ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (254)
  • Base Sequence
  • 2010-2014  (254)
Collection
  • Articles  (254)
Years
Year
  • 1
    Publication Date: 2010-05-21
    Description: Type II topoisomerases are required for the management of DNA tangles and supercoils, and are targets of clinical antibiotics and anti-cancer agents. These enzymes catalyse the ATP-dependent passage of one DNA duplex (the transport or T-segment) through a transient, double-stranded break in another (the gate or G-segment), navigating DNA through the protein using a set of dissociable internal interfaces, or 'gates'. For more than 20 years, it has been established that a pair of dimer-related tyrosines, together with divalent cations, catalyse G-segment cleavage. Recent efforts have proposed that strand scission relies on a 'two-metal mechanism', a ubiquitous biochemical strategy that supports vital cellular processes ranging from DNA synthesis to RNA self-splicing. Here we present the structure of the DNA-binding and cleavage core of Saccharomyces cerevisiae topoisomerase II covalently linked to DNA through its active-site tyrosine at 2.5A resolution, revealing for the first time the organization of a cleavage-competent type II topoisomerase configuration. Unexpectedly, metal-soaking experiments indicate that cleavage is catalysed by a novel variation of the classic two-metal approach. Comparative analyses extend this scheme to explain how distantly-related type IA topoisomerases cleave single-stranded DNA, unifying the cleavage mechanisms for these two essential enzyme families. The structure also highlights a hitherto undiscovered allosteric relay that actuates a molecular 'trapdoor' to prevent subunit dissociation during cleavage. This connection illustrates how an indispensable chromosome-disentangling machine auto-regulates DNA breakage to prevent the aberrant formation of mutagenic and cytotoxic genomic lesions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882514/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882514/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schmidt, Bryan H -- Burgin, Alex B -- Deweese, Joseph E -- Osheroff, Neil -- Berger, James M -- CA077373/CA/NCI NIH HHS/ -- GM033944/GM/NIGMS NIH HHS/ -- GM053960/GM/NIGMS NIH HHS/ -- GM08295/GM/NIGMS NIH HHS/ -- R01 CA077373/CA/NCI NIH HHS/ -- R01 CA077373-11S1/CA/NCI NIH HHS/ -- R01 CA077373-12/CA/NCI NIH HHS/ -- R01 GM033944/GM/NIGMS NIH HHS/ -- T32 CA009592/CA/NCI NIH HHS/ -- T32CA09592/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jun 3;465(7298):641-4. doi: 10.1038/nature08974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485342" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Base Sequence ; Catalytic Domain ; Crystallography, X-Ray ; DNA/*chemistry/genetics/*metabolism ; DNA Topoisomerases, Type I/*chemistry/*metabolism ; DNA Topoisomerases, Type II/*chemistry/*metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Saccharomyces cerevisiae/*enzymology ; Tyrosine
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-29
    Description: The nucleolytic activity of animal Argonaute proteins is deeply conserved, despite its having no obvious role in microRNA-directed gene regulation. In mice, Ago2 (also known as Eif2c2) is uniquely required for viability, and only this family member retains catalytic competence. To investigate the evolutionary pressure to conserve Argonaute enzymatic activity, we engineered a mouse with catalytically inactive Ago2 alleles. Homozygous mutants died shortly after birth with an obvious anaemia. Examination of microRNAs and their potential targets revealed a loss of miR-451, a small RNA important for erythropoiesis. Though this microRNA is processed by Drosha (also known as Rnasen), its maturation does not require Dicer. Instead, the pre-miRNA becomes loaded into Ago and is cleaved by the Ago catalytic centre to generate an intermediate 3' end, which is then further trimmed. Our findings link the conservation of Argonaute catalysis to a conserved mechanism of microRNA biogenesis that is important for vertebrate development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995450/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995450/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cheloufi, Sihem -- Dos Santos, Camila O -- Chong, Mark M W -- Hannon, Gregory J -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-38/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jun 3;465(7298):584-9. doi: 10.1038/nature09092.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20424607" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Anemia/genetics/metabolism ; Animals ; Argonaute Proteins ; Base Sequence ; *Biocatalysis ; Embryo, Mammalian/embryology/metabolism ; Eukaryotic Initiation Factor-2/genetics/*metabolism ; Homozygote ; MicroRNAs/*biosynthesis ; Molecular Sequence Data ; Ribonuclease III/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-10-19
