ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Animals  (4,137)
  • Astrophysics  (1,387)
  • 2000-2004  (5,524)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: A NASA spacecraft set for launch Nov. 17 is designed to help scientists determine the origin of gamma-ray bursts by pinpointing their sources in the sky and quickly focusing optical/ultraviolet and X-ray telescopes on them.
    Keywords: Astrophysics
    Type: Aviation Week and Space Technology; 161; 18; 33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The measurements by neutron detectors on Odyssey have revealed two large poleward regions with large depression of flux of epithermal and high energy neutrons. The flux of neutrons from Mars is known to be produced by the bombardment of the surface layer by galactic cosmic rays. The leakage flux of epithermal and fast neutrons has regional variation by a factor of 10 over the surface of Mars. These variations are mainly produced by variations of hydrogen content in the shallow subsurface. On Mars hydrogen is associated with water. Therefore, the Northern and Southern depressions of neutron emission could be identified as permafrost regions with very high content of water ice. These regions are much larger than the residual polar caps, and could contain the major fraction of subsurface water ice. Here we present the results of HEND neutron data deconvolution for these regions and describe the similarities and differences between them.
    Keywords: Astrophysics
    Type: Lunar and Planetary Science XXXV: Special Session: Mars Climate Change; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: It is the Policy of NASA s Office of Space Science to emphasize and encourage the addition of Participating Scientist Programs (PSP s) to broaden the scientific impact of missions. A Participating Scientist Program for the STARDUST Mission: STARDUST is the fourth Discovery mission, and it is the first sample return mission selected within the Discovery Program. The STARDUST Spacecraft will fly through the coma of comet PIwildt-2 in early January 2004, and return the samples to the Earth in January 2006. The Principal Investigator of the STARDUST mission, Dr. Donald Brownlee, has generously requested the implementation of a PSP for STARDUST in order to provide more community participation in the initial characterization and analysis of the samples from PIwildt-2. In particular participating scientists will fill out the membership of the Preliminary Examination Team (PET) called for in the original 1994 STARDUST proposal accepted by NASA in 1995. The work of the PET will be organized around major subdiscipline areas such as mineralogy and petrology, isotopic abundances, and elemental composition. There will be leaders for each of these areas, and also a number of team members within each. Support will be commensurate with the level of participation.
    Keywords: Astrophysics
    Type: Workshop on Cometary Dust in Astrophysics; 51; LPI-Contrib-1182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: The Astronomy and Physics Division at NASA Headquarters has an active and vibrant program in Laboratory Astrophysics. The objective of the program is to provide the spectroscopic data required by observers to analyze data from NASA space astronomy missions. The program also supports theoretical investigations to provide those spectroscopic parameters that cannot be obtained in the laboratory; simulate space environment to understand formation of certain molecules, dust grains and ices; and production of critically compiled databases of spectroscopic parameters. NASA annually solicits proposals, and utilizes the peer review process to select meritorious investigations for funding. As the mission of NASA evolves, new missions are launched, and old ones are terminated, the Laboratory Astrophysics program needs to evolve accordingly. Consequently, it is advantageous for NASA and the astronomical community to periodically conduct a dialog to assess the status of the program. This Workshop provides a forum for producers and users of laboratory data to get together and understand each others needs and limitations. A multi-wavelength approach enables a cross fertilization of ideas across wavelength bands.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 15-16; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-27
    Description: We have compiled L' (3.4-4.1 microns) and M' (4.6- 4.8 microns) photometry of 63 single and binary M, L, and T dwarfs obtained at the United Kingdom Infrared Telescope using the Mauna Kea Observatory filter set. This compilation includes new L' measurements of eight L dwarfs and 13 T dwarfs and new M' measurements of seven L dwarfs, five T dwarfs, and the M1 dwarf Gl 229A. These new data increase by factors of 0. 6 and 1.6, respectively, the numbers of ultracool dwarfs T (sub eff) 〈/= 2400 K for which L' and M' measurements have been reported. We compute L(sub bol), BC(sub K), and T(sub eff) for 42 dwarfs whose flux-calibrated JHK spectra, L' photometry, and trigonometric parallaxes are available, and we estimate these quantities for nine other dwarfs whose parallaxes and flux-calibrated spectra have been obtained. BC(SUB K) is a well-behaved function of near-infrared spectral type with a dispersion of approx. 0.1 mag for types M6-T5 it is significantly more scattered for types T5-T9. T (sub eff) declines steeply and monotonically for types M6-L7 and T4-T9, but it is nearly constant at approx. 1450 K for types L7-T4 with assumed ages of approx. 3 Gyr. This constant T(sub eff) is evidenced by nearly unchanging values of L'-M' between types L6 and T3. It also supports recent models that attribute the changing near-infrared luminosities and spectral features across the L-T transition to the rapid migration, disruption, and/or thinning of condensate clouds over a narrow range of T(sub eff). The L' and M' luminosities of early-T dwarfs do not exhibit the pronounced humps or inflections previously noted in l through K bands, but insufficient data exist for types L6-T5 to assert that M(Sub L') and M(sub M') are strictly monotonic within this range of typew. We compare the observed K, L', and M' luminosities of L and T dwarfs in our sample with those predicted by precipitation-cloud-free models for varying surface gravities and sedimentation efficiencies.
    Keywords: Astrophysics
    Type: AD-A425483
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: The Space Studies Board is a unit of the NRC's Division on Engineering and Physical Sciences (DEPS), and it reports to the Division for oversight. DEPS is one of six major program units of the NRC through which the institution conducts its operations on behalf of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. Within DEPS there are a total of 14 boards that cover a broad range of physical science and engineering disciplines and mission areas. Members of the DEPS Committee on Engineering and Physical Sciences provide advice on Board membership and advise on proposed new projects to be undertaken by the Board or its committees. Every 3 years the DEPS Committee also reviews the overall operations of each of its boards. The last review of the SSB was in 2001. The Board meets three times per year to review the activities of its committees and task groups and to be briefed on and discuss major space policy issues. An internal executive committee composed of seven at-large members of the Board meets at least once a year and may convene via conference call at other times to plan for SSB activities and to advise the chair between meetings. All projects proposed to be conducted by standing committees or ad hoctask groups must first be reviewed and approved by the Board or its executive committee, and the Board monitors the progress of the projects throughout the course of the studies.
    Keywords: Astrophysics
    Type: PB2011-101832
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-26
    Description: The N(2) Carroll-Yoshino (CY) c'(4) X (0,0) and (0,1) Rydberg bands between 95 and 99 nm were reported to be the most prominent EUV emission features in Voyager 1 ultraviolet spectrometer (UVS) airglow spectra from Titan's atmosphere. Although c'(4) is strongly excited by photoelectron impact, the (0,0) band is optically thick near peak production, so a multiple-scattering model is employed to calculate (0,v) nadir-viewing intensities. The model accounts for all known loss processes and quantifies the redistribution of photons to (0,v is greater than 0). Results show 7.6 R of (0,1) intensity, in agreement with reported observations (5-10 R), and 0.2 R of (0,0), in spectacular disagreement with reported observations (6-10 R). Nadir-viewing intensities of all other expected NI multiplets and N2 bands in the brightest portion of the EUV airglow spectrum (92.0-101.5 nm) are also calculated using photodissociative ionization of N(2) and photoelectron impact on N(2). It is found that NI multiplets and N(2) bands near (0,0) and unresolved by the UVS combine to produce 8.3 R, consistent with that reported for (0,0) and indicating that it was misidentified in previous analyses. The Ultraviolet Imaging Spectrograph (UVIS) on Cassini should unambiguously distinguish any (0,0) intensity from the brightest features nearby.
    Keywords: Astrophysics
    Type: AD-A529631 , Paper 1999JA000329 , Journal of Geophysical Research; 106; 3685-3689; No. A3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: We have obtained 1 1.7 and 17.9 micron images at the Keck I telescope of the circumstellar dust emission from L(sub 2) Pup, which is one of the nearest ( D = 61 pc) mass-losing, pulsating red giants that has a substantial infra-red excess. We propose that the star is losing mass at a rate of approx.3 x 10(exp -7) Solar Mass/yr. Given its relatively low luminosity (approx. 1500 Solar Luminosity), relatively high effective temperature (near 3400 K), relatively short period (approx. 140 days), and inferred gas outflow speed of 3.5 km/s, standard models for dust-driven mass loss do not apply. Instead, the wind may be driven by the stellar pulsations, with radiation pressure on dust being relatively unimportant. as described in some recent calculations. L(sub 2) Pup may serve as the prototype of this phase of stellar evolution, in which a star could lose approx. 15% of its initial main-sequence mass. Subject headings: circumstellar matter - stars: individual (L2 Puppis) - stars: mass loss
    Keywords: Astrophysics
    Type: The Astrophysical Journal (ISSN 0004-637X); 569; 2, Pt. 1; 964-974
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. In addition we are exploring the effects of coronas on the He I 1083081 transition that is observed in the infrared. Highlights of these are summarized below including publications during this reporting period and presentations. Ground-based magnetic Doppler imaging of cool stars suggests that active stars have active regions located at high latitudes on their surface. We have performed similar imaging in X-ray to locate the sites of enhanced activity using Chandra spectra. Chandra HETG observations of the bright eclipsing contact binary 44i Boo and Chandra LETG observations for the eclipsing binary VW Cep show X-ray line profiles that are Doppler-shifted by orbital motion. After careful analysis of the spectrum of each binary, a composite line-profile is constructed by adding the individual spectral lines. This high signal-to-noise ratio composite line-profile yields orbital velocities for these binaries that are accurate to 30 km/sec and allows their orbital motion to be studied at higher time resolutions. In conjunction with X-ray lightcurves, the phase-binned composite line-profiles constrain coronal structures to be small and located at high latitudes. These observations and techniques show the power of the Doppler Imaging Technique applied to X-ray line emission.
