ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (15)
  • Elsevier  (10)
  • Wiley-Blackwell  (5)
  • Copernicus
  • 2010-2014  (15)
Collection
Years
Year
  • 1
    Publication Date: 2021-04-20
    Description: The spatial clustering of basaltic vents in monogenetic volcanic fields has been used as a proxy for crustal thickness in extensional and back-arc tectonic settings. The basaltic vents have a fractal clustered distribution (self-similar clustering) described by a power-law. The power-law is defined over a range, the size range of the distribution, of values (in this case the vents' separation) delimited by a lower and an upper cut-offs. Here we apply the fractal clustering analysis to the two largest monogenetic volcanic fields of the Trans-Mexican Volcanic Belt (TMVB), a continental arc built on different crustal terranes. The Michoacan–Guanajuato volcanic field (MGVF), located in the central-western TMVB, includes over 1000 vents of late Pliocene to Quaternary age, built on attenuated crust of Mesozoic to Tertiary age. The Sierra de Chichinautzin volcanic field (SCVF), in the central-eastern TMVB, is composed of ~ 220 Late Pleistocene to Holocene vents laying above thicker crust of Precambrian to Tertiary age. Monogenetic vents in both volcanic fields show self-similar clustering with fractal exponent D = 1.67 in the range 1.3–38 km (MGVF) and D = 1.56 in the range 1.5–32 km (SCVF). The upper cut-off (Uco) for the power-law distribution of the MGVF well fits the crustal thickness below the volcanic field as derived from independent geophysical data. The Uco value of SCVF indicates a crust thickness of about 32 km, this value is in agreement with new geophysical data that indicate magma underplating the crust beneath the volcanic field area.
    Description: Published
    Description: 55-64
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Volcanic fields ; Tectonic ; Vent distribution ; Crust thickness ; Mexico ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-12-15
    Description: Structural observations carried out on the volcanic Island of Pantelleria show that the tectonic setting is dominated by NNE trending normal faults and by NW-striking right-lateral strike-slip faults with normal component of motion controlled by a ≈N 100°E oriented extension. This mode of deformation also controls the development of the eruptive fissures, dykes and eruptive centres along NNE–SSW belts that may thus represent the surface response to crustal cracking with associated magma intrusions. Magmatic intrusions are also responsible for the impressive vertical deformations that affect during the Late Quaternary the south-eastern segment of the island and producing a large dome within the Pantelleria caldera complex. The results of the structural analysis carried out on the Island of Pantelleria also improves the general knowledge on the Late Quaternary tectonics of the entire Sicily Channel. ESE–WNW directed extension, responsible for both the tectonic and volcano-tectonic features of the Pantelleria Island, also characterizes, at a greater scale, the entire channel as shown by available geodetic and seismological data. This mode of extension reactivates the older NW–SE trending fault segments bounding the tectonic troughs of the Channel as right-lateral strike-slip faults and produces new NNE trending pure extensional features (normal faulting and cracking) that preferentially develop at the tip of the major strike-slip fault zones. We thus relate the Late Quaternary volcanism of the Pelagian Block magmatism to dilatational strain on the NNE-striking extensional features that develop on the pre-existing stretched area and propagate throughout the entire continental crust linking the already up-welled mantle with the surface.
