ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Biological  (178)
  • American Association for the Advancement of Science (AAAS)  (178)
  • American Institute of Physics
  • International Union of Crystallography (IUCr)
  • 2010-2014  (178)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (178)
  • American Institute of Physics
  • International Union of Crystallography (IUCr)
  • Nature Publishing Group (NPG)  (251)
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-08-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bascompte, Jordi -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):765-6. doi: 10.1126/science.1194255.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Integrative Ecology Group, Estacion Biologica de Donana, Consejo Superior de Investigaciones Cientificas, Americo Vespucio s/n, E-41092 Sevilla, Spain. bascompte@ebd.csic.es〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20705836" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Ecosystem ; Food Chain ; Insects/*physiology ; Models, Biological ; *Plant Physiological Phenomena ; Pollination ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-05-08
    Description: Dicer is a central enzyme in microRNA (miRNA) processing. We identified a Dicer-independent miRNA biogenesis pathway that uses Argonaute2 (Ago2) slicer catalytic activity. In contrast to other miRNAs, miR-451 levels were refractory to dicer loss of function but were reduced in MZago2 (maternal-zygotic) mutants. We found that pre-miR-451 processing requires Ago2 catalytic activity in vivo. MZago2 mutants showed delayed erythropoiesis that could be rescued by wild-type Ago2 or miR-451-duplex but not by catalytically dead Ago2. Changing the secondary structure of Dicer-dependent miRNAs to mimic that of pre-miR-451 restored miRNA function and rescued developmental defects in MZdicer mutants, indicating that the pre-miRNA secondary structure determines the processing pathway in vivo. We propose that Ago2-mediated cleavage of pre-miRNAs, followed by uridylation and trimming, generates functional miRNAs independently of Dicer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093307/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093307/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cifuentes, Daniel -- Xue, Huiling -- Taylor, David W -- Patnode, Heather -- Mishima, Yuichiro -- Cheloufi, Sihem -- Ma, Enbo -- Mane, Shrikant -- Hannon, Gregory J -- Lawson, Nathan D -- Wolfe, Scot A -- Giraldez, Antonio J -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-38/CA/NCI NIH HHS/ -- R01 GM081602/GM/NIGMS NIH HHS/ -- R01 GM081602-01/GM/NIGMS NIH HHS/ -- R01 GM081602-02/GM/NIGMS NIH HHS/ -- R01 GM081602-03/GM/NIGMS NIH HHS/ -- R01 GM081602-03S1/GM/NIGMS NIH HHS/ -- R01 GM081602-04/GM/NIGMS NIH HHS/ -- R01 GM101108/GM/NIGMS NIH HHS/ -- R01 HL093766/HL/NHLBI NIH HHS/ -- R01 HL093766-04/HL/NHLBI NIH HHS/ -- R01GM081602-03/03S1/GM/NIGMS NIH HHS/ -- R01HL093766/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Jun 25;328(5986):1694-8. doi: 10.1126/science.1190809. Epub 2010 May 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20448148" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argonaute Proteins ; Biocatalysis ; Embryo, Nonmammalian/metabolism ; Embryonic Development ; Erythropoiesis ; Eukaryotic Initiation Factor-2/genetics/*metabolism ; Humans ; MicroRNAs/*chemistry/*metabolism ; Models, Biological ; Morphogenesis ; Nucleic Acid Conformation ; RNA Precursors/metabolism ; RNA Processing, Post-Transcriptional ; Recombinant Proteins/metabolism ; Ribonuclease III/metabolism ; Zebrafish/embryology/genetics/*metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-22
    Description: Cell surface receptors convert extracellular cues into receptor activation, thereby triggering intracellular signaling networks and controlling cellular decisions. A major unresolved issue is the identification of receptor properties that critically determine processing of ligand-encoded information. We show by mathematical modeling of quantitative data and experimental validation that rapid ligand depletion and replenishment of the cell surface receptor are characteristic features of the erythropoietin (Epo) receptor (EpoR). The amount of Epo-EpoR complexes and EpoR activation integrated over time corresponds linearly to ligand input; this process is carried out over a broad range of ligand concentrations. This relation depends solely on EpoR turnover independent of ligand binding, which suggests an essential role of large intracellular receptor pools. These receptor properties enable the system to cope with basal and acute demand in the hematopoietic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Verena -- Schilling, Marcel -- Bachmann, Julie -- Baumann, Ute -- Raue, Andreas -- Maiwald, Thomas -- Timmer, Jens -- Klingmuller, Ursula -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1404-8. doi: 10.1126/science.1184913. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*metabolism ; Computer Simulation ; Endocytosis ; Epoetin Alfa ; Erythropoietin/metabolism/pharmacology ; Kinetics ; Ligands ; Mice ; Models, Biological ; Protein Binding ; Receptors, Erythropoietin/*metabolism ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-05-22
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Levy, Emmanuel D -- Landry, Christian R -- Michnick, Stephen W -- New York, N.Y. -- Science. 2010 May 21;328(5981):983-4. doi: 10.1126/science.1190993.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement de Biochimie, Universite de Montreal, Montreal, Quebec, Canada H3T 1J4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20489011" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Mass Spectrometry ; Metabolic Networks and Pathways ; Models, Biological ; Phosphoprotein Phosphatases/*metabolism ; Phosphorylation ; Protein Interaction Mapping ; Protein Kinases/*metabolism ; Saccharomyces cerevisiae/enzymology/*metabolism ; Saccharomyces cerevisiae Proteins/*metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-16
    Description: The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011229/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011229/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lobo, Mary Kay -- Covington, Herbert E 3rd -- Chaudhury, Dipesh -- Friedman, Allyson K -- Sun, HaoSheng -- Damez-Werno, Diane -- Dietz, David M -- Zaman, Samir -- Koo, Ja Wook -- Kennedy, Pamela J -- Mouzon, Ezekiell -- Mogri, Murtaza -- Neve, Rachael L -- Deisseroth, Karl -- Han, Ming-Hu -- Nestler, Eric J -- P01 DA008227/DA/NIDA NIH HHS/ -- P01 DA008227-20/DA/NIDA NIH HHS/ -- R01 DA007359/DA/NIDA NIH HHS/ -- R01 DA007359-22/DA/NIDA NIH HHS/ -- R01 DA014133/DA/NIDA NIH HHS/ -- R01 DA014133-10/DA/NIDA NIH HHS/ -- R01 DA014133-11/DA/NIDA NIH HHS/ -- R01 DA014133-12/DA/NIDA NIH HHS/ -- R01 MH051399/MH/NIMH NIH HHS/ -- R01 MH051399-19/MH/NIMH NIH HHS/ -- R01 MH051399-20/MH/NIMH NIH HHS/ -- T32 DA007135-26A2/DA/NIDA NIH HHS/ -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):385-90. