at which they arrive. This conclusion is influencing the design of Mars missions. We reexamine this conclusion in light of what is known about the oxidation of organic compounds generally and the nature of organics likely to come to Mars via meteorite. We conclude that nonvolatile salts of benzenecarboxylic acids, and perhaps oxalic and acetic acid, should be metastable intermediates of meteoritic organics under oxidizing conditions. Salts of these organic acids would have been largely invisible to GC-MS. Experiments show that one of these, benzenehexacarboxylic acid (mellitic acid), is generated by oxidation of organic matter known to come to Mars, is rather stable to further oxidation, and would not have been easily detected by the Viking experiments. Approximately 2 kg of meteorite-derived mellitic acid may have been generated per m(2) of Martian surface over 3 billion years. How much remains depends on decomposition rates under Martian conditions. As available data do not require that the surface of Mars be very strongly oxidizing, some organic molecules might be found near the surface of Mars, perhaps in amounts sufficient to be a resource. Missions should seek these and recognize that these complicate the search for organics from entirely hypothetical Martian life.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Proceedings of the National Academy of Sciences of the United States of America (ISSN 0027-8424); Volume 97; 6; 2425-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: Human missions to Mars are planned to happen within this century. Activities associated therewith will interact with the environment of Mars in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations; (ii) the specific natural environment of Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; and (vii) surface dust. In order to protect the planetary environment, the requirements for planetary protection as adopted by COSPAR for lander missions need to be revised in view of human presence on the planet. Landers carrying equipment for exobiological investigations require special consideration to reduce contamination by terrestrial microorganisms and organic matter to the greatest feasible extent. Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 31; 1; 87-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: We investigate the orbital evolution of 10(13)- to 10(25) -g planetesimals near 1 AU and in the asteroid belt (near 2.6 AU) prior to the stage of evolution when the mutual perturbations between the planetesimals become important. We include nebular gas drag and the effects of Jupiter and Saturn at their present masses and in their present orbits. Gas drag introduces a size-dependent phasing of the secular perturbations, which leads to a pronounced dip in encounter velocities (Venc) between bodies of similar mass. Plantesimals of identical mass have Venc approximately 1 and approximately 10 m s-1 (near 1 and 2.6 AU, respectively) while bodies differing by approximately 10 in mass have Venc approximately 10 and approximately 100 m s-1 (near 1 and 2.6 AU, respectively). Under these conditions, growth, rather than erosion, will occur only by collisions of bodies of nearly the same mass. There will be essentially no gravitational focusing between bodies less than 10(22) to 10(25) g, allowing growth of planetary embryos in the terrestrial planet region to proceed in a slower nonrunaway fashion. The environment in the asteroid belt will be even more forbidding and it is uncertain whether even the severely depleted present asteroid belt could form under these conditions. The perturbations of Jupiter and Saturn are quite sensitive to their semi-major axes and decrease when the planets' heliocentric distances are increased to allow for protoplanet migration. It is possible, though not clearly demonstrated, that this could produce a depleted asteroid belt but permit formation of a system of terrestrial planet embryos on a approximately 10(6)-year timescale, initially by nonrunaway growth and transitioning to runaway growth after approximately 10(5) years. The calculations reported here are valid under the condition that the relative velocities of the bodies are determined only by Jupiter and Saturn perturbations and by gas drag, with no mutual perturbations between planetesimals. If, while subject to these conditions, the bodies become large enough for their mutual perturbations to influence their velocity and size evolution significantly, the problem becomes much more complex. This problem is under investigation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); Volume 143; 1; 60-73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: The National Institute of Justice (NIJ) and the National Aeronautics and Space Administration's (NASAs) Goddard Space Flight Center (GSFC) have teamed up to explore the use of NASA developed technologies to help criminal justice agencies and professionals solve crimes. The objective of the program is to produce instruments and communication networks that have application within both NASA's space program and NIJ programs with state and local forensic laboratories. A working group of NASA scientists and law enforcement professionals has been established to develop and implement a feasibility demonstration program. Specifically, the group has focused its efforts on identifying gunpowder and primer residue, blood, and semen at crime scenes. Non-destructive elemental composition identification methods are carried out using portable X-ray fluorescence (XRF) systems. These systems are similar to those being developed for planetary exploration programs. A breadboard model of a portable XRF system has been constructed for these tests using room temperature silicon and cadmium-zinc telluride (CZT) detectors. Preliminary tests have been completed with gunshot residue (GSR), blood-spatter and semen samples. Many of the element composition lines have been identified. Studies to determine the minimum detectable limits needed for the analyses of GSR, blood and semen in the crime scene environment have been initiated and preliminary results obtained. Furthermore, a database made up of the inorganic composition of GSR is being developed. Using data obtained from the open literature of the elemental composition of barium (Ba) and antimony (Sb) in handswipes of GSR, we believe that there may be a unique GSR signature based on the Sb to Ba ratio.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Forensic science international (ISSN 0379-0738); Volume 129; 1; 1-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...