    Keywords: Astrophysics
    Type: SAO-16613385
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can became out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a Maximum Entropy Method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1% and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta(sub s) approx. -2.5) near star-forming regions, especially in the plane, and steepest (beta(sub s) approx. -3) in the halo. This is consistent with a picture of relativistic cosmic ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta(sub s) less than -3. The modeled thermal dust spectral index is also steep in the WMAP bands, with beta(sub d) approx. = 2.2. Our model is driven to these conclusions by the low level of total foreground contamination at approx. 60 GHz. Microwave and Ha measurements of the ionized gas agree well with one another at about the expected levels. Spinning dust emission is limited to less than 5% of the Ka-band foreground emission. A catalog of 208 point sources is presented. The reliability of the catalog is 98%, i.e., we expect five of the 208 sources to be statistically spurious. The mean spectral index of the point sources is alpha approx. 0(beta approx. -2). Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0 +/- 1.4) x 10(exp -3)micro sq K sr at Q-band and negligible levels at V-band and W-band. The Sunyaev-Zeldovich effect is shown to be a negligible "contamination" to the maps.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-08-17
    Description: The following summarizes the most important, results of our research: (1) Conciliation of solar and stellar photometric variability; (2) Demonstration of an inverse correlation between the global temperature of the terrestrial lower troposphere, inferred from the NASA Microwave Sounding Unit (MSU)) radiometers, and the total area of the Sun covered by coronal holes from January 1979 to present (up to May 2000); (3) Identification of a possible climate mechanism amplifying the impact of solar ultraviolet irradiance variations; (4) Exploration of natural variability in an ocean-atmosphere climate model; (5) Presentation of a review of the sun's coronal influence on the terrestrial space environment; (6) Quantification of stellar variability as an influence on the analysis of periodic radial velocities that imply the presence of a planetary companion.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-17
    Description: This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-17
    Description: As part of the NASA Planetary Geology and Geophysics program, Prof. Norm Murray (CITA (Canadian Institute of Theoretical Astrophysics)) and I have been conducting investigations of the long-term dynamics of small bodies in the outer solar system. This grant, and its successor NAG5-10365, supports travel for collaboration by the Investigators and also supports Murray during an annual one month visit to the CfA (Harvard-Smithsonian Center for Astrophysics) for further collaboration. In the course of this grant we made a number of advances in solar system dynamics. For example, we developed an analytic model for the origin and consequence of chaos associated with three-body resonances in the asteroid belt. This has been shown to be important for the delivery of near Earth objects (NEO). We later extended this model to three-body resonances among planets. We were able to show that the numerically identified chaos among the outer planets results from a three-body resonance involving Jupiter, Saturn, and Uranus. The resulting paper was awarded the 1999 Newcomb Cleveland award from the AAAS (American Association for the Advancement of Science). This award singles out one paper published in Science each year for distinction. A list of grant-related publications is presented, with abstracts included.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-17
    Description: This report details work done in a project involving spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data including some from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and other spectroscopic databases. We will include four kinds of regions: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR (infrared) galaxies; and (4) the galactic center. During this period, work proceeded fully on track and on time. Details on workshops and conferences attended and research results are presented. A preprint article entitled 'The Far Infrared Lines of OH as Molecular Cloud Diagnostics' is included as an appendix.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-17
    Description: Radial velocity observations of the F8 V star nu Andromedae taken at Lick and at Whipple Observatories have revealed evidence of three periodicities in the line-of-sight velocity of the star. These periodicities have been interpreted as evidence for at least three low-mass companions (LMCs) revolving around nu Andromedae. The mass and orbital parameters inferred for these companions raise questions about the dynamical stability of the system. We report here results from our independent analysis of the published radial velocity data, as well as new unpublished data taken at Lick Observatory. Our results confirm the finding of three periods in the data. Our best fits to the data, on the assumption that these periods arise from the gravitational perturbations of companions in Keplerian orbits, are also generally in agreement but with some differences from the earlier findings. We find that the available data do not constrain well the orbital eccentricity of the middle companion in a three-companion model of the data. We also find that in order for our best-fit model to the Lick data to be dynamically stable over the lifetime of the star (approximately 2 billion years), the system must have a mean inclination to the plane of the sky greater than 13 deg. The corresponding minimum inclination for the best fit to the Whipple data set is 19 deg. These values imply that the maximum mass for the outer companion can be no greater than about 20 Jupiter masses. Our analysis of the stability of the putative systems also places constraints on the relative inclinations of the orbital planes of the companions. We comment on global versus local (i.e., method of steepest descent) means of finding best-fit orbits from radial velocity data sets.
    Keywords: Astrophysics
    Type: LPI-Contrib-1002 , The Astrophysical Journal; 545; 1044-1057
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-17
    Description: Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
    Keywords: Astrophysics
    Type: Annals of the New York Academy of Sciences: Astrophysical Turbulence and Convection (ISSN 0077-8923); 898; 1-20|Nonlinear Astronomy and Physics; Feb 18, 1999 - Feb 20, 1999; Gainesville, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: Asteroid astrometry, like any other scientific measurement process, is subject to both random and systematic errors, not all of which are under the observer's control. To design an astrometric observing program or to improve an existing one requires knowledge of the various sources of error, how different errors affect one's results, and how various errors may be minimized by careful observation or data reduction techniques.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-17
    Description: We show that the circular character of continuum structures observed in the coma of comet Hale-Bopp around the perihelion passage is most likely due to a dust jet from a large extended active region on the surface. Coma morphology due to a wide jet is different from that due to a narrow jet. The latter shows foreshortening effects due to observing geometry, wider jet produces more circular features. This circularization effect provides a self-consistent explanation for the evolution of near-perihelion coma morphology. No changes in the direction of the rotational angular momentum vector are required during this period in contrast to the models of Schleicher et al. This circularization effect also enables us to produce near-circular coma features in the S-E quadrant during 1997 late February and therefore questions the basic premise on which Sekanina bases his morphological arguments for a gravitationally bound satellite nucleus.
    Keywords: Astrophysics
    Type: NOAO-Preprint-862
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-17
    Description: The scope of the investigation is to extract information on the properties of the bulk solar wind from the minor ion observations that are provided by instruments on board NASA space craft and theoretical model studies. Ion charge states measured in situ in interplanetary space are formed in the inner coronal regions below 5 solar radii, hence they carry information on the properties of the solar wind plasma in that region. The plasma parameters that are important in the ion forming processes are the electron density, the electron temperature and the flow speeds of the individual ion species. In addition, if the electron distribution function deviates from a Maxwellian already in the inner corona, then the enhanced tail of that distribution function, also called halo, greatly effects the ion composition. This study is carried out using solar wind models, coronal observations, and ion calculations in conjunction with the in situ observations.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-17
    Description: We report the detection of high-frequency variability in the black hole X-ray transient XTE 51650-500. A quasi-periodic oscillation (QPO) was found at 250 Hz during a transition from the hard to the soft state. We also detected less coherent variability around 50 Hz that disappeared when the 250 Hz QPO showed up. There are indications that when the energy spectrum hardened the QPO frequency increased from approx. 110 to approx. 270 Hz, although the observed frequencies are also consistent with being 1 : 2 : 3 harmonics of each other. Interpreting the 250 Hz as the orbital frequency at the innermost stable orbit around a Schwarzschild black hole leads to a mass estimate of 8.2 solar mass. The spectral results by Miller et al., which suggest considerable black hole spin, would imply a higher mass.
    Keywords: Astrophysics
    Type: Astrophysical Journal; 586; 1262-1267
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-17
    Description: Flux cancellation, defined observationally as the mutual disappearance of magnetic fields of opposite polarity at the neutral line separating them, has been found to occur frequently at the site of filaments (called prominences when observed on the limb of the Sun). During the second year of this project, we have studied theoretically the role that flux cancellation may play in prominence formation, prominence eruption, and the initiation of coronal mass ejections. This work has been in published in two papers: "Magnetic Field Topology in Prominences" by Lionello, Mikic, Linker, and Amari and "Flux Cancellation and Coronal Mass Ejections" by Linker, Mikic, Riley, Lionello, Amari, and Odstrcil.
    Keywords: Astrophysics
    Type: SAIC-03/8011:APPAT-320 , Rept-01-0157-04-1047-100
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-17
    Description: We use data from Helios, IMP-8, and other spacecraft (e.g. ISEE) to systematically investigate solar energetic particle (SEP) events from different longitudes and distances in the heliosphere. The purpose of the project is to assess empirically the connection between the morphology of the travelling shock and strength with observed enhancements in the flow of energized particles in shock accelerated particle (SEP) events (also often identified as "gradual" solar energetic particle events). Activities during this first year centered on the organization of the SEPs events and their correlation with solar wind observations at multiple spacecraft locations. From an identified list of more than 30 SEPs events at multiple spacecraft locations, currently four single cases for detailed study were selected and are in an advance phase of preparation for publication. Preliminary results of these four cases were presented at AGU Spring and Fall 2003 meetings, and other meetings on SEPs.
    Keywords: Astrophysics
    Type: Rept-1042-0023-rpt4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: Our ongoing research program combines extensive deep and wide-field observations using a variety of observational platforms with numerical studies of the dynamics of small bodies in the outer solar system in order to advance the main scientific goals of the community studying the Kuiper belt and the outer solar system. These include: (1) determining the relative populations of the known classes of KBOs as well as other possible classes; (2) determining the size distributions or luminosity function of the individual populations or the Kuiper belt as a whole; (3) determining the inclinations distributions of these populations; (4) establishing the radial extent of the Kuiper belt; (5) measuring and relating the physical properties of different types of KBOs to those of other solar system bodies; and, (6) completing our systematic inventory of the satellites of the outer planets.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-08-17
    Description: To understand how this interchannel coupling, so important in neutral atoms, applies to positive ions, a research program has been initiated to deal with this question, i.e., a program to quantify the effects of interchannel coupling in ionic photoionization, thereby assessing existing photoionization data bases in the x-ray region. To accomplish this task, we have employed the Relativistic Random-Phase-Approximation (RRPA) methodology which includes significant aspects of electron-electron correlation, including interchannel coupling. The RRPA methodology has been found to produce excellent agreement with experiment for neutral Ne at photon energies in the 1 keV range.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 70-72; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-17
    Description: The process of X-ray emission following charge exchange between solar wind heavy ions and cometary gases is studied in the laboratory. The emission is recorded with the spare ASTRO-E 6x6 microcalorimeter array. The microcalorimeter affords a resolution of better than 10 eV in the range of X-ray energies of interest arid thus individual emission lines can be resolved. Our present measurements focus on the most abundant K-shell heavy ions found in the solar wind. In particular, we measure the K-shell emission of bare C, N, O, and Ne, and their hydrogenlike counter parts interacting with such gases as CO2, N2, and CH4. Several results are noted that had not been considered in the early cometary X-ray models.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 235-237; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-08-17
    Description: The present work is part of a series of measurements of metastable lifetimes of highly-charged ions (HCIs) which contribute to optical absorption, emission and energy balance in the Interstellar Medium (ISM), stellar atmospheres, etc. Measurements were carried out using the 14-GHz electron cyclotron resonance ion source (ECRIS) at the JPL HCI facility. The ECR provides useful currents of charge states such as C(sup(1-6)+), Mg(sup(1-6)+) and Fe(sup(1-17)+). In this work the HCI beam is focused into a Kingdon electrostatic ion trap for measuring lifetimes via optical decays.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 93-95; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-17
    Description: We studied 14 chondrules separated from LEW85332, an ungrouped type-3 carbonaceous chondrite related to CR chondrites; 23 elements were determined by neutron activation and the chondrules were characterized petrographically. Oxygen isotopic compositions were determined by R. N. Clayton and T. K. Mayeda for seven chondrules. Chondrule abundance ratios tend to form one of two distinct patterns. In low FeO chondrules, refractory lithophile patterns are flat (i.e., unfractionated); siderophile abundances are high and show a small decrease with increasing volatility. Although high FeO chondrules also have flat refractory lithophile abundance patterns, siderophile abundances are highly fractionated; refractory Ir is very low and Fe is very high relative to other siderophiles. We suggest that the low FeO chondrules in LEW85332 formed early in nebular history when metal was intimately mixed with silicates in the chondrule precursors, and that the viscosity of the liquid-solid mix was too high to permit expulsion of the metal by centrifugal action; their porphyritic structures are consistent with incomplete melting, which would result in relatively high viscosities. When the high FeO chondrules formed somewhat later, much of the Fe was oxidized and the melting of precursors was more extensive, FeO and other oxidized siderophiles were retained in the silicate liquid, and metal was lost, possibly expelled from low viscosity chondrule melts. The O isotopic compositions of the chondrules form a linear array of slope 0.93 +/- 0.05 on a three-isotope diagram, parallel to the carbonaceous chondrite anhydrous minerals (CCAM) line and a CR chondrule array, but offset from the latter by -1% in (delta)O-18. Some or all of this offset may reflect incorporation of O from Antarctic water during weathering. Chondrule (Delta)O-17 values correlate positively with FeO, possibly indicating that the (Delta)O-17 of the nebular gas composition increased with time. The chemical and O isotopic data suggest a temporal sequence extending from early, low FeO to late high FeO chondrules.