    Description: The derivation of human ES cells (hESCs) from human blastocysts represents one of the milestones in stem cell biology. The full potential of hESCs in research and clinical applications requires a detailed understanding of the genetic network that governs the unique properties of hESCs. Here, we report a genome-wide RNA interference screen to identify genes which regulate self-renewal and pluripotency properties in hESCs. Interestingly, functionally distinct complexes involved in transcriptional regulation and chromatin remodelling are among the factors identified in the screen. To understand the roles of these potential regulators of hESCs, we studied transcription factor PRDM14 to gain new insights into its functional roles in the regulation of pluripotency. We showed that PRDM14 regulates directly the expression of key pluripotency gene POU5F1 through its proximal enhancer. Genome-wide location profiling experiments revealed that PRDM14 colocalized extensively with other key transcription factors such as OCT4, NANOG and SOX2, indicating that PRDM14 is integrated into the core transcriptional regulatory network. More importantly, in a gain-of-function assay, we showed that PRDM14 is able to enhance the efficiency of reprogramming of human fibroblasts in conjunction with OCT4, SOX2 and KLF4. Altogether, our study uncovers a wealth of novel hESC regulators wherein PRDM14 exemplifies a key transcription factor required for the maintenance of hESC identity and the reacquisition of pluripotency in human somatic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chia, Na-Yu -- Chan, Yun-Shen -- Feng, Bo -- Lu, Xinyi -- Orlov, Yuriy L -- Moreau, Dimitri -- Kumar, Pankaj -- Yang, Lin -- Jiang, Jianming -- Lau, Mei-Sheng -- Huss, Mikael -- Soh, Boon-Seng -- Kraus, Petra -- Li, Pin -- Lufkin, Thomas -- Lim, Bing -- Clarke, Neil D -- Bard, Frederic -- Ng, Huck-Hui -- England -- Nature. 2010 Nov 11;468(7321):316-20. doi: 10.1038/nature09531. Epub 2010 Oct 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Regulation Laboratory, Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20953172" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Line ; Cellular Reprogramming/genetics ; DNA-Binding Proteins/genetics/metabolism ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/genetics ; Fibroblasts/cytology/metabolism ; Gene Expression Regulation/genetics ; Genome, Human/*genetics ; Humans ; Induced Pluripotent Stem Cells/cytology/metabolism ; Mice ; Octamer Transcription Factor-3/genetics/metabolism ; *RNA Interference ; Repressor Proteins/genetics/*metabolism ; SOXB1 Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-01-15
    Description: All immune systems must distinguish self from non-self to repel invaders without inducing autoimmunity. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci protect bacteria and archaea from invasion by phage and plasmid DNA through a genetic interference pathway. CRISPR loci are present in approximately 40% and approximately 90% of sequenced bacterial and archaeal genomes, respectively, and evolve rapidly, acquiring new spacer sequences to adapt to highly dynamic viral populations. Immunity requires a sequence match between the invasive DNA and the spacers that lie between CRISPR repeats. Each cluster is genetically linked to a subset of the cas (CRISPR-associated) genes that collectively encode 〉40 families of proteins involved in adaptation and interference. CRISPR loci encode small CRISPR RNAs (crRNAs) that contain a full spacer flanked by partial repeat sequences. CrRNA spacers are thought to identify targets by direct Watson-Crick pairing with invasive 'protospacer' DNA, but how they avoid targeting the spacer DNA within the encoding CRISPR locus itself is unknown. Here we have defined the mechanism of CRISPR self/non-self discrimination. In Staphylococcus epidermidis, target/crRNA mismatches at specific positions outside of the spacer sequence license foreign DNA for interference, whereas extended pairing between crRNA and CRISPR DNA repeats prevents autoimmunity. Hence, this CRISPR system uses the base-pairing potential of crRNAs not only to specify a target, but also to spare the bacterial chromosome from interference. Differential complementarity outside of the spacer sequence is a built-in feature of all CRISPR systems, indicating that this mechanism is a broadly applicable solution to the self/non-self dilemma that confronts all immune pathways.