ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The effect of horizontal resolution on tropical variability is investigated within the modified SINTEX model, SINTEX-F, developed jointly at INGV, IPSL and at the Frontier Research System. The horizontal resolutions T30 and T106 are investigated in terms of the coupling characteristics, frequency and variability of the tropical ocean-atmosphere interactions. It appears that the T106 resolution is generally beneficial even if it does not eliminate all the major systematic errors of the coupled model. There is an excessive shift west of the cold tongue and ENSO variability, and high resolution has also a somewhat negative impact to the variability in the East Indian Ocean. A dominant two-year peak for the NINO3 variabilty in the T30 model is moderated in the T106 as it shifts to longer time scale. At high resolution new processes come into play, as the coupling of tropical instability waves, the resolution of coastal flows at the Pacific Mexican coasts and improved coastal forcing along the coast of South America. The delayed oscillator seems the main mechanism that generates the interannual variability in both models, but the models realize it in different ways. In the T30 model it is confined close to the equator, involving relatively fast equatorial and near-equatorial modes, in the high resolution, it involves a wider latitudinal region and slower waves. It is speculated that the extent of the region that is involved in the interannual variability may be linked to the time scale of the variability itself.
    Description: This research was partially supported by the Italy–USA Cooperation Program of the Italian Ministry of Environment and by the EU projects ENSEMBLES and DYNAMITE.
    Description: Published
    Description: 730-750
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: coupled models ; tropical variability ; ENSO system ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Ensemble experiments are performed with five coupled atmosphere–ocean models to investigate the potential for initial-value climate forecasts on interannual to decadal time scales. Experiments are started from similar model-generated initial states, and common diagnostics of predictability are used. We find that variations in the ocean meridional overturning circulation (MOC) are potentially predictable on interannual to decadal time scales, a more consistent picture of the surface temperature impact of decadal variations in the MOC is now apparent, and variations of surface air temperatures in the North Atlantic Ocean are also potentially predictable on interannual to decadal time scales, albeit with potential skill levels that are less than those seen for MOC variations. This intercomparison represents a step forward in assessing the robustness of model estimates of potential skill and is a prerequisite for the development of any operational forecasting system.
    Description: Published
    Description: 1195-1203
    Description: JCR Journal
    Description: reserved
    Keywords: Decadal Climate ; North Atlantic ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models ; 03. Hydrosphere::03.02. Hydrology::03.02.05. Models and Forecasts ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...