    Description: Published
    Description: 75-82
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Extensional tectonics ; Quaternary ; Volcanism ; Pantelleria Island ; Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-30
    Description: We present structural analysis, fluid inclusion data on calcite and quartz, and isotopic composition of calcite forming veins occurring in the upper crustal level and hosted in Oligocene sandstone in southern Tuscany (Italy). The veins have been analysed in two sites few kilometres apart, along well-exposed coastal cliffs and in an abandoned quarry. These two sites were at a different depths at the time of the vein formation with a Δh ~ 100 m. Structural analysis of veins provided estimations of stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)), driving stress ratio (R′ = (Pf − σ3)/(σ1 − σ3)) and fluid overpressure (ΔPo = Pf − σ3) at the time of vein formation. The estimated ΔPo is in the range of 42–103 MPa, Φ = 0.24 and R′ = 0.45, indicating that fluid pressure was higher than the intermediate principal stress at the time of veins formation. The veins' thickness (t) shows a clear power-law distribution (D = 1.8835 and R2 = 0.9762) in the lowermost site (coast) and a negative exponential distribution (a = 0.6943 and R2 = 0.9921) in the uppermost site (abandoned quarry). The vein thickness distributions have been used to compute the average transmissivity of the veins in the two sites. The computed transmissivity for the vein formation is ~ 10−4 m2 s−1, with higher values attained by the veins having negative exponential thickness distribution. Fluid inclusions studies highlighted that in both calcite and quartz, water-rich inclusions, with salinities of 2.2–4.3 wt.% NaCl equiv., and methane-rich inclusions were coevally trapped during fluid un-mixing processes. Thermogenic origin, from thermal maturation of organic matter present in the Macigno Formation, is proposed for methane. Whereas, the similarity between the δ18O (from 14.9 to 17.4‰) and δ13C (from −0.4 to −2.4‰) data of representative calcite veins and the isotopic composition (δ18O: 16.1‰, δ13C: −1.0‰) of host-rock carbonate component, indicates that the fluid which formed calcite was in isotopic equilibrium with the carbonates present in the Oligocene sandstones. The calculated pressure–temperature conditions during the formation of these inclusions are prevalently within the 40–145 MPa and 160–260 °C ranges. The highest pressure values approximate the lithostatic pressure (~ 120 MPa) computed from geological data and are coherent with a geothermal gradient ranges of 35–45 °C/km. Whereas, the lower pressure values are comparable with hydrostatic pressure conditions. The pressure range indicated by fluid inclusion data is also comparable with the fluid pressure estimated from structural analysis. The considerable pressure range can be related to pressure cycling between lithostatic and hydrostatic conditions as a consequence of fault-valve actions and rock fracturing with subsequent pressure recover due to self-sealing process.
    Description: Published
    Description: 118-138
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Vein systems ; Fluid type ; Fluid pressure ; Fluid inclusions ; Upper crust ; Tuscany ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-07
    Description: Low-field anisotropy of magnetic susceptibility (AMS) analyses were performed on 532 samples col-lected in 36 (mostly lower Pliocene to lower Pleistocene) marine clay sites from the Crotone basin, afore-arc basin located on top of the external Calabrian accretionary wedge. The Crotone basin formedsince mid-late Miocene under a predominant extensional tectonic regime, but it was influenced there-after by complex interactions with NW–SE left-lateral strike-faults bounding the basin, which also yieldedpost-1.2 Ma ~30◦counterclockwise block rotations. The basin is filled by continental to marine sedimentsyielding one of the thickest and best-exposed Neogene succession available worldwide. The deep-marinefacies – represented by blue-grey marly clays gave the best results, as they both preserved a clear mag-netic fabric, and provided accurate chronology based on previously published magnetostratigraphy andcalcareous plankton (i.e. foraminifers and nannofossils) biostratigraphy. Magnetic susceptibility rangeand rock magnetic analyses both indicate that AMS reflects paramagnetic clay matrix crystal arrange-ment. The fabric is predominantly oblate to triaxial, the anisotropy degree low (〈1.06), and the magneticfoliation mostly subparallel to bedding. Magnetic lineation is defined in 30 out of 36 sites (where thee12 angle is 〈35◦). By also considering local structural analysis data, we find that magnetic fabric wasgenerally acquired during the first tectonic phases occurring after sediment deposition, thus validatingits use as temporally dependent strain proxy. Although most of the magnetic lineations trend NW–SE andare orthogonal to normal faults (as observed elsewhere in Calabria), few NE–SW compressive lineationsshow that the Neogene extensional regime of the Crotone basin was punctuated by compressive episodes.Finally, compressive lineations (prolate magnetic fabric) documented along the strike-slip fault boundingthe basin to the south support the significance of Pleistocene strike-slip tectonics. Thus the Crotone basinshows a markedly different tectonics with respect to other internal and western basins of Calabria, asit yields a magnetic fabric still dominated by extensional tectonics but also revealing arc-normal short-ening episodes and recent strike-slip fault activity. The tectonics documented in the Crotone basin iscompatible with a continuous upper crustal structural reorganization occurring during the SE-migrationof the Calabria terrane above the Ionian subduction system.