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813891/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2813891/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marraffini, Luciano A -- Sontheimer, Erik J -- R03 AI079722/AI/NIAID NIH HHS/ -- R03 AI079722-01A1/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jan 28;463(7280):568-71. doi: 10.1038/nature08703. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, USA. marraffini@northwestern.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072129" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/genetics ; Base Pairing/genetics ; Base Sequence ; Conserved Sequence ; DNA, Intergenic/genetics ; Molecular Sequence Data ; Mutation/genetics ; RNA, Bacterial/*genetics/metabolism ; Repetitive Sequences, Nucleic Acid/*genetics/*immunology ; Staphylococcus epidermidis/*genetics/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-11-05
    Description: Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Garneau, Josiane E -- Dupuis, Marie-Eve -- Villion, Manuela -- Romero, Dennis A -- Barrangou, Rodolphe -- Boyaval, Patrick -- Fremaux, Christophe -- Horvath, Philippe -- Magadan, Alfonso H -- Moineau, Sylvain -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Nov 4;468(7320):67-71. doi: 10.1038/nature09523.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de biochimie, de microbiologie et de bio-informatique, Faculte des sciences et de genie, Groupe de recherche en ecologie buccale, Faculte de medecine dentaire, Felix d'Herelle Reference Center for Bacterial Viruses, Universite Laval, Quebec City, Quebec G1V 0A6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048762" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteriophages/*genetics/metabolism ; Base Sequence ; DNA, Intergenic/genetics/metabolism ; DNA, Viral/genetics/*metabolism ; Drug Resistance, Bacterial/genetics ; Genetic Loci/*genetics/*immunology ; Interspersed Repetitive Sequences/genetics ; Molecular Sequence Data ; Mutation ; Plasmids/genetics/*metabolism ; RNA, Bacterial/genetics/immunology ; Streptococcus thermophilus/genetics/*immunology/*virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-07-31
    Description: Small (〈200 nucleotide) RNA (sRNA) profiling of human cells using various technologies demonstrates unexpected complexity of sRNAs with hundreds of thousands of sRNA species present. Genetic and in vitro studies show that these RNAs are not merely degradation products of longer transcripts but could indeed have a function. Furthermore, profiling of RNAs, including the sRNAs, can reveal not only novel transcripts, but also make clear predictions about the existence and properties of novel biochemical pathways operating in a cell. For example, sRNA profiling in human cells indicated the existence of an unknown capping mechanism operating on cleaved RNA, a biochemical component of which was later identified. Here we show that human cells contain a novel type of sRNA that has non-genomically encoded 5' poly(U) tails. The presence of these RNAs at the termini of genes, specifically at the very 3' ends of known mRNAs, strongly argues for the presence of a yet uncharacterized endogenous biochemical pathway in cells that can copy RNA. We show that this pathway can operate on multiple genes, with specific enrichment towards transcript-encoding components of the translational machinery. Finally, we show that genes are also flanked by sense, 3' polyadenylated sRNAs that are likely to be capped.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058539/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058539/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kapranov, Philipp -- Ozsolak, Fatih -- Kim, Sang Woo -- Foissac, Sylvain -- Lipson, Doron -- Hart, Chris -- Roels, Steve -- Borel, Christelle -- Antonarakis, Stylianos E -- Monaghan, A Paula -- John, Bino -- Milos, Patrice M -- GM079756/GM/NIGMS NIH HHS/ -- MH60774/MH/NIMH NIH HHS/ -- R01 GM079756/GM/NIGMS NIH HHS/ -- R01 GM079756-01A1/GM/NIGMS NIH HHS/ -- R01 GM079756-02/GM/NIGMS NIH HHS/ -- R01 GM079756-03/GM/NIGMS NIH HHS/ -- R01 HG005230/HG/NHGRI NIH HHS/ -- England -- Nature. 