    Keywords: Astrophysics
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 64; 7; 1279-1290
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-17
    Description: Optical and IR surveys in progress or in the planning stages will lead to substantial improvements in our picture of the Milky Way as a consequence of their providing large volumes of data with much improved photometric and positional measurements compared with existing datasets.
    Keywords: Astrophysics
    Type: PB2001-106140 , FERMILAB-CONF-00/339-A
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-17
    Description: Space Interferometry Mission (SIM) will be used to obtain proper motions for a sample of 27 galaxies; the first proper motion measurements of galaxies beyond the satellite system of the Milky Way. SIM measurements lead to knowledge of the full 6-dimensional position and velocity vector of each galaxy. In conjunction with new gravitational flow models, the result will be the first total mass measurements of individual galaxies. The project, includes developnient of powerful theoretical methods for orbital calculations. This SIM study will lead to vastly improved determinations of individual galaxy masses, halo sizes, and the fractional contribution of dark matter. Astronomers have struggled to calculate the orbits of galaxies with only position and redshift information. Traditional N-body techniques are unsuitable for an analysis backward in time from a present distribution if any components of velocity or position are not very precisely known.
    Keywords: Astrophysics
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 27-29; JPL-Publ-2004-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-08-17
    Description: One of the hallmarks of SIM's few-milliarcsecond astrometric precision is its ability to obtain accurate parallax measurements across more than half of the Galaxy. The "open and globular" project obtains parallax distances to a set of star clusters. One important, goal is to pinpoint the zeropoint of the distance scale for main-sequence fitting. Another goal is to improve stellar evolutionary isochrones and integrated light models. Another goal is to use the clusters themselves to address unsolved problems of late-stage stellar evolution and Galactic and extragalactic chemical evolution. The clusters to be observed are chosen to span the widest possible range of abundance and age, to be as rich as possible, and to be as well-studied as possible.
    Keywords: Astrophysics
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 39-40; JPL-Publ-2004-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-17
    Description: Using the Keck I telescope, we have obtained 11.7 and 18.7 microns images of the circumstellar dust emission from AB Aur, a Herbig Ae star. We find that AB Aur is probably resolved at 18.7 microns with an angular diameter of 1.2 in. at a surface brightness of 3.5 Jy arc/sq sec. Most of the dust mass detected at millimeter wavelengths does not contribute to the 18.7 microns emission, which is plausibly explained if the system possesses a relatively cold massive disk. We find that models with an optically thick, geometrically thin disk surrounded by an optically thin spherical envelope fit the data somewhat better than flared disk models.
    Keywords: Astrophysics
    Type: ISSN 0004-637X , The Astrophyical Journal; 591; 1 Part 1; 267-274
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-17
    Description: We present the first XMM-Newton observations of the radio-quiet quasar MR 2251-178 obtained in 2000 and 2002. The EPIC-pn spectra show a power-law continuum with a slope of Gamma = 1.6 at high energies absorbed by at least two warm absorbers (WAs) intrinsic to the source. The underlying continuum in the earlier observation shows a soft excess at low X-ray energies which can be modeled as an additional power-law with Gamma = 2.9. The spectra also show a weak narrow iron K alpha emission line. The high-resolution grating spectrum obtained in 2002 shows emission lines from N VI, O VII, O VIII, Ne IX, and Ne X, as well as absorption lines from the low-ionization ions of O III, O IV, and O V, and other confirmed and suspected weaker absorption lines. The O III - O V lines are consistent with the properties of the emission line gas observed as extended optical (O III) emission in this source. The signal-to-noise of the 2000 grating data is too low to detect any lines. We suggest a model for the high-resolution spectrum which consist of two or three warm-absorber (WA) components. The two-components model has a high-ionization WA with a column density of 10(exp 21.5)-10 (exp 21.8) sq cm and a low-ionization absorber with a column density of 10(exp 20.3) sq cm. In the three-components model we add a lower ionization component that produces the observed iron M-shell absorption lines. We investigate the spectral variations in MR 2251-178 over a period of 8.5 years using data from ASCA, BeppoSAX, and XMM-Newton. All X-ray observations can be fitted with the above two power laws and the two absorbers. The observed luminosity variations seems to correlate with variations in the soft X-ray continuum. The 8.5 year history of the source suggests a changing X-ray absorber due to material that enters and disappears from the line-of-sight on timescales of several months. We also present, for the first time, the entire FUSE spectrum of MR 2251-178. We detect emission from N III, C III, and O VI and at least 4 absorption systems in C III, H I, and O VI, one at -580 km/s and at least 3 others which are blended together and form a wide trough covering the velocity range of 0 to -500 km/s. The general characteristics of the UV and X-ray absorbers are consistent with an origin in the same gas.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-17
    Description: This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, TrA (K2 11-111). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars.
    Keywords: Astrophysics
    Type: SAO-16613321
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-17
    Description: The final report covers the two year of a grant which represents a direct continuation of NASA NAG5-4050, with the same title as before. It is dedicated as before to the discovery and characterization of new astrophysical molecules. The four years (two of the original grant plus two years extension) have been extremely productive, yielding many new discoveries of astronomical interest at both radio and optical wavelengths, and the publication or submission of the 49 papers listed below. These articles have appeared or will soon appear in the leading refereed journals of astrophysics, chemical physics, physics, or molecular spectroscopy. One is a major invited review (#27) for Moleculur Physics. One of our other invited reviews published in Spectrochimica Acta in 2001 was recently awarded the Sir Harold Thompson Memorial Award, annually given to the best paper in that journal. Michael McCarthy has recently been awarded the Broida Prize.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-08-17
    Description: From 1996 June 10 to 1996 July 29, the International AGN Watch monitored the Seyfert 1 galaxy NGC 7469 using the International Ultraviolet Explorer, the Rossi X-Ray Timing Explorer, and a network of ground-based observatories. On 1996 June 18, in the midst of this intensive monitoring period, we obtained a high signal-to-noise snapshot of the UV spectrum from 1150 to 3300 A, using the Faint Object Spectrograph (FOS) on the Hubble Space Telescope. This spectrum allows us to disentangle the UV continuum more accurately from the broad wings of the emission lines, to identify clean continuum windows free of contaminating emission and absorption, and to deblend line complexes such as Ly(alpha) + N V, C IV + He II + O III], Si III] + C III], and Mg II + Fe II. Using the FOS spectrum as a template, we have fitted and extracted line and continuum fluxes from the IUE monitoring data. The cleaner continuum extractions c o n h the discovery of time delays between the different UV continuum bands by Wanders et al. Our new measurements show delays increasing with wavelength for continuum bands centered at 1485, 1740, and 1825 A, relative to 1315 A with delays of 0.09, 0.28, and 0.36 days, respectively. Like many other Seyfert I galaxies, the UV spectrum of NGC 7469 shows intrinsic, blue-shifted absorption in Ly(alpha), N V, and C IV. Soft X-ray absorption is also visible in archival ASCA X-ray spectra. The strength of the UV absorption, however, is not compatible with a single-zone model in which the same material absorbs both the UV and X-ray light. Similar to other Seyfert galaxies, such as NGC 3516, the UV-absorbing gas in NGC 7469 has a lower ionization parameter and column density than the X-ray-absorbing material. While the UV and X-ray absorption does not arise in the same material, the frequent occurrence of both associated UV absorption and X-ray warm absorbers in the same galaxies suggests that the gas supply for each has a common origin.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 535; 58-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-17
    Description: Two models have been proposed for the outbursts of symbiotic stars. In the thermonuclear model, outbursts begin when the hydrogen burning shell of a hot white dwarf reaches a critical mass. After a rapid increase in the luminosity and effective temperature, the white dwarf evolves at constant luminosity to lower effective temperatures, remains at optical maximum for several years, and then returns to quiescence along a white dwarf cooling curve. In disk instability models, the brightness rises when the accretion rate from the disk onto the central white dwarf abruptly increases by factors of 5-20. After a few month to several year period at maximum, both the luminosity and the effective temperature of the disk decline as the system returns to quiescence. If most symbiotic stars undergo thermonuclear eruptions, then symbiotics are probably poor candidates for type I supernovae. However, they can then provide approx. 10% of the material which stars recycle back into the interstellar medium. If disk instabilities are the dominant eruption mechanism, symbiotics are promising type Ia candidates but recycle less material into the interstellar medium.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-17
    Description: Our project was to model accretion flows onto supermassive black holes which reside in the centers of many galaxies. In this report we summarize the results which we obtained with the support of our NASA ATP grant. The scientific results associated with the grant are given in approximately chronological order. We also provide a list of references which acknowledge funding from this grant.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-16
    Description: We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-16
    Description: We present a complete sample of 29 gamma-ray bursts (GRBs) for which it has been possible to determine temporal breaks (or limits) from their afterglow light curves. We interpret these breaks within the framework of the uniform conical jet model, incorporating realistic estimates of the ambient density and propagating error estimates on the measured quantities. In agreement with our previous analysis of a smaller sample, the derived jet opening angles of those 16 bursts with redshifts result in a narrow clustering of geometrically corrected gamma-ray energies about 1.33 x 10(exp 51) ergs; the burst-to-burst variance about this value is 0.35 dex, a factor of 2.2. Despite this rather small scatter, we demonstrate in a series of GRB Hubble diagrams that the current sample cannot place meaningful constraints upon the fundamental parameters of the universe. Indeed, for GRBs to ever be useful in cosmographic measurements, we argue the necessity of two directions. First, GRB Hubble diagrams should be based upon fundamental physical quantities such as energy, rather than empirically derived and physically ill-understood distance indicators (such as those based upon prompt burst time-profiles and spectra). Second, a more homogeneous set should be constructed by culling subclasses from the larger sample. These subclasses, although now first recognizable by deviant energies, ultimately must be identifiable by properties other than those directly related to energy. We identify a new subclass of GRBs (" f-GRBs ") that appear both underluminous by factors of at least 10 and exhibit a rapid fading (f(sub nu is proportional to t(sup -2) at early times (t 〈 or = 0.5 day). About 10%-20% of observed long-duration bursts appear to be f-GRBs.
    Keywords: Astrophysics
    Type: The AStrophysical Journal; 594; Pt. 1; 674-683
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-16
    Description: Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0.79 omega(sub 0) is found to be 0.44 Hz (or 1.0 omega(sub 0), while the fading rate (or fading slope) is about 0.06 dB/s.
