ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nature Publishing Group  (13,578)
  • 2005-2009  (13,578)
Collection
Years
Year
  • 11
    Publication Date: 2017-02-22
    Description: Subduction zones are often characterized by wedge-shaped sedimentary complexes—called accretionary prisms—that form when sediments are scraped off the subducting plate and added to the overriding plate. Large, landward-dipping thrust faults can cut through such a prism: these faults, known as 'megasplay faults'1, 2, originate near the top of the subducting plate and terminate at the shallow, landward edge of the prism1, 3, 4, 5, 6. Megasplay faults have been the subject of numerous geological and geophysical studies4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, but their initiation and evolution through time remains poorly constrained. Here we combine seismic reflection data from the Nankai accretionary wedge with geological data collected by the Integrated Ocean Drilling Program (IODP) and find that the splay fault cutting this wedge initiated approx1.95 Million years (Myr) ago in the lower part of the prism as an out-of-sequence thrust (OOST). After an initial phase of high activity, the movement along the fault slowed down, but uplift and reactivation of the fault resumed about 1.55 Myr ago. The alternating periods of high and low activity along the splay fault that we document hint at episodic changes in the mechanical stability of accretionary prisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 459 (7244). pp. 166-167.
    Publication Date: 2019-03-08
    Description: As scientists discover more about the genomes of marine microorganisms, new views of their physiology and ecosystem networks are opening up, explain Alexandra Z. Worden and Darcy McRose. "Alien Ocean: Anthropological Voyages in Microbial Seas by Stefan Helmreich University of California Press: 2009. 464 pp."
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  The ISME Journal, 3 (1). pp. 4-12.
    Publication Date: 2019-09-24
    Description: Our understanding of the composition and activities of microbial communities from diverse habitats on our planet has improved enormously during the past decade, spurred on largely by advances in molecular biology. Much of this research has focused on the bacteria, and to a lesser extent on the archaea and viruses, because of the relative ease with which these assemblages can be analyzed and studied genetically. In contrast, single-celled, eukaryotic microbes (the protists) have received much less attention, to the point where one might question if they have somehow been demoted from the position of environmentally important taxa. In this paper, we draw attention to this situation and explore several possible (some admittedly lighthearted) explanations for why these remarkable and diverse microbes have remained largely overlooked in the present era of the microbe. © 2009 International Society for Microbial Ecology All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 459 . pp. 243-248.
    Publication Date: 2017-03-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-03-06
    Description: Widespread evidence of a +4–6-m sea-level highstand during the last interglacial period (Marine Isotope Stage 5e) has led to warnings that modern ice sheets will deteriorate owing to global warming and initiate a rise of similar magnitude by ad 2100 (ref. 1). The rate of this projected rise is based on ice-sheet melting simulations and downplays discoveries of more rapid ice loss2, 3. Knowing the rate at which sea level reached its highstand during the last interglacial period is fundamental in assessing if such rapid ice-loss processes could lead to future catastrophic sea-level rise. The best direct record of sea level during this highstand comes from well-dated fossil reefs in stable areas4, 5, 6. However, this record lacks both reef-crest development up to the full highstand elevation, as inferred7 from widespread intertidal indicators at +6 m, and a detailed chronology, owing to the difficulty of replicating U-series ages on submillennial timescales8. Here we present a complete reef-crest sequence for the last interglacial highstand and its U-series chronology from the stable northeast Yucatán peninsula, Mexico. We find that reef development during the highstand was punctuated by reef-crest demise at +3 m and back-stepping to +6 m. The abrupt demise of the lower-reef crest, but continuous accretion between the lower-lagoonal unit and the upper-reef crest, allows us to infer that this back-stepping occurred on an ecological timescale and was triggered by a 2–3-m jump in sea level. Using strictly reliable 230Th ages of corals from the upper-reef crest, and improved stratigraphic screening of coral ages from other stable sites, we constrain this jump to have occurred approx121 kyr ago and conclude that it supports an episode of ice-sheet instability during the terminal phase of the last interglacial period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-03-13
    Description: Although rising global sea levels will affect the shape of coastlines over the coming decades1, 2, the most severe and catastrophic shoreline changes occur as a consequence of local and regional-scale processes. Changes in sediment supply3 and deltaic subsidence4, 5, both natural or anthropogenic, and the occurrences of tropical cyclones4, 5 and tsunamis6 have been shown to be the leading controls on coastal erosion. Here, we use satellite images of South American mangrove-colonized mud banks collected over the past twenty years to reconstruct changes in the extent of the shoreline between the Amazon and Orinoco rivers. The observed timing of the redistribution of sediment and migration of the mud banks along the 1,500 km muddy coast suggests the dominant control of ocean forcing by the 18.6 year nodal tidal cycle7. Other factors affecting sea level such as global warming or El Niño and La Niña events show only secondary influences on the recorded changes. In the coming decade, the 18.6 year cycle will result in an increase of mean high water levels of 6 cm along the coast of French Guiana, which will lead to a 90 m shoreline retreat.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-06-09
    Description: The new aromatic polyketides genoketide A1, genoketide A2 and prechrysophanol glucuronide are biosynthetic intermediates of the octaketide chrysophanol. They were isolated from the alkaliphilic strain Streptomyces sp. AK 671 together with the new metabolite chrysophanol glucuronide. The structures of the compounds were elucidated by mass spectrometry and NMR methods. Genoketide A2 exhibited a slight and prechrysophanol glucuronide a more pronounced inhibition of the proliferation of L5178y lymphoma cells.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-23
    Description: Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC)1. Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic2, 3 (RAPID, at latitude 26.5° N, and MOVE, at latitude 16° N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades4, 5. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of plusminus1.5–3 Sv (1 Sv = 106 m3 s-1) on decadal timescales in the subtropics6. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water7. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 1 (1). pp. 14-15.
    Publication Date: 2017-02-22
    Description: The relationship between carbon dioxide and climate over millions of years has been a source of controversy. Fossilized liverwort leaves can help illuminate both temperature and atmospheric carbon dioxide levels from 200 to 60 million years ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-02-23
    Description: Despite similar physical properties, the Northern and Southern Atlantic subtropical gyres have different biogeochemical regimes. The Northern subtropical gyre, which is subject to iron deposition from Saharan dust1, is depleted in the nutrient phosphate, possibly as a result of iron-enhanced nitrogen fixation2. Although phosphate depleted, rates of carbon fixation in the euphotic zone of the North Atlantic subtropical gyre are comparable to those of the South Atlantic subtropical gyre3, which is not phosphate limited. Here we use the activity of the phosphorus-specific enzyme alkaline phosphatase to show potentially enhanced utilization of dissolved organic phosphorus occurring over much of the North Atlantic subtropical gyre. We find that during the boreal spring up to 30% of primary production in the North Atlantic gyre is supported by dissolved organic phosphorus. Our diagnostics and composite map of the surface distribution of dissolved organic phosphorus in the subtropical Atlantic Ocean reveal shorter residence times in the North Atlantic gyre than the South Atlantic gyre. We interpret the asymmetry of dissolved organic phosphorus cycling in the two gyres as a consequence of enhanced nitrogen fixation in the North Atlantic Ocean4, which forces the system towards phosphorus limitation. We suggest that dissolved organic phosphorus utilization may contribute to primary production in other phosphorus-limited ocean settings as well.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...