2010 Jul 29;466(7306):642-6. doi: 10.1038/nature09190.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Helicos BioSciences Corporation, 1 Kendall Sq. Ste B7301 Cambridge, Massachusetts 02139-1671, USA. philippk08@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671709" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Genes/*genetics ; HeLa Cells ; Humans ; Models, Genetic ; Nucleotides/genetics ; Poly A/genetics/metabolism ; Poly U/genetics/metabolism ; RNA/biosynthesis/*classification/genetics/*metabolism ; RNA, Antisense/classification/genetics/metabolism ; Templates, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-08-13
    Description: The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models. Application of this technology to engineer genes in rats has not previously been possible because of the absence of germline-competent ES cells in this species. We have recently established authentic rat ES cells. Here we report the generation of gene knockout rats using the ES-cell-based gene targeting technology. We designed a targeting vector to disrupt the tumour suppressor gene p53 (also known as Tp53) in rat ES cells by means of homologous recombination. p53 gene-targeted rat ES cells can be routinely generated. Furthermore, the p53 gene-targeted mutation in the rat ES-cell genome can transmit through the germ line via ES-cell rat chimaeras to create p53 gene knockout rats. The rat is the most widely used animal model in biological research. The establishment of gene targeting technology in rat ES cells, in combination with advances in genomics and the vast amount of research data on physiology and pharmacology in this species, now provide a powerful new platform for the study of human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Chang -- Li, Ping -- Wu, Nancy L -- Yan, Youzhen -- Ying, Qi-Long -- 1R01 RR025881/RR/NCRR NIH HHS/ -- R01 OD010926/OD/NIH HHS/ -- R01 RR025881/RR/NCRR NIH HHS/ -- R01 RR025881-01A2/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 9;467(7312):211-3. doi: 10.1038/nature09368. Epub 2010 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Culture Techniques ; Embryo, Mammalian/cytology ; Embryonic Stem Cells/*cytology ; Female ; Gene Knockout Techniques/*methods ; *Genes, p53 ; Germ-Line Mutation ; Male ; Mice ; Molecular Sequence Data ; Rats/*genetics ; Rats, Inbred F344 ; Rats, Sprague-Dawley ; Recombination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-09-03
    Description: The structures of RNA molecules are often important for their function and regulation, yet there are no experimental techniques for genome-scale measurement of RNA structure. Here we describe a novel strategy termed parallel analysis of RNA structure (PARS), which is based on deep sequencing fragments of RNAs that were treated with structure-specific enzymes, thus providing simultaneous in vitro profiling of the secondary structure of thousands of RNA species at single nucleotide resolution. We apply PARS to profile the secondary structure of the messenger RNAs (mRNAs) of the budding yeast Saccharomyces cerevisiae and obtain structural profiles for over 3,000 distinct transcripts. Analysis of these profiles reveals several RNA structural properties of yeast transcripts, including the existence of more secondary structure over coding regions compared with untranslated regions, a three-nucleotide periodicity of secondary structure across coding regions and an anti-correlation between the efficiency with which an mRNA is translated and the structure over its translation start site. PARS is readily applicable to other organisms and to profiling RNA structure in diverse conditions, thus enabling studies of the dynamics of secondary structure at a genomic scale.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kertesz, Michael -- Wan, Yue -- Mazor, Elad -- Rinn, John L -- Nutter, Robert C -- Chang, Howard Y -- Segal, Eran -- R01 HG004361/HG/NHGRI NIH HHS/ -- R01HG004361/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 2;467(7311):103-7. doi: 10.1038/nature09322.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20811459" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; *Genetic Techniques ; Genome-Wide Association Study ; Molecular Sequence Data ; *Nucleic Acid Conformation ; RNA, Fungal/*chemistry ; RNA, Messenger/*chemistry ; Saccharomyces cerevisiae/*chemistry/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-08-06