    Keywords: Astrophysics
    Type: Interplanetary Network Progress Report; 42-158
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-16
    Description: We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX J21362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Ly beta and gamma, C II, CIII, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the active galactic nucleus. We use photoionization models to derive constraints on the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, wherein the absorbing gas is associated with an intervening galaxy cluster.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 609; 597-602
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-16
    Description: In collaboration with G Micela, S. Sciortino, and others at the Osservatorio Astronomico di Palermo G. S. Valens, we conducted studies of X-ray emission from normal stars, primarily via observations of several open star clusters and star forming regions (viz. the Pleiades, NBC 2516, NBC 2264, and the Orion Nebula Cluster). Our work was based on combined data from several X-ray observatories, Einstein, ROSAT, XMM-Newton and Chandra, as well as ground-based optical and radio data. Preliminary results were presented at several meetings: HEAD/AAS, November, 1997 a 195th AAS Meeting, January 2000 a Three Islands Conference, April 2000 a X-ray Astronomy 2000, September 2000 a 197th AAS Meeting, January 2001 Two Years of Science with Chandra, September 2001
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-16
    Description: This grant has supported papers which present a new direction in the theory and interpretation of gravitational lenses. During the second year we have focused more closely on the relationship of baryons and dark matter.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-16
    Description: We present new calculations of the ionization of the Local Interstellar Cloud (LIC) by directly observed sources including nearby stellar extreme ultraviolet (EUV) sources and the diffuse emission of the Soft X-ray Background (SXRB). In addition, we model the important, unobserved EUV emission both from the hot gas responsible for the SXRB and from a possible evaporative boundary between the LIC and the hot gas. We show that these ionization sources can provide the necessary ionization and heating of the cloud to match observations. Including the radiation from the conductive boundary, while not required, does improve the agreement with observations of the temperature of the LIC. The ionization predicted in our models shows good agreement with pickup ion results, interstellar absorption line data towards epsilon CMa, and EUV opacity measurements of nearby white dwarf stars. The areas of disagreement point to a possible underabundance (relative to solar abundance) of neon in the LIC. The presence of dust in the cloud, or at least depleted abundances, is necessary to maintain the heating/cooling balance and reach the observed temperature.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-16
    Description: We present an analysis of high-resolution synoptic spectra of ten F- and G-type stars, seven of which exhibit periodic radial velocity variations due to the presence of one or more substellar companions. We searched for subtle periodic variations in photospheric line asymmetry, as characterized by line bisectors. In principle, periodic variations in line asymmetry observed at lower spectral resolution could mimic the radial velocity signature of a companion, but we find no significant evidence of such behavior in our data. Observations were obtained from 1998 March to 1999 February using the National Solar Observatory (NSO) 1.52-m McMath-Pierce Solar Telescope Facility on Kitt Peak in conjunction with the solar-stellar spectrograph, achieving a resolving power of 1.2x10(exp5). To characterize line asymmetry, we first measured line bisectors for the unblended Fe I photospheric line at 625.26 nm. To improve sensitivity to small fluctuations, we then combined points in each bisector to form a velocity displacement with respect to the line core. We searched for periodic variations in this displacement, finding no substantial difference between stars with substellar companions and those without reported companions. We find no correlation between bisector velocity displacement and the known orbital phase of substellar companions around our target stars. Simulations of a periodic signal with noise levels that mimic our measurement errors suggest that we can exclude bisector variations with amplitudes greater than about 20 m/s. These results support the conclusion that extrasolar planets best explain the observed periodic variations in radial velocity.
    Keywords: Astrophysics
    Type: NOAO-Preprint-887
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-16
    Description: Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-16
    Description: This program addresses the evolution of stellar coronas by comparing a solar-like corona in the supergiant Beta Dra (G2 Ib-IIa) to the corona in the allegedly more evolved state of a hybrid star, alpha TrA (K2 II-III). Because the hybrid star has a massive wind, it appears likely that the corona will be cooler and less dense as the magnetic loop structures are no longer closed. By analogy with solar coronal holes, when the topology of the magnetic field is configured with open magnetic structures, both the coronal temperature and density are lower than in atmospheres dominated by closed loops. The hybrid stars assume a pivotal role in the definition of coronal evolution, atmospheric heating processes and mechanisms to drive winds of cool stars. We are attempting to determine if this model of coronal evolution is correct by using XMM-NEWTON RGS spectra for the 2 targets we were allocated through the Guest Observer program.
    Keywords: Astrophysics
    Type: SAO-16613321
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-16
    Description: This grant supported the research and publication of a major 26-page paper in The Astrophysical Journal, by Fontenla, Avrett, & Loeser (2002): 'Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows with Diffusion.' This paper extended our previous modeling of the chromosphere-corona transition region to include cases with particle and mass flows. Inflows and outflows were shown to produce striking changes in the profiles of hydrogen and helium lines. An important conclusion is that line shifts are much less significant than the changes in line intensity and central reversal due to the influence of flows on the excitation and ionization of atoms in the solar atmosphere. This modeling effort at SAO is the only current one being undertaken anywhere to simulate in detail the full range of non-LTE absorption, emission, and scattering processes in the solar atmosphere to account for the entire solar spectrum from radio waves to X-rays. This effort is being continued with internal SAO funding at a relatively slow pace. Further NASA support in the future would yield results of great value for the interpretation of solar observations from NASA spacecraft.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-16
    Description: For planetary and telluric atmosphere projects the solar irradiance spectrum is required as the input at the top of the atmosphere. It has never been observed. People ask me to compute it. I can compute it theoretically using both known and predicted lines and get agreement averaged over a nanometer but there is no way to predict the resolved spectrum when only half the lines are known. In other stars the situation is worse because the signal-to-noise and resolution of the observations are worse. Logically one has to know a priori what is in the spectrum in order to interpret it; there is not enough information in the observed spectrum itself (qualifiers are given). Basically we need a list of all the energy levels of all atoms and molecules that matter. From that list can be generated all the lines. With the energy levels and line positions known, one can measure gf values, lifetimes, damping, or one can determine a theoretical or semiempirical Hamiltonian whose eigenvalues and eigenvectors produce a good match to the observed data, and that can then be used to generate additional radiative and collisional data for atoms or molecules.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-16
    Description: Nuclear interactions of cosmic rays with matter produce cosmogenic nuclides (CNs). Ever since they were first measured nearly 50 years ago, cosmogenic nuclides have been used to infer the irradiation histories of terrestrial and extraterrestrial materials. Here we call for an extension of such measurements to samples returned from an asteroidal surface. The information gained in this way will be important for elucidating the evolution of the asteroidal surface. Additional information is contained in the original extended abstract.
    Keywords: Astrophysics
    Type: Near-Earth Asteroid Sample Return Workshop; 30-31; LPI-Contrib-1073
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-16
    Description: The paper include contribution of each Lunar and Planetary Institute. Contents include the following: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. In-situ analysis of complex organic matter in cometary dust by ion microprobe. Pristine presolar silicon carbide. Infrared spectra of melilite solid solution. Comet observations with SIRTF. Ice and carbon chemistry in comets. The nature in interstellar dust. Modeling the infrared emission from protoplanetary dust disks.
    Keywords: Astrophysics
    Type: LPI-Contrib-1182 , (ISSN 0161-5297)|Workshop on Cometary Dust in Astrophysics; Aug 10, 2003 - Aug 15, 2003; Crystal Mountain, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-16
    Description: Some decades ago, Anders and co-workers used RNAA to classify a number of trace elements as being volatile during nebular condensation and accretion into primitive objects based upon their strong depletion in (equilibrated) ordinary chondrites relative to C1 chondrites. Such elements, e.g. Ag, Bi, Cd, Cs, In, Se, Te, Tl, Zn and others, exhibit nearly constant, C1-normalized atomic abundances in C2 (CM2) and in C3 chondrites. They interpreted the near-constancy of these abundances according to a 2-component model in which volatiles were introduced into carbonaceous (and other) chondrites as C1 material which was diluted with differing proportions of high-temperature (i.e. volatile-free) components. In this view, mean volatile element abundances of 0.48 in C2 and 0.24-0.29 x C1 in C3 chondrites indicated that C2 and C3 chondrites are, respectively, about 1:1 and 1:2-3 mixtures of C1-like and high temperature materials. More recently, Xiao and Lipschutz found that C-normalized abundances of such volatile elements are nearly constant in most C2-6 chondrites (i.e. 25 non-Antarctic meteorites, nearly all falls, and 36 Antarctic finds) consistent with a 2-component mixing model. However, rather than being quantized, mean volatile element contents in each chondrite define a continuum from 0.92-0.14 x C1 for these 61 chondrites. A few carbonaceous chondrites, the first having been the NIPR consortium samples B-7904, Y-82162 and Y-86720, show an altered pattern: many of the volatile elements in each exhibit the usual constancy of C1-normalized atomic abundances, but modified by further depletion of Cd and other elements like Tl and Bi. These are the most mobile trace elements, i.e. those most readily vaporized and lost from primitive meteorites during week-long heating at greater than or equal to 400 C under low ambient pressures (initially 10(exp -5) atm H2), simulating metamorphic conditions in a primitive parent body. Similarities between mobile element data for B-7904, Y-82162 and Y-86720 with those for Murchison heated at 500-700 C, suggest that these Antarctic C1 - and C2-like chondrites were metamorphosed at temperatures like these in the interiors of their parent bodies. Metamorphic temperatures inferred from RNAA data and textural/mineralogic alterations are internally consistent, agreeing., with those evident in heated Murchison samples. These 3 chondrites were also heated late in their histories since all have lost cosmogenic He-3, presumably during close solar approach, and B-7904 and Y-86720 seem also to have lost substantial proportions of radiogenic He-4 and Ar-40 cf. data in. Similarities in spectral reflectance data for C-, G-, B- and F- asteroids, for these meteorites and for heated Murchison samples suggest that thermally metamorphosed interior materials in these asteroids were excavated by impacts and re-deposited on them, forming their present surfaces. Establishment of the thermal metamorphic histories of carbonaceous chondrites, then, is essential to establishing the evolution and present-day nature of C-type and related asteroids.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 46-47; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-16
    Description: The science teams of the Herschel Space Observatory have identified a number of areas where laboratory study is required for proper interpretation of Herschel observational data. The most critical is the collection and compilation of laboratory data on spectral line frequencies, transition probabilities and energy levels for the known astrophysical atomic and molecular species in 670 to 57 micron wavelength range of Herschel. The second most critical need is the compilation of collisional excitation cross sections for the species known to dominate the energy balance in the ISM and the temperature dependent chemical reaction rates. On the theoretical front, chemical and radiative transfer models need to be prepared in advance to assess calibration and identify instrument anomalies. In the next few years there will be a need to incorporate spectroscopists and theoretical chemists into teams of astronomers so that the spectroscopic surveys planned can he properly calibrated and rapidly interpreted once the data becomes available. The science teams have also noted that the enormous prospects for molecular discovery will be greatly handicapped by the nearly complete lack of spectroscopic data for anything not already well known in the ISM. As a minimum, molecular species predicted to exist by chemical models should be subjected to detailed laboratory study to ensure conclusive detections. This has the greatest impact on any astrobiology program that might be proposed for Herschel. Without a significant amount of laboratory work in the very near future Herschel will not be prepared for many planned observations, much less addressing the open questions in molecular astrophysics.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 141-144; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-16
    Description: Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-16
    Description: The ORFEUS 1 (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) telescope obtained far ultraviolet spectra (lambda-lambda 912-1218) of luminous cool stars as a part of our observing program. Two classes of objects were measured: luminous single stars beta Dra (HD 159181) and two hybrid stars alpha Aqr (HD 209750) and alpha TrA (HD 150798) and two active binary systems: 44i Boo and UX Ari.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-16
    Description: Detailed calculations were performed of the deposition of energetic oxygen ions into the atmosphere of Jupiter. A Monte Carlo simulation was used. Similar processes occur in other astrophysical environments to which our methods can be applied. In particular Cravens has suggested that the X-ray emissions seen from comets are due to transitions from excited states following capture of electrons by solar wind ions colliding with the atmosphere of the comet. Alternative proposals have been advanced for the source of the cometary X-rays. We have carried out a study of the spectra and have shown that with the spectral resolution of about 20 eV the different excitation mechanisms can be distinguished. The response of the two components of the solar wind predict a spectrum that is consistent with the cometary observations. X-rays from the comets arise from the slow solar wind.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-16
    Description: Far-infrared Fourier-transform spectrometer measurements of the 1-0 and 3-2 PH3 transitions in Saturn's disk near 267 and 800 GHz (8.9 and 26.7/cm), respectively, were analyzed simultaneously to derive a global mean profile for the PH3 vertical mixing ratio between 100 and 600 mbar total pressure. The far-infrared spectrum is relatively free from spectral interlopers, suffers minimal absorption or scattering by atmospheric particulates, and contains intrinsically weak PH3 lines that are sensitive to a range of atmospheric depths. The combined spectra are inconsistent with a uniform tropospheric mixing ratio, even with a stratospheric cut-off. They are consistent with a volume mixing ratio of PH3 that drops from 1.2 x 10(exp -5) at 645 mbar pressure to a value of 4.1 x 10(exp -7) at 150 mbar pressure, a decrease that is linear is log abundance vs log pressure. The mixing ratio could drop even more quickly at atmospheric pressures below 150 mbar and still be consistent with the data. The mixing ratio may well remain constant with depth for pressures above 630 mbar. The maximum PH3 mixing ratio in this model is consistent with a [P]/[H] ratio in the deep atmosphere that is about a factor of 10 higher than solar composition. Such a model is consistent with rapid mixing up to the radiative-convective boundary and transport by, for example, vertical waves just above this boundary. In the best fitting model, the eddy diffusion coefficient is approximately 10(exp 4) sq cm near 630 mbar, and it must increase with altitude. The predominant PH3 loss mechanisms are direct photolysis by UV radiation and scavenging by H atoms produced by the photolysis.
    Keywords: Astrophysics
    Type: Rept-2000-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-16
    Description: The bright variable star (theta)(sup 2) Tau was monitored with the star camera on the Wide-Field Infrared Explorer satellite. Twelve independent frequencies were detected down to the 0.5 mmag amplitude level. Their reality was investigated by searching for them using two different algorithms and by some internal checks: both procedures strengthened our confidence in the results. All the frequencies are in the range 10.8 - 14.6 cd(exp -1). The histogram of the frequency spacings shows that 81% are below 1.8 d; rotation may thus play a role in the mode excitation. The fundamental radial mode is not observed, although it is expected to occur in a region where the noise level is very low (55 (micro)mag). The rms (root mean square) residual is about two times lower than that usually obtained from successful groundbased multisite campaigns. The comparison of the results of previous campaigns with the new ones establishes the amplitude variability of some modes.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-16
    Description: The goal of our FUSE proposal was to acquire observations of X-ray emission throughout an outburst cycle of a symbiotic stars. If symbiotics are thermonuclear powered, we expect the emission to follow the evolution of a typical classical nova, where soft X-ray emission strengthens as the optical brightness fades. In accretion models, we expect the X-ray emission to follow the behavior exhibited by dwarf novae, where hard X-rays strengthen relative to soft X-rays as the optical brightness fades. During the time period for this grant, we were fortunate that the prototypical symbiotic Z And began a major eruption and is only now returning to quiescence.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-16
    Description: There are two main types of cosmic rays that have sufficient energy to induce nuclear reactions -- the galactic cosmic rays (GCR) and solar cosmic rays (also called solar energetic particles). Both types of particles can have production rates and production ratios in the small objects often found in cold and hot deserts that are different from those seen for most meteorites, which typically have radii of approx.10-100 centimeters. GCR production rates are often lower than those for most meteorites. GCR production ratios, such as Ne-22/Ne-21, are also often different in small objects. Smaller meteoroids also are more likely to have nuclides made by solar-cosmic-ray (SCR) particles than typically-sized meteorites. The very small meteorite Salem had large amounts of SCR-produced radionuclides. Meteorites recovered in Antarctica are more likely to contain SCR-produced nuclides than other meteorites. Martian and lunar meteorites are also likely to have SCR-produced nuclides. Production rates and profiles for SCR-produced nuclides in meteoroids have been calculated previously. However, the cross sections for the nuclear reactions making many SCR-produced nuclides, such as Be-10, were not well measured then. New rates and profiles are calculated here using good cross sections for the reactions making these nuclides.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 69-71; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-15
    Description: Using SIM, we will perform narrow-angle observations of several X-ray binaries to determine their orbits, and we will observe about 50 X-ray binary systems in wide-angle mode to measure their distances and proper motions. Sources with mass estimates for the compact component of greater than 3 solar masses are generally called black hole candidates since this mass is above the theoretical neutron star limit. Narrow-angle observations of these sources provide a direct test of the dynamical mass estimates on which the black hole evidence is based. Better measurements of the black hole masses will provide constraints on possible evolutionary paths that lead to black hole formation. When combined with X-ray data, mass measurements may provide additional constraints on the black hole spin. Precise mass determinations of neutron star systems can address the question of whether neutron stars can be significantly more massive than 1.4 solar masses, which would eliminate soft models of the neutron star equations of state. The wide-angle observations will probe the Galactic distribution of X-ray binaries through parallaxes and proper motions. They will also eliminate the uncertainties in the luminosities of individual sources, which is currently up to a full order of magnitude. This will enable more detailed comparisons of X-ray observations to physical models such as advection-dominated accretion flows (ADAFs). We intend to carry out the following measurements: 1) Determine the orbits of two black hole candidates to measure the black hole masses; 2) Obtain precise mass measurements for two neutron star systems to constrain neutron star equations of state; 3) Determine the distances and thus luminosities of selected representatives of various classes of X-ray binaries (black hole candidates, neutron stars, jet sources); 4) In the process of distance determination, proper motions will also be measured, from which the age of the population can be estimated.
    Keywords: Astrophysics
    Type: SIM PlanetQuest: Science with the Space Interferometry Mission; 33-35; JPL-Publ-2004-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-15
    Description: This report lists publications related to work done under NASA grant. Topics as indicated by title include: condensation in fractionated nebular systems, nebular processes in different constituents of the CH chondrite NWA 470, growth mechanism and additional constraints on FeNi metal condensation in the solar nebula, the ZONMET thermodynamic and kinetic model of metal condensation, the first occurrence of CaAl2O4 in a CAI (calcium aluminum inclusion) from the new CH chondrite NWA 470.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-15
    Description: We present the results of magnetohydrodynamic (MHD) modeling of winds from luminous late-type stars using a 2.5-dimensional, nonlinear MHD computer code. We assume that the wind is generated within an initially hydrostatic atmosphere and is driven by torsional Alfven waves generated at the stellar surface. Two cases of atmospheric topology are considered: case I has longitudinally uniform density distribution and isotropic radial magnetic field over the stellar surface, and case II has an isotropic, radial magnetic field with a transverse density gradient, which we refer to as an "atmospheric hole." We use the same set of boundary conditions for both models. The calculations are designed to model a cool luminous star, for which we assume an initial hydrostatic pressure scale height of 0.072 Stellar Radius, an Alfven wave speed of 92 km/s at the surface, and a wave period of 76 days, which roughly corresponds with the convective turnover time. For case I the calculations produce a wind with terminal velocity of about 22 km/s and a mass loss rate comparable to the expected value of 10(exp -6) Solar Mass/yr. For case II we predict a two-component wind: a fast (25 km/s) and relatively dense wind outside of the atmospheric hole and a slow (1.5 km/s), rarefied wind inside of the hole.
    Keywords: Astrophysics
    Type: Astrophysical Journal; 528; 965-971
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-15
    Description: Using spectroscopic equipment optimized for laboratory astrophysics, we are performing systematic measurements of the line emission from astrophysically relevant ions in the wavelength band between 1 and 400 Angstroms important to X-ray missions such as Chandra, XMM, Astro-E, and EUVE. Obtained in a controlled laboratory setting at electron densities similar to those found in stellar coronae, the data are used to test spectral modeling codes for accuracy and completeness. Our effort includes the compilation of the iron L-shell emission lines from 6-18 Angstroms and the iron M-shell emission lines from 50-200 Angstroms. Many lines have been identified for the first time, and the fluxes from lines missing in the spectral modeling codes are assessed. Our measurements also assess the accuracy of line excitation calculations, including direct electron-impact excitation, dielectronic recombination, and resonance excitation. These measurements yield a calibration of specific diagnostic line ratios. Examples of our current measurements are given.
    Keywords: Astrophysics
    Type: Astrophysical Plasmas: Codes, Models, and Observations; 9; 123-130
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-15
    Description: In this program we proposed to perform a series of spectroscopic studies, including data analysis and modeling, of star formation regions using an ensemble of archival space-based data from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and to take advantage of other spectroscopic databases including the first results from SIRTF. Our emphasis has been on star formation in external, bright IR galaxies, but other areas of research have included young, low or high mass pre-main sequence stars in star formation regions, and the galactic center. The OH lines in the far infrared were proposed as one key focus of this inquiry, because the Principal Investigator (H. Smith) had a full set of OH IR lines from IS0 observations. It was planned that during the proposed 2-1/2 year timeframe of the proposal other data (including perhaps from SIRTF) would become available, and we intended to be responsive to these and other such spectroscopic data sets. The program has the following goals: 1) Refine the data analysis of IS0 observations to obtain deeper and better SNR results on selected sources. The IS0 data itself underwent pipeline 10 reductions in early 2001, and the more 'hands-on data reduction packages' have been released. The IS0 Fabry-Perot database is particularly sensitive to noise and can have slight calibration errors, and improvements are anticipated. We plan to build on these deep analysis tools and contribute to their development. Model the atomic and molecular line shapes, in particular the OH lines, using revised montecarlo techniques developed by the Submillimeter Wave Astronomy Satellite (SWAS) team at the Center for Astrophysics. 2) 3) Use newly acquired space-based SIRTF or SOFIA spectroscopic data as they become available, and contribute to these observing programs as appropriate. 4) Attend scientific meetings and workshops. 5) E&PO activities, especially as related to infrared astrophysics and/or spectroscopy.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-15
    Description: It is hard to predict the properties and composition of dust that will be returned by STARDUST from WED- 2. The most interesting but challenging case would be grains, pg to fg in weight, each carrying its own isotopic signature characteristic of its source zones in a variety of stars. How do we extract the maximum amount of science from such grains? Clearly, the best that can be accomplished is to measure every atom in each grain.Academia Sinica and Argonne National Laboratory (ANL) have entered into a collaboration to develop a SPI TOF MS instrument for analysis of stardust grains. A new instrument will be built at Academia Sinica based on the new TOF mass spectrometer design developed, built and operating at ANL. The instrument is intended for SPI TOF MS analysis of elements from Ca to Cu plus Li after first using SIMS to measure H, C, N, 0, Si, and S. There are still technical challenges facing the technique. We will need to improve submicrometer sample handling, avoid the effects of space charge, and increase the Mamie range of the detector. The most difficult obstacle to overcome may be the fact that the flux density of present high repetition rate, WV lasers is below the level needed to ensure full ionization (saturation) in the source region, which must be several mm in size to achieve the high useful yield needed for analysis of small stardust grains. A potential breakthrough effort is to exploit the novel free electron laser being pioneered at ANL. In principle, this FEL can reach ionization saturation and is tunable up to photon energies of 25 eV, which is higher than the ionization potential of any element.
    Keywords: Astrophysics
    Type: Workshop on Cometary Dust in Astrophysics; 18; LPI-Contrib-1182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-15
    Description: We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 62-64; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-15
    Description: By coordinating coronal SOHO observations in white light, ultraviolet, extreme ultraviolet, with radio occultation measurements, and complementing these with modeling, two break-throughs were achieved from this funding: (1) The discovery that minor ions are accelerated much faster than protons in the fast solar wind, and (2) that the imprint of coronal density structures is carried outwards from the Sun into the solar wind. Three refereed papers and one invited review, published in the proceedings of the conference, resulted from this funding. A summary of each is given.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-08-15
    Description: The present report covers the third year of a grant which represents a direct continuation of NASA NAG5-4050, with the same title as before. It is dedicated as before to the discovery and characterization of new astrophysical molecules. This year, like the two before, has been extremely productive, yielding many new discoveries of astronomical interest at both radio and optical wavelengths, and the publication or submission of the 15 papers listed below. Nearly all of these articles have or will soon appear in the leading refereed journals of astrophysics, chemical physics, physics, or molecular spectroscopy. One is a major invited review for Molecular Physics. One of our other invited reviews published in Spectrochimica Acta in 2001 was recently awarded the Sir Harold Thompson Memorial Award, annually given to the best paper in that journal. During the past year significant advances have been made by our group in the laboratory study of exotic silicon and carbon molecules of astronomical interest. The most exciting discoveries include the pure silicon cluster Si3, several novel silicon hydrides, and the detection of phenyl radical, CsH5, a fundamental reactive organic ring. In addition, the rotational spectra of many carbon chains terminated with Si, N, O, and other heteroatoms have also been detected for the first time. The laboratory astrophysics of the whole set is complete in the sense that the entire radio spectrum of each species has now been measured or can be calculated to very high accuracy. Nearly all of these newly found molecules are plausible candidates for the detection by radio astronomers in the interstellar gas or in circumstellar sources because they are similar in structure and composition to known astronomical species, and because most are calculated to possess large permanent dipole moments.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-15
    Description: The FUSE observations of a non-radiative shock wave in the Cygnus Loop were obtained in June and October 2000. The two main results were near equilibration of the kinetic temperature of oxygen with protons and electrons and inferred 3D structure and pre-shock density for the shock including resonance scattering. The 3D structure in turn implies density fluctuations in keeping with the level expected for interstellar turbulence. Major results are contained in an ApJ paper in press and some extensions are contained in a conference proceedings paper in Rev. Mex. A&A in press. Very early results were given in the Ghavamian et al. paper in 2000. The observations of HH2 have not yet been obtained due to the pointing constraints of FUSE. They were scheduled for early January 2003, but we have not yet received the processed data. We are hoping to get the data shortly.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-15
    Description: We analyze X-ray spectra and images of a sample of Seyfert 2 galaxies that unambiguously contain starbursts, based on their optical and UV characteristics. Although all sample members contain active galactic nuclei (AGNs), supermassive black holes or other related processes at the galactic centers alone cannot account for the total X-ray emission in all instances. Eleven of the 12 observed galaxies are significantly resolved with the ROSAT High Resolution Imager, while six of the eight sources observed with the lower resolution Position Sensitive Proportional Counter also appear extended on larger scales. The X-ray emission is extended on physical scales of 10 kpc and greater, which we attribute to starburst-driven outflows and supernova heating of the interstellar medium. Spectrally, a physically motivated composite model of the X-ray emission that includes a heavily absorbed (N(sub H) greater than 10(exp 23)/sq cm) nuclear component (the AGN), power-law-like scattered AGN flux, and a thermal starburst describes this sample well. Half the sample exhibit iron K(alpha) lines, which are typical of AGNs.
    Keywords: Astrophysics
    Type: Astrophysical Journal; 133; 2; 133-269
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-15
    Description: Our goal is to understand the behavior of the outer atmosphere in this intermediate stage to create a comprehensive picture of atmospheric evolution. In the hybrid phase, the large-scale magnetic dynamo activity decays and hydrodynamic processes assume importance. Some hot plasma is still confined close to the star by magnetic loops, yet the confining field is breaking open, the atmosphere can escape through these open field lines, and the diffuse corona may be warm. There may well be a more extended and variable transition process. It remains for FUSE to identify the controlling parameters of the hybrid stars. It shows the positions of our 3 targets in the color-magnitude diagram where it is seen that they are at the extreme end of the hybrid region. Originally we had been awarded the hybrid star Iota Aur, but due to newly imposed pointing constraints of FUSE, that target was not accessible. And so we substituted Iota Dra, a giant of mass similar to our other targets but less evolved. In addition, Iota Dra was recently found to harbor a sub-stellar objects, possibly a planet, and so it could reveal the stellar environment of the planet. This substitution was accepted.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-15
    Description: We explore the infrared M band (4.7 micron) spectrum of the class I protostar L1489 IRS in the Taurus Molecular Cloud. This is the highest resolution wide coverage spectrum at this wavelength of a low mass protostar observed to date (R =25,000; (Delta)v =12 km s(exp -1). A large number of narrow absorption lines of gas phase (12)CO, (13)CO, and C(sup 18)O are detected, as well as a prominent band of solid (12)CO. The gas phase (12)CO lines have red shifted absorption wings (up to 100 km s(exp -1)), which likely originate from warm disk material falling toward the central object. Both the isotopes and the extent of the (12)CO line wings are successfully fitted with a contracting disk model of this evolutionary transitional object. This shows that the inward motions seen in millimeter wave emission lines continue to within approx. 0.1 AU from the star. The amount of high velocity infalling gas is however overestimated by this model, suggesting that only part of the disk is infalling, e.g. a hot surface layer or hot gas in magnetic field tubes. The colder parts of the disk are traced by the prominent CO ice band. The band profile results from CO in 'polar' ices (CO mixed with H2O), and CO in 'apolar' ices. At the high spectral resolution, the 'apolar' component is, for the first time, resolved into two distinct components, likely due to pure CO and CO mixed with CO2, O2 and/or N2. The ices have probably experienced thermal processing in the upper disk layer traced by our pencil absorption beam: much of the volatile 'apolar' ices has evaporated, the depletion factor of CO onto grains is remarkably low (approx. 7%), and the CO2 traced in the CO band profile was possibly formed energetically. This study shows that high spectral resolution 4.7 micron observations provide important and unique information on the dynamics and structure of protostellar disks and the origin and evolution of ices in these disks.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-15
    Description: Pre-impact observations of Comet Shoemaker-Levy 9 (S-L9) obtained with the Hubble Space Telescope are examined, and a model of an active, dust-producing comet is fitted to images of fragments G, H, K, and L. The model assumes steady isotropic dust emission from each fragment's sunlit hemisphere. Best-fit results indicate that the dominant light-scatterers in these fragments' comae were relatively large dust grains of radii 10 micrometers 〈 R 〈 3 mm. The fragments' dust size distributions were rather flat in comparison to other comets, dN(R) proportional to R(sup -2.3 +/- 0.1), and the dust ejection speeds were approximately 0.5-1.5 m/s. The S-L9 fragments themselves were not detected directly, and upper limits on their radii are 1.0-1.5 km assuming an albedo a = 0.04. However, these fragments' vigorous production of dust, which ranges from 6 to 22 kg/s, places a lower limit of approximately 100 m on their radii at the moment of tidal breakup. Any fragments smaller than this limit, yet experiencing similar mass loss rates, would have dissipated prior to impact. Such bodies would fail to leave an impact scar at Jupiter's atmosphere, as was realized by fragments F, J, P(sub 1), P(sub 2), T, and U.
    Keywords: Astrophysics
    Type: Icarus (ISSN 0019-1035); 146; 501-513
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-15
    Description: Hipparcos and Multichannel Astrometric Photometer (MAP) observations of rho Coronae Borealis independently display astrometric motion at the period of the proposed extrasolar planetary companion to the star. Individual least-squares fits to each astrometric data set yield independent estimates of the semimajor axis, inclination, and node angle that are in excellent agreement. A combined solution of the Hipparcos and MAP data yields an inclination of 0.5 deg, a node at 30.5 +/- 12.4, and a semimajor axis of 1.66 +/- 0.35 mas, indicating a companion mass of 0.14 +/- 0.05 solar masses over two orders of magnitude greater than the minimum mass for the companion as determined by radial velocity studies. This mass is approximately that of an M dwarf star, the companion cannot be a planetary object.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 548; L61-L63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-15
    Description: Ulysses and Galileo spacecraft have discovered interstellar dust particles entering the solar system. In general, particles trajectories not altered by Lorentz forces or radiation pressure should encounter the sun on open orbits. Under Newtonian forces alone these particles return to the interstellar medium. Dissipative forces, such as Poynting Robertson (PR) and corpuscular drag and non-dissipative Lorentz forces can modify open orbits to become closed. In particular, it is possible for the orbits of particles that pass close to the Sun to become closed due to PR drag. Further, solar irradiation will cause modification of the size of the dust particle by evaporation. The combination of these processes gives rise a class of capture orbits and bound orbits with evaporation. Considering only the case of pure PR drag a minimum impact parameter is derived for initial capture by Poynting-Robertson drag. Orbits in the solar radiation field are computed numerically accounting for evaporation with optical and material properties for ideal interstellar particles modeled. The properties of this kind of particle capture are discussed for the Sun but is applicable to other stars.
    Keywords: Astrophysics
    Type: LPI-Contrib-1064 , Planetary and Space Science (ISSN 0032-0633); 49; 417-424
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-15
    Description: The first draft of a manuscript titled "Variable time delays in the propagation of the interplanetary magnetic field" has been completed, for submission to the Journal of Geophysical Research. In the preparation of this manuscript all data and analysis programs had been updated to the highest temporal resolution possible, at 16 seconds or better. The program which computes the "measured" IMF propagation time delays from these data has also undergone another improvement. In another significant development, a technique has been developed in order to predict IMF phase plane orientations, and the resulting time delays, using only measurements from a single satellite at L1. The "minimum variance" method is used for this computation. Further work will be done on optimizing the choice of several parameters for the minimum variance calculation.
    Keywords: Astrophysics
    Type: C-99047-QR10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-15
    Description: We have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus, using our semi-implicit time-dependent 3D MHD code to model the plasma interactions. We have used the same code to model the plasma interaction at Ganymede.
    Keywords: Astrophysics
    Type: SAIC-01/8014:APPAT-281 , Rept-01-0157-04-1154-000
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-15
    Description: We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO. This may be a result of the inhomogeneous nature of the clouds.
    Keywords: Astrophysics
    Type: Rept-2001-7
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-15
    Description: We propose a mechanism based on the rubble-pile hypothesis of the cometary nucleus (Weissman 1986) to explain the catastrophic breakup of comet LINEAR (C/1999 S4) observed during July-August 2000. We suggest that a solid nucleus made up of 10-100 m "cometesimals" (Weidenschilling 1997) contains a network of inter-connected voids in the inter-cometesimal regions. The production of super-volatile (i.e., species more volatile than water) gases into these voids occurs due to the thermal wave propagating through the nucleus and associated phase transitions of water ice. The network of voids provides an efficient pathway for rapid propagation of these gases within the nucleus resulting in gas pressure caused stresses over a wide regime of the nucleus. This provides a mechanism for catastrophic breakups of small cometary nuclei such as comet LINEAR (C/1999 S4) as well as for some observed cometary outbursts including those that occur at large heliocentric distances (e.g., West et al. 1991). We emphasize the importance of techniques such as radar reflection tomography and radiowave transmission tomography (e.g., Kofman et al. 1998) aboard cometary missions to determine the three dimensional structure of the nucleus in particular the extent of large scale voids.
    Keywords: Astrophysics
    Type: NOAO-Preprint-890
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-15
    Description: This volume contains abstracts that have been accepted for presentation at the Near-Earth Asteroid Sample Return Workshop, 11-12 Dec 2000. The Steering Committee consisted of Derek Sears, Chair, Dan Britt, Don Brownlee, Andrew Cheng, Benton Clark, Leon Gefert, Steve Gorevan, Marilyn Lindstrom, Carle Pieters, Jeff Preble, Brian Wilcox, and Don Yeomans. Logistical, administrative, and publications support were provided by the Publications and Program Services Department of the Lunar and Planetary Institute.
    Keywords: Astrophysics
    Type: LPI-Contrib-1073 , Near-Earth Asteroid Sample Return; Dec 11, 2000 - Dec 12, 2000; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-15
    Description: This paper is predicated on the recent experimental findings that the smallest structural ferromagnesiosilica entities in collected chondritic aggregate interplanetary dust particles (IDPs) have a predictable metastable eutectic composition. Kinetically controlled gas to solid condensation of MgFe-SiO-O2-H2 vapors does NOT produce stoichiometric crystalline solids (i.e. minerals) such as predicted by equilibrium condensation models but instead yields amorphous solids that are chemically ordered at metastable eutectics in the binary phase diagrams. Therefore these condensed dust grains will have a considerable amount of 'internal free energy' that will make them highly responsive to changes in their environments. Their inherent high energy-content 'buys' time and energy for mineralogical modification and chemical readjustment in response to changing environmental conditions. The activation energy barrier for reactions in metastable eutectic solids will be lower than for crystalline solids. As a result the reactions can take place at much lower temperatures and on much shorter time scales. That is, they will also occur much earlier in the evolution of a parent body wherein heat-producing sources may either be immature or inefficient. The ensuing reaction chains from metastable equilibrium to full thermodynamic equilibration with the local environment will be a chaotic 'Ostwald cascade' but from a well defined starting point to a predictable end result. Here we will discuss the implications of metastable eutectic dust as we see them for dust properties in icy and ice-free parent bodies wherein circumstellar dust is still recognizable because of the primitive nature of these parent bodies. We point to potential engineering constraints on sample acquisition and storage during Earth transit. Among the scientific goals of a primitive Near Earth Asteroid (NEA) sample return mission will be verification of the nature of dust forming and modification processes during hierarchical accretion in the earliest protoplanets. We propose sampling an infrared P- or D-class NEA or an object showing cometary activity such as 2201 Oljato that could be an asteroid or evolved comet. Additional information is contained in the original extended abstract.
    Keywords: Astrophysics
    Type: Near-Earth Asteroid Sample Return Workshop; 40-41; LPI-Contrib-1073
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-15
    Description: What we know about asteroids has always been bifurcated by the enormous gap between astronomical studies of small, distant bodies, and the close-up laboratory measurements of hand-sample sized meteorites. The gulf has been narrowed somewhat by improvements in Earth-based astronomical techniques (e.g. Hubble Space Telescope, radar, adaptive optics) and especially by spacecraft fly-bys of asteroids. But the Near Earth Asteroid Rendezvous (NEAR)-Shoemaker mission has gone considerably more in the direction of bridging the gap. Any consideration of intelligent sample-return from an asteroid must be based on the best possible knowledge of the asteroid at the spatial scales pertinent to operations at the asteroid and of the sample/s. Otherwise, we are in danger of succumbing to the 'Martian Horror Story' that Bruce Murray, in the 1960's, envisioned might impair our exploration of the surface of the red planet if we tried to land on it without first bolstering the information content of our database about Mars, especially at high resolutions. NEAR-Shoemaker is helping to bridge that gap in the case of Eros. The best resolution obtained by the Galileo spacecraft on Ida was 25 m/pixel. As of this writing, NEAR has already obtained images with resolutions at least five times better (information content 25 times better) and vastly better images may be available at the time of this Workshop from the late October low flyby. Already, we are seeing that the Martian horror story looks tame compared with Eros. Everywhere we have landed on Mars, the surface has been covered with rocks and boulders, with much higher spatial coverage than seen anywhere on the lunar surface. We have, in fact, been rather lucky that none of our Martian landers have tipped over so far, and there were justified fears in the early aftermath of last year's failure of Mars Polar Lander that it had suffered from inadequate high-resolution characterization of polar regions on Mars (the failure is now known to have had another cause). Eros looks potentially even more terrifying. Additional information is contained in the original extended abstract.
    Keywords: Astrophysics
    Type: Near-Earth Asteroid Sample Return Workshop; 5-6; LPI-Contrib-1073
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-15
    Description: We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) to map the far-infrared continuum emission (45-175 micrometer) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. The observed far-infrared and submillimeter spectral energy distributions imply low temperatures (approx. 15 - 22 K) for the bulk of the dust in all the sources, consistent with external heating by the diffuse ISRF and suggest that these GMCs do not harbor high- mass star-formation sites, in spite of their large molecular mass. Observations of FIR atomic fine structure lines of C(sub II) and O(sub I) indicate an ISRF enhancement of approx. 10(exp 3) in the region. Through continuum radiative transfer modeling we show that this radiation field strength is in agreement with the observed FIR and submillimeter spectral energy distributions, assuming primarily external heating of the dust with only limited internal luminosity (approx. 2 x 10(exp 5) solar luminosity). Spectroscopic observations of millimeter-wave transitions of H2CO, CS, and C-34S carried out with the Caltech Submillimeter Observatory (CSO) and the Institut de Radio Astronomie Millimetrique (IRAM) 30-meter telescope indicate a gas temperature of approx. 80 K, significantly higher than the dust temperatures, and density of approx. 1 x 10(exp 5)/cc in GCM0.25 + 0.01, the brightest submillimeter source in the region. We suggest that shocks caused by cloud collisions in the turbulent interstellar medium in the Galactic center region are responsible for heating the molecular gas. This conclusion is supported by the presence of wide-spread emission from molecules such as SiO, SO, and CH3OH, which are considered good shock tracers. We also suggest that the GMCs studied here are representative of the "typical", pre-starforming cloud population in the Galactic center.
    Keywords: Astrophysics
    Type: Rept-2000-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-15
    Description: We report investigations of HDO and H2O on Mars using CSHELL at the NASA IRTF, on dates that span an entire Mars year. Our objective is to understand whether deuterium is preferentially sequestered in the polar regions, and to determine whether the two polar caps are equivalent in that regard. The instrument slit is typically positioned N-S along the central meridian resulting in a one-dimensional map of HDO (1997- 2003) and/or H2O (2001-2003). Column burdens are extracted at one arc-second intervals along the slit, permitting a direct comparison of the D/H ratio at various latitudes and seasons.
    Keywords: Astrophysics
    Type: Sixth International Conference on Mars; LPI-Contrib-1164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-15
    Description: Submillimeter absorption spectra of nitrogen, nitrogen-argon mixtures, and methane have been measured using temperatures and pressures near to those found in the atmospheres of Titan and Saturn. The experiments show the spectral signature of dimers which will likely appear in far-infrared spectra of Titan that will be obtained by the Composite Infrared Spectrometer (CIS) onboard the Cassini spacecraft. The recent CIRS spectrum of Jupiter shows far-infrared spectral lines of methane and the corresponding lines are observed in the laboratory. We are extending this work to lower frequencies using a new differential Michelson interferometer that operates over the frequency region 3-30 1/cm..
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 260-263; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-15
    Description: We discuss past and recent progress in our long-term laboratory program concerning the submillimeter-wave rotational spectroscopy of known and likely interstellar molecules, especially those associated with regions of high-mass star formation. Our program on the use of spectroscopy to study rotationally inelastic collisions of interstellar interest is also briefly mentioned.
    Keywords: Astrophysics
    Type: Proceedings of the NASA Laboratory Astrophysics Workshop; 128-130; NASA/CP-2002-211863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-15
    Description: We are continuing our ongoing study of cosmogenic nuclides in Antarctic meteorites. In addition to the studies of exposure histories of meteorites, we study terrestrial ages and pairing of Antarctic meteorites and desert meteorites. Terrestrial ages of Antarctic meteorites provide information on meteorite accumulation mechanisms, mean weathering lifetimes, and influx rates. The determination of Cl-36 (half-life=3.01 x 10(exp 5) y) terrestrial ages is one of our long-term on-going projects, however, in many instances neither Cl-36 or C-14 (5,730 y) yields an accurate terrestrial age. Using Ca-41 (1.04 x 10(exp 5) y) for terrestrial age determinations solves this problem by filling the gap in half-life between C-14 and Cl-36 ages. We are now applying the new Ca-41 - Cl-36 terrestrial age method as well as the Cl-36 - Be-10 method to Antarctic meteorites. Our measurements and C-14 terrestrial age determinations by the University of Arizona group are always complementary.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 64; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-15
    Description: The natural TL survey of Antarctic meteorites was started in 1987 at the request of the Antarctic Meteorite Working Group in order to provide an initial description of radiation and thermal histories. It was intended to be a complement to the mineralogical and petrographic surveys performed at the Johnson Space Center and the Smithsonian Institution. All ANSMET samples recovered since then, besides those that were heated throughout by atmospheric passage, have been measured. To date this amounts to about 1200 samples. As the data for each ice field reaches a significant level, we have been conducting a thorough examination of the data for that field with a view to (1) identifying pairing, (2) providing an estimate of terrestrial age and residence time on the ice surface, (3) looking for differences in natural TL between ice fields, (4) looking for variations in natural TL level with location on the ice, (5) looking for meteorites with natural TL levels outside the normal range. Pairing is a necessary first step in ensuring the @ost productive use of the collection, while geographical variations could perhaps provide clues to concentration mechanisms. Samples with natural TL values outside the normal range are usually inferred to have had either small perihelia or recent changes in orbital elements. In addition, induced TL data have enabled us to (5) look for evidence for secular variation in the nature of the flux of meteorites to Earth, and (6) look for petrologically unusual meteorites, such as particularly primitive ordinary chondrites, heavily shocked meteorites, or otherwise anomalous meteorites. To date we have published studies of the TL properties of 167 ordinary chondrites from Allan Hills, 107 from Elephant Moraine and 302 from Lewis Cliff and we have discussed the TL properties of fifteen H chondrites collected at the Allan Hills by Euromet after a storm during the 1988 season. We now have additional databases for a reasonable number of ordinary chondrites from Grosvenor Mountains (39 meteorites), MacAlpine Hills (70 meteorites), Pecora Escarpment (60 meteorites), and Queen Alexandra Range (173 meteorites) and we have data for a further 101 samples from Elephant Moraine. The results are summarized in Table 1. We also have fairly minimal databases (10-15 meteorites) for Dominion Range, Graves Nunataks, Reckling Peak and Wisconsin Range that will not be discussed here.
    Keywords: Astrophysics
    Type: Workshop on Extraterrestrial Materials from Cold and Hot Deserts; 11-14; LPI-Contrib-997
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-15
    Description: Since 1969 expeditions from Japan, the United States, and European countries have recovered more than 20,000 meteorite specimens from remote ice fields of Antarctica. They represent approximately 4000-6000 distinct falls, more than all non-Antarctic meteorite falls and finds combined. Recently many meteorite specimens of a new "population" have become available: meteorites from hot deserts. It turned out that suitable surfaces in hot deserts, like the Sahara in Africa, the Nullarbor Plain in Western and South Australia, or desert high plains of the U.S. (e.g., Roosevelt County, New Mexico), contain relatively high meteorite concentrations. For example, the 1985 Catalogue of Meteorites of the British Museum lists 20 meteorites from Algeria and Libya. Today, 1246 meteorites finds from these two countries have been published in MetBase 4.0. Four workshops in 1982, 1985, 1988, and 1989 have discussed the connections between Antarctic glaciology and Antarctic meteorites, and the differences between Antarctic meteorites and modem falls. In 1995, a workshop addressed differences between meteorites from Antarctica, hot deserts, and modem falls, and the implications of possible different parent populations, infall rates, and weathering processes. Since 1995 many more meteorites have been recovered from new areas of Antarctica and hot deserts around the world. Among these finds are several unusual and interesting specimens like lunar meteorites or SNCs of probable martian origin. The Annual Meeting of the Meteoritical Society took place in 1999 in Johannesburg, South Africa. As most of the recent desert finds originate from the Sahara, a special workshop was planned prior to this meeting in Africa. Topics discussed included micrometeorites, which have been collected in polar regions as well as directly in the upper atmosphere. The title "Workshop on Extraterrestrial Materials from Cold and Hot Deserts" was chosen and the following points were emphasized: (1) weathering processes, (2) terrestrial ages, (3) investigations of "unusual" meteorites, and (4) collection and curation.
    Keywords: Astrophysics
    Type: LPI-Contrib-997 , Extraterrestrial Materials from Cold and Hot Deserts; Jul 06, 1999 - Jul 08, 1999; Kawa-Maritane; South Africa
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-15
    Description: Intraseasonal oscillations appearing in a newly available 20-year record of satellite-derived surface air temperature are composited with respect to the lunar phase. Polar regions exhibit strong lunar phase modulation with higher temperatures occurs near full moon and lower temperatures at new moon, in agreement with previous studies. The polar response to the apparent lunar forcing is shown to be most robust in the winter months when solar influence is minimum. In addition, the response appears to be influenced by ENSO events. The highest mean temperature range between full moon and new moon in the polar region between 60 deg and 90 deg latitude was recorded in 1983, 1986/87, and 1990/91. Although the largest lunar phase signal is in the polar regions, there is a tendency for meridional equatorward progression of anomalies in both hemispheres so that the warning in the tropics occurs at the time of the new moon.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-15
    Description: Spectroscopy remains a powerful tool for inferring the modal mineralogy and mafic mineral composition of asteroid surfaces. Since similar measurements can be made on meteorite samples, spectroscopy can help link the two populations and add spatial and geologic context to detailed geochemical knowledge derived from meteorite samples. For example, analysis of the recent NEAR-Shoemaker mission to Eros include detailed study of NIS spectra to assess the affinity of Eros to ordinary chondrites. As discussed in these studies, pyroxene (PYX) and olivine (OLV) absorption are readily detectable in the spectra. Furthermore, subtleties in band parameters (position vs. area) suggest the presence of both low- and high-calcium pyroxene (LCP and HCP), as expected from the petrology of ordinary chondrites. However unambiguous identification and detailed compositional inferences for both LCP and HCP (and OLV) are difficult from band parameters analysis. In this study, we examine spectra of S-asteroids and meteorites with the Modified Gaussian Model (MGM), an absorption band model, to explore the role of HCP in these silicate-rich spectra.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-15
    Description: We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-15
    Description: Spectroscopy remains a powerful tool for inferring the modal mineralogy and mafic mineral composition of asteroid surfaces. Since similar measurements can be made on meteorite samples, spectroscopy can help link the two populations and add spatial and geologic context to detailed geo knowledge derived from meteorite samples. For example, analysis of the recent NEAR-Shoemaker mission to Eros include detailed study of NIS spectra to assess the affinity of Eros to ordinary chondrites. As discussed in these studies, pyrox (PYX) and olivine (OLV) absorption are readily detectable in the spectra. Furthermore, subtleties in band parameters (position vs. area) suggest the presence of both low- and high-calcium pyroxene (LCP and HCP), as expected from the petrology of ordinary chondrites. However unambiguous identification and detailed compositional inferences for both LCP and HCP (and OLV) are difficult from band parameters analysis. In this study, we examine spectra of S-asteroids and meteorites with the Modified Gaussian Model (MGM), an absorption band model, to explore the role of HCP in these silicate-rich spectra.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-15
    Description: Langmuir waves driven to high levels by beam instabilities are subject to nonlinear processes, including the closely related processes of scattering off thermal ions (STI) and a decay process in which the ion response is organized into a product ion acoustic wave. Calculations of the nonlinear growth rates predict that the decay process should always dominate STI, creating two paradoxes. The first is that three independent computer simulation studies show STI proceeding, with no evidence for the decay at all. The second is that observations in space of type 3 solar radio bursts and Earth's foreshock, which the simulations were intended to model, show evidence for the decay proceeding but no evidence for STI. Resolutions to these paradoxes follow from the realization that a nonlinear process cannot proceed when its growth rate exceeds the minimum frequency of the participating waves, since the required collective response cannot be maintained and the waves cannot respond appropriately, and that a significant number of e-foldings and wave periods must be contained in the time available. It is shown that application of these 'collective' and 'time scale' constraints to the simulations explains why the decay does not proceed in them, as well as why STI proceeds in specific simulations. This appears to be the first demonstration that collective constraints are important in understanding nonlinear phenomena. Furthermore, applying these constraints to space observations, it is predicted that the decay should proceed (and dominate STI) in type 3 sources and the high beam speed regions of Earth's foreshock for a specific range of wave levels, with a possible role for STI alone at slightly higher wave levels. Deeper in the foreshock, for slower beams and weaker wave levels, the decay and STI are predicted to become ineffective. Suggestions are given for future testing of the collective constraint and an explanation for why waves in space are usually much weaker than in the simulations.
    Keywords: Astrophysics
    Type: Physics of Plasmas (ISSN 1070-664X); 7; 12; 4901-4915
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-15
    Description: We have made remarkable progress in the study of luminous supersoft X-ray sources during the past year. We have begun to discover a population of ultraluminous SSSs (e.g., in NGC 300 [Kong & Di Stefano 20031 as well as in Ml0l [Di Stefano & Kong 2003]), which may be accreting intermediate-mass (50-100 solar mass) black holes. This work follows from an algorithm we have developed (Di Stefano & Kong 2003) to identify SSSs in external galaxies, selecting them from among each galaxy s total population of X-ray sources. We have applied the algorithm to approximately one dozen galaxies and will make it public after it has been published in its entirety. Through our own application of the algorithm, we have discovered SSSs in every galaxy, mapping their spatial distribution, to obtain important clues to their fundamental natures. We have discovered that there is a large population of X-ray sources which are slightly hotter (100-250 eV) than standard SSSs. Some of these may be accreting BHs with masses between roughly 50 anf 100 solar masses. To explore this possibility, we are working on theoretical models for the formation and evolution of such systems (Di Stefano 2003).
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-15
    Description: On the Earth, the detectability of small seismic signals is limited by pervasive seismic background noise, caused primarily by interactions of the atmosphere and oceans with the solid surface. Mars, with a very thin atmosphere and no ocean is expected to have a noise level at least an order of magnitude lower than the Earth, and the airless Moon is even quieter still. These pristine low-vibration environments are ideal for searching for nuggets of "strange quark matter." Strange quark matter was postulated by Edward Witten [Phys. Rev. D30, 272, 1984] as the lowest possible energy state of matter. It would be made of up, down, and strange quarks, instead of protons and neutrons made only of up and down quarks. It would have nuclear densities, and hence be difficult to detect. Micron-sized nuggets would weigh in the ton range. As suggested by de Rujula and Glashow [Nature 312 (5996): 734, 1984], a massive strange quark nugget can generate a trail of seismic waves, as it traverses a celestial body. We discuss the mission concept for deploying a network of sensitive seismometers on Mars and on the Moon for such a search.
    Keywords: Astrophysics
    Type: Proceedings of the 2004 NASA/JPL Workshop on Physics for Planetary Exploration; JPL-Publ-05-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-15
    Description: I propose to continue providing observers with basic data for interpreting spectra from stars, novas, supernovas, clusters, and galaxies. These data will include allowed forbidden line lists both laboratory and computed, for the first five to ten ions of all atoms and for all relevant diatomic molecules. I will eventually expend to all ions of the first thirty elements to treat far UV end X-ray spectra, and for envelope opacities. I also include triatomic molecules providing by other researchers. I have made CDs with Partridge and Schwanke's water data for work on M stars.The luna data also serve as input to my model atmosphere and synthesis programs that generated energy distributions, photometry, limb darkening, and spectra that can be used for planning observations and for fitting observed spectra. The spectrum synthesis programs produce detailed plots with the line identified. Grids of stellar spectra can be used for radial velocity-, rotation-, or abundance templates and for population synthesis. I am fitting spectra of bright stars to test the data and to produce atlases to guide observer. For each star the whole spectrum is computed from the UV to the far IR. The line data, opacities, models, spectra, and programs are freely distributed on CDs and on my web site and represent a unique resource for many NASA programs.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-15
    Description: How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-14
    Description: In the initial awarding of the grant, we had difficulty phasing our proposed support of graduate students, postdoctoral fellows and young US scientists with the meeting schedule and the grant cycle. Initially, the grant arrived too late to support the meeting. The following year, a combination of the renewal process and the meeting announcement prevented us from announcing the support opportunity sufficiently in advance to allow us to make awards and provide support. As described in the initial proposal, the Moriond and Blois meetings are a unique opportunity for younger researchers to make oral presentations of their work at an international venue. As noted above, the phasing of meetings combined with the difficulty of arranging foreign travel for scientists at other institutions precluded the possibility of supporting the proposed meetings and providing young US scientists and post-doctoral fellows support to attend these meetings.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...