    Description: Published
    Description: 67-79
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Description: restricted
    Keywords: Calabrian Arc, Anisotropy of magnetic susceptibility, Structural analysis, Fore-arc region ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The database and visualization facilities of Geographic Information System (GIS) software are employed to support the analysis of rock texture from thin section by image processing. A Microscopic Information System (MIS) is hence obtained. The method is applied to transmitted light images of 137 samples obtained from 8 granitoid rocks. A slide scanner and a mount for crossed polarization are used to acquire the input images. For each thin section 5 collimated RGB images are scanned: 4 under different directions of crossed polarization and 1 without polarization. A grain segmentation procedure, based on two region growing functions is applied. The output is converted to vector format and refined using editing tools in the MIS environment, which enables a straightforward match between the input imagery and the final vectorized texture. GIS software provides optimal management of the MIS database, allowing the cumulative measurement of more than 87 000 grains.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 5.3. TTC - Banche dati vulcanologiche
    Description: JCR Journal
    Description: open
    Keywords: Granitoid rocks ; Geographic Information System ; Image processing ; Petrography ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The Adriatic foreland of the Apennines comes ashore only in Apulia (easternmost Italy). Its southern part, our study area, lacks any structural analysis devoted to define its recent-to-active tectonics. Throughout the Quaternary, this region was affected by mild brittle deformation with rare faults, characterized by small displacement, and widespread extension joints, frequently organized in sets. Therefore, we conducted a quantitative and systematic analysis of the joint sets affecting Quaternary deposits, by applying an inversion technique ad hoc to infer the orientation and ratio of the principal stress axes, R = (σ2 - σ3)/(σ1 - σ3). Within a general extensional regime, we recognized three deformational events of regional significance. The oldest event, constrained to the early and middle part of the Middle Pleistocene, is characterized by variable direction of extension and R between 0.64-0.99. The penultimate event, dated late Middle Pleistocene, is characterized by an almost uniaxial tension, with a horizontal σ3 striking ~N43°E; R is high, between 0.85-0.99. The most recent event is characterized by the lowermost R values, that never exceed 0.47 and are frequently 〈0.30, indicating a sort of horizontal „radial‟ extension. This event is not older than the Late Pleistocene and possibly reflects the active stress field still dominating the entire study area.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Quaternary tectonics ; brittle deformation ; fracture ; Pleistocene ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Detailed structural analysis of tourmaline-rich veins hosted in the contact aureole of the ∼6 Ma Porto Azzurro granite in southeastern Elba Island, northern Tyrrhenian Sea is presented. Using geometric features of the veins, the physical conditions at the time of vein formation are estimated, namely the stress ratio (Φ = (σ2 − σ3)/(σ1 − σ3)), driving stress ratio (R′ = (Pf − σ3)/(σ1 − σ3)) and fluid overpressure (ΔPo = Pf − σ3). Two vein sets (A veins and B veins) have been recognized based on orientation and thickness distributions and infilling material. Analysis of vein pole distributions indicates Φ = 0.57 and R′ = 0.24 for the A veins and Φ = 0.58 and R′ = 0.47 for the B veins, and fluid pressures less than the intermediate stress magnitude. Analysis of geometric features of the veins gives estimated fluid overpressures of between ∼16 MPa (A veins) and ∼32 MPa (B veins). We propose a model for the tectonic environment of vein development, in which formation of secondary permeability in the deforming thermal aureole of the Porto Azzurro pluton was controlled by ongoing development of fracture systems in the hinge zone of a regional NNW–SSE trending fold that favored transport and localization of hydrothermal fluids.
    Description: Published
    Description: 1509-1522
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Thermal aureole ; Upper crust ; Deformation ; Fluid circulation ; Northern Apennines ; Elba Island ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We analyzed a broad region around L’Aquila in search of seismogenic faults similar to that responsible for the 6 April 2009 earthquake (Mw 6.3). Having the lessons learned from this earthquake in mind, we focused on adjacent areas displaying similar morphotectonic, geological and structural evidence. The basin running from Barisciano to Civitaretenga-Navelli, notably located near the southeastern edge of the 2009 aftershock pattern, appears to be one of such areas. We collected morphotectonic and structural data indicating that this basin is underlain by a major active normal fault (San Pio Fault). All the observations are very much reminiscent of the morphotectonic, geological and structural setting of area struck by the L’Aquila earthquake, suggesting that the newly identified fault has the potential for a Mw 6.2-6.4 shock.
    Description: Published
    Description: Pages: 108–115
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: Seismotectonics ; Morphotectonics ; Active fault ; San Pio basin ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2003. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.
    Description: In this study, we modify and extend a data analysis technique to determine the stress orientations between data clusters by adding an additional constraint governing the probability algorithm. We apply this technique to produce a map of the maximum horizontal compressive stress (S_Hmax) orientations in the greater European region (including Europe, Turkey and Mediterranean Africa). Using the World Stress Map dataset release 2008, we obtain analytical probability distributions of the directional differences as a function of the angular distance, θ. We then multiply the probability distributions that are based on pre-averaged data within θ〈3° of the interpolation point and determine the maximum likelihood estimate of the S_Hmax orientation. At a given distance, the probability of obtaining a particular discrepancy decreases exponentially with discrepancy. By exploiting this feature observed in the World Stress Map release 2008 dataset, we increase the robustness of our S_Hmax determinations. For a reliable determination of the most likely S_Hmax orientation, we require that 90% confidence limits be less than ±60° and a minimum of three clusters, which is achieved for 57% of the study area, with small uncertainties of less than ±10° for 7% of the area. When the data density exceeds 0.8×10^-3 data/km2, our method provides a means of reproducing significant local patterns in the stress field. Several mountain ranges in the Mediterranean display 90° changes in the S_Hmax orientation from their crests (which often experience normal faulting) and their foothills (which often experience thrust faulting). This pattern constrains the tectonic stresses to a magnitude similar to that of the topographic stresses.
    Description: This work was supported by the DPC-INGV 2008-2010 S1 project, the EU-FP7 project “Seismic Hazard Harmonization in Europe” (SHARE; Grant agreement no. 226967), and project MIUR-FIRB "Abruzzo" (code: RBAP10ZC8K_003).
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: partially_open
    Keywords: Neotectonics ; Seismicity and tectonics ; Fractures and faults ; Intra-plate processes ; Plate motions ; Dynamics: gravity and tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 05. General::05.02. Data dissemination::05.02.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-24
    Description: Integration of geologic, geomorphologic and seismologic data sets is used to reconstruct the recent tectonic evolution and active deformation pattern in the Val d’Agri area, located in the seismically active axial sector of the Southern Apennines (Italy). The western portion of the Apennines thrust belt has been affected by Pliocene–Quaternary extension during easterly roll-back and crustal delamination of the Adriatic slab. The bulk of Quaternary extension has been accommodated bySW-dipping oblique and normal faults,which have attained mature morphologic and structural features and, nowadays, separate mountain ranges from intermontane basins. However, in the present seismogenic belt, coseismic faulting locally occurs on NE-dipping structures, which might cut the inherited Pleistocene landscape. In theVal d’Agri basin, in spite of the large Early–Middle Pleistocene, displacement occurred on SW-dipping faults bordering its eastern flank, our investigations show that the recent basin evolution has been controlled by a NE-dipping fault system (Monti della Maddalena fault system, MMFS). This fault system cuts across the Monti della Maddalena range, west of the Agri valley and has not yet created an evident tectonic landscape. Notwithstanding, fault motion since the Middle Pleistocene might explain geomorphologic and hydrographic anomalies of the Agri river and its valley, where fault-controlled subsidence has captured the river course and produced an aggrading plain within a regional uplift context. Recent and ongoing motion is documented by fault scarplets in loose deposits, 14C ages of palaeosols and the spatial relation with low to moderate instrumental seismicity. Results from fault kinematic analysis are compatible with fault-plane solutions of local and regional seismic events, and indicate ∼NE–SW oriented extension. Recognition of the MMFS as a potential seismogenic fault increases the longitudinal extent of the NE-dipping, morphologically immature seismic sources in the Southern Apennines and argues against the range-bounding fault model for active extension in the region. The regional size of the NE-dipping seismogenic belt may result from impingement of a mantle wedge beneath the Apenninic chain and possibly track the external front of crustal delamination.
    Description: Published
    Description: 591-609
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: active tectonics ; crustal deformation ; earthquakes ; geomorphology ; normal faulting ; Southern Italy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...