    Description: Recent genome-wide association studies (GWASs) have identified a locus on chromosome 1p13 strongly associated with both plasma low-density lipoprotein cholesterol (LDL-C) and myocardial infarction (MI) in humans. Here we show through a series of studies in human cohorts and human-derived hepatocytes that a common noncoding polymorphism at the 1p13 locus, rs12740374, creates a C/EBP (CCAAT/enhancer binding protein) transcription factor binding site and alters the hepatic expression of the SORT1 gene. With small interfering RNA (siRNA) knockdown and viral overexpression in mouse liver, we demonstrate that Sort1 alters plasma LDL-C and very low-density lipoprotein (VLDL) particle levels by modulating hepatic VLDL secretion. Thus, we provide functional evidence for a novel regulatory pathway for lipoprotein metabolism and suggest that modulation of this pathway may alter risk for MI in humans. We also demonstrate that common noncoding DNA variants identified by GWASs can directly contribute to clinical phenotypes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062476/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062476/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Musunuru, Kiran -- Strong, Alanna -- Frank-Kamenetsky, Maria -- Lee, Noemi E -- Ahfeldt, Tim -- Sachs, Katherine V -- Li, Xiaoyu -- Li, Hui -- Kuperwasser, Nicolas -- Ruda, Vera M -- Pirruccello, James P -- Muchmore, Brian -- Prokunina-Olsson, Ludmila -- Hall, Jennifer L -- Schadt, Eric E -- Morales, Carlos R -- Lund-Katz, Sissel -- Phillips, Michael C -- Wong, Jamie -- Cantley, William -- Racie, Timothy -- Ejebe, Kenechi G -- Orho-Melander, Marju -- Melander, Olle -- Koteliansky, Victor -- Fitzgerald, Kevin -- Krauss, Ronald M -- Cowan, Chad A -- Kathiresan, Sekar -- Rader, Daniel J -- K99 HL098364/HL/NHLBI NIH HHS/ -- K99 HL098364-01/HL/NHLBI NIH HHS/ -- K99 HL098364-02/HL/NHLBI NIH HHS/ -- K99-HL098364/HL/NHLBI NIH HHS/ -- P01 HL059407/HL/NHLBI NIH HHS/ -- P01 HL059407-13/HL/NHLBI NIH HHS/ -- P01-HL059407/HL/NHLBI NIH HHS/ -- RC2 HL101864/HL/NHLBI NIH HHS/ -- RC2 HL101864-02/HL/NHLBI NIH HHS/ -- RC2-HL101864/HL/NHLBI NIH HHS/ -- T32 HL007954/HL/NHLBI NIH HHS/ -- T32 HL007954-10/HL/NHLBI NIH HHS/ -- U01 HL069757/HL/NHLBI NIH HHS/ -- U01 HL069757-09/HL/NHLBI NIH HHS/ -- U01-HL069757/HL/NHLBI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 Aug 5;466(7307):714-9. doi: 10.1038/nature09266.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20686566" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Vesicular ; Transport/biosynthesis/deficiency/genetics/*metabolism ; Animals ; Base Sequence ; Binding Sites ; CCAAT-Enhancer-Binding Proteins/metabolism ; Cells, Cultured ; Cholesterol, LDL/blood/*metabolism ; Chromosomes, Human, Pair 1/*genetics ; Cohort Studies ; Coronary Artery Disease/blood/genetics ; Europe/ethnology ; Gene Expression Regulation ; Gene Knockdown Techniques ; Genetic Predisposition to Disease/*genetics ; Genome-Wide Association Study ; Haplotypes/genetics ; Hepatocytes/metabolism/secretion ; Humans ; Lipids/blood ; Lipoproteins, VLDL/blood/secretion ; Liver/cytology/metabolism/secretion ; Mice ; Myocardial Infarction/blood/genetics ; Phenotype ; Polymorphism, Single Nucleotide/*genetics ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-12
    Description: DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160814/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4160814/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubinson, Emily H -- Gowda, A S Prakasha -- Spratt, Thomas E -- Gold, Barry -- Eichman, Brandt F -- P30 CA068485/CA/NCI NIH HHS/ -- P30 ES000267/ES/NIEHS NIH HHS/ -- R01 CA029088/CA/NCI NIH HHS/ -- R01 CA29088/CA/NCI NIH HHS/ -- T32 ES007028/ES/NIEHS NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):406-11. doi: 10.1038/nature09428. Epub 2010 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927102" target="_blank"〉PubMed〈/a〉
    Keywords: Alkylation ; Bacillus cereus/*enzymology ; Base Sequence ; Biocatalysis ; Crystallography, X-Ray ; DNA/chemistry/genetics/*metabolism ; *DNA Damage ; DNA Glycosylases/*metabolism ; DNA Repair/*physiology ; Hydrolysis ; Models, Molecular ; Nucleic Acid Conformation ; Protein Binding ; Solvents/chemistry ; Thermodynamics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...