ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press
  • 2005-2009  (7,384)
  • 1960-1964  (3,736)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  Biased embryos and evolution vol. 74, 1/2, pp. 209-211
    Publication Date: 2024-01-12
    Keywords: evolution ; natural selection ; variation ; developmental bias
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/review
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    International Glaciological Society | Cambridge University Press
    Publication Date: 2024-01-07
    Description: Sea ice deforms under convergent and Shear motion, causing rafting and ridging. This results in thicker ice than could be formed by thermodynamic growth only. Three different approaches to Simulating the formation of pressure ridges in a dynamic–thermodynamic continuum model are considered. They are compared with and evaluated by airborne laser profiles of the Sea-ice Surface roughness. The respective characteristic of each of the three ridging Schemes is (1) a prognostic equation for deformation energy from which ridge parameters are derived; (2) a redistribution function, Shifting ice between two categories, level and ridged, combined with a Monte Carlo Simulation for ridge parameters; and (3) prognostic equations for ridge density and height, resulting in the formation of ridged-ice volume. The model results Show that the ridge density is typically related to the State of ice motion, whereas the mean Sail height is related to the parent ice thickness. In general, all of the three models produce realistic distributions of ridges. Finally, the Second ridging Scheme is regarded as the most appropriate for climate modelling, while the third Scheme has advantages in Short-term Sea-ice forecasting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2005. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 536 (2005): 253-283, doi:10.1017/S0022112005004544.
    Description: The generation of a gravity current by the release of a semi-infinite region of buoyant fluid of depth $H$ overlying a deeper, denser and quiescent lower layer in a rotating channel of width $w$ is considered. Previous studies have focused on the characteristics of the gravity current head region and produced relations for the gravity current speed $c_{b}$ and width $w_b$ as a functions of the local current depth along the wall $h_b$, reduced gravity $g^\prime$, and Coriolis frequency $f$. Here, the dam-break problem is solved analytically by the method of characteristics assuming reduced-gravity flow, uniform potential vorticity and a semigeostrophic balance. The solution makes use of a local gravity current speed relation $c_{b} \,{=}\, c_b(h_b,\ldots)$ and a continuity constraint at the head to close the problem. The initial value solution links the local gravity current properties to the initiating dam-break conditions. The flow downstream of the dam consists of a rarefaction joined to a uniform gravity current with width $w_b$ (${\le}\, w$) and depth on the right-hand wall of $h_b$, terminated at the head moving at speed $c_b$. The solution gives $h_b$, $c_b$, $w_b$ and the transport of the boundary current as functions of $w/L_R$, where $L_R \,{=}\, \sqrt{g^\prime H}/f$ is the deformation radius. The semigeostrophic solution compares favourably with numerical solutions of a single-layer shallow-water model that internally develops a leading bore. Existing laboratory experiments are re-analysed and some new experiments are undertaken. Comparisons are also made with a three-dimensional shallow-water model. These show that lateral boundary friction is the primary reason for differences between the experiments and the semigeostrophic theory. The wall no-slip condition is identified as the primary cause of the experimentally observed decrease in gravity current speed with time. A model for the viscous decay is developed and shown to agree with both experimental and numerical model data.
    Description: This work was supported by NSF Grants OCE-0095059 and OCE-0132903.
    Keywords: Gravity current ; Dam-break problem
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 952630 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2006. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 561 (2006):103–112, doi:10.1017/S0022112006000991
    Description: A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting from the propagation of internal waves of arbitrary amplitude is derived using the concept of available potential energy. The method can be applied to numerical, laboratory or field data.
    Description: MBIWE98 was supported by the US Geological Survey and the Office of Naval Research. A.S. received support from the Office of Naval Research (N00014-05-1-0361), R.B. from the Walter A. and Hope Noyes Smith Chair on Coastal Oceanography and B.B. from the US Geological Survey.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2003. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 490 (2003): 189-215, doi:10.1017/S0022112003005007.
    Description: The baroclinic instability of a zonal current on the beta-plane is studied in the context of the two-layer model when the shear of the basic current is a periodic function of time. The basic shear is contained in a zonal channel and is independent of the meridional direction. The instability properties are studied in the neighbourhood of the classical steady-shear threshold for marginal stability. It is shown that the linear problem shares common features with the behaviour of the well-known Mathieu equation. That is, the oscillatory nature of the shear tends to stabilize an otherwise unstable current while, on the contrary, the oscillation is able to destabilize a current whose time-averaged shear is stable. Indeed, this parametric instability can destabilize a flow that at every instant possesses a shear that is subcritical with respect to the standard stability threshold. This is a new source of growing disturbances. The nonlinear problem is studied in the same near neighbourhood of the marginal curve. When the time-averaged flow is unstable, the presence of the oscillation in the shear produces both periodic finite-amplitude motions and aperiodic behaviour. Generally speaking, the aperiodic behaviour appears when the amplitude of the oscillating shear exceeds a critical value depending on frequency and dissipation. When the time-averaged flow is stable, i.e. subcritical, finite-amplitude aperiodic motion occurs when the amplitude of the oscillating part of the shear is large enough to lift the flow into the unstable domain for at least part of the cycle of oscillation. A particularly interesting phenomenon occurs when the time-averaged flow is stable and the oscillating part is too small to ever render the flow unstable according to the standard criteria. Nevertheless, in this regime parametric instability occurs for ranges of frequency that expand as the amplitude of the oscillating shear increases. The amplitude of the resulting unstable wave is a function of frequency and the magnitude of the oscillating shear. For some ranges of shear amplitude and oscillation frequency there exist multiple solutions. It is suggested that the nature of the response of the finite-amplitude behaviour of the baroclinic waves in the presence of the oscillating mean flow may be indicative of the role of seasonal variability in shaping eddy activity in both the atmosphere and the ocean.
    Description: J.P.’s research is supported in part by a grant from NSF, OCE 9901654.
    Keywords: Baroclinic instability ; Baroclinic waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 393774 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2000. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Zygote 8 (2000): 15-24, doi:10.1017/S0967199400000782.
    Description: The physiology of the early embryo may be indicative of embryo vitality and therefore methods for non-invasively monitoring physiological parameters from embryos could improve preimplantation diagnoses. The self-referencing electrophysiological technique is capable of non-invasive measurement of the physiology of individual cells by monitoring the movement of ions and molecules between the cell and the surrounding media. Here we use this technique to monitor gradients of calcium, potassium, oxygen and hydrogen peroxide around individual mouse preimplantation embryos. The calcium-sensitive electrode in self-referencing mode identified a region of elevated calcium concentration ([similar]0.25 pmol) surrounding each embryo. The calcium gradient surrounding embryos was relatively steep, such that the region of elevated calcium extended into the medium only 4 [mu]m from the embryo. By contrast, using an oxygen-sensitive electrode an extensive gradient of reduced dissolved oxygen concentration was measured surrounding the embryo and extended tens of micrometres into the medium. A gradient of neither potassium nor hydrogen peroxide was observed around unperturbed embryos. We also demonstrate that monitoring the physiology of embryos using the self-referencing technique does not compromise their subsequent development. Blastocysts studied with the self-referencing technique implanted and developed to term at the same frequency as did unexamined, control embryos. Therefore, the self-referencing electrode provides a valuable non-invasive technique for studying the physiology and pathophysiology of individual embryos without hindering their subsequent development.
    Description: A portion of this work was funded by an NIH R21 #RR 12718–02 to D.L.K. and P.J.S.S., KO81099 to D.L.K. and NIH P41 RR01395 to P.J.S.S.
    Keywords: Calcium ; Embryo physiology ; Embryo transfer ; Oxygen ; Preimplantation diagnosis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 357072 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Cambridge University Press
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2005. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 529 (2005): 71-95, doi:10.1017/S0022112005003393.
    Description: The role of mesoscale oceanic eddies in driving large-scale currents is studied in an eddy-resolving midlatitude double-gyre ocean model. The reference solution is decomposed into large-scale and eddy components in a way which is dynamically consistent with a non-eddy-resolving ocean model. That is, the non-eddy-resolving solution driven by this eddy-forcing history, calculated on the basis of this decomposition, correctly approximates the original flow. The main effect of the eddy forcing on the large-scale flow is to enhance the eastward-jet extension of the subtropical western boundary current. This is an anti-diffusive process, which cannot be represented in terms of turbulent diffusion. It is shown that the eddy-forcing history can be approximated as a space–time correlated, random-forcing process in such a way that the non-eddy-resolving solution correctly approximates the reference solution. Thus, the random-forcing model can potentially replace the diffusion model, which is commonly used to parameterize eddy effects on the large-scale currents. The eddy-forcing statistics are treated as spatially inhomogeneous but stationary, and the dynamical roles of space–time correlations and spatial inhomogeneities are systematically explored. The integral correlation time, oscillations of the space correlations, and inhomogeneity of the variance are found to be particularly important for the flow response.
    Description: Funding for this research was provided by NSF grants OCE 0091836 and OCE 03-44094, by the Royal Society Fellowship, and by WHOI grants 27100056 and 52990035.
    Keywords: Mesoscale oceanic eddies ; Large-scale currents ; Random-forcing model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2965982 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2002. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 464 (2002): 251-278, doi:10.1017/S0022112002008868.
    Description: The dynamics of buoyant gravity currents in a rotating reference frame is a classical problem relevant to geophysical applications such as river water entering the ocean. However, existing scaling theories are limited to currents propagating along a vertical wall, a situation almost never realized in the ocean. A scaling theory is proposed for the structure (width and depth), nose speed and flow field characteristics of buoyant gravity currents over a sloping bottom as functions of the gravity current transport Q, density anomaly g[prime prime or minute], Coriolis frequency f, and bottom slope [alpha]. The nose propagation speed is cp [similar] cw/ (1 + cw/c[alpha]) and the width of the buoyant gravity current is Wp [similar] cw/ f(1 + cw/c[alpha]), where cw = (2Qg[prime prime or minute] f)1/4 is the nose propagation speed in the vertical wall limit (steep bottom slope) and c[alpha] = [alpha]g/f is the nose propagation speed in the slope-controlled limit (small bottom slope). The key non-dimensional parameter is cw/c[alpha], which indicates whether the bottom slope is steep enough to be considered a vertical wall (cw/c[alpha] [rightward arrow] 0) or approaches the slope-controlled limit (cw/c[alpha] [rightward arrow] [infty infinity]). The scaling theory compares well against a new set of laboratory experiments which span steep to gentle bottom slopes (cw/c[alpha] = 0.11–13.1). Additionally, previous laboratory and numerical model results are reanalysed and shown to support the proposed scaling theory.
    Description: This research was supported by NSF grant OCE-0095059.
    Keywords: Buoyant gravity currents ; Scaling theory ; Sloping bottom
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1059929 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © Cambridge University Press, 2003. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of the Marine Biological Association of the UK 83 (2003): 1347-1350, doi:10.1017/S0025315403008798.
    Description: Trophic positions (TP) were estimated for the blue shark (Prionace glauca), shortfin mako (Isurus oxyrinchus), thresher shark (Alopias vulpinus), and basking shark (Cetorhinus maximus) using stable isotope ratios of carbon ([delta]13C) and nitrogen ([delta]15N). The basking shark had the lowest TP (3·1) and [delta]15N value (10·4‰), whereas the thresher shark had the highest values (4·5, 15·2‰). Mako sharks showed considerable variation in TP and isotopic values, possibly due to foraging from both inshore and offshore waters. Thresher sharks were significantly more enriched in [delta]15N than blue sharks and mako sharks, suggesting a different prey base. The [delta]13C values of thresher sharks and mako sharks varied significantly, but neither was significantly different from that of blue sharks. No statistical differences were found between our TP estimations and those derived from published stomach contents analyses, indicating that stable isotope data may be used to estimate the trophic status of sharks.
    Description: This work was supported by National Marine Fisheries Service Grant NA16MF1323 to M.E.L.
    Keywords: Prionace glauca ; Isurus oxyrinchus ; Alopias vulpinus ; Cetorhinus maximus ; Trophic positions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 129456 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Cambridge University Press, 2000. This article is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 403 (2000): 37-65, doi:10.1017/S0022112099006916.
    Description: The dynamics of expanding domes of isothermal lava are studied by treating the lava as a viscoplastic material with the Herschel–Bulkley constitutive law. Thin-layer theory is developed for radially symmetric extrusions onto horizontal plates. This provides an evolution equation for the thickness of the fluid that can be used to model expanding isothermal lava domes. Numerical and analytical solutions are derived that explore the effects of yield stress, shear thinning and basal sliding on the dome evolution. The results are briefly compared with an experimental study. It is found that it is difficult to unravel the combined effects of shear thinning and yield stress; this may prove important to studies that attempt to infer yield stress from morphology of flowing lava.
    Description: The financial support of an EPSRC Advanced Fellowship is gratefully acknowledged by R.V. C. N. J. B. was partially supported by the NSF Grant OCE-9616017 and an EPSRC Visiting Fellowship Grant GR/M50409.
    Keywords: Isothermal lava domes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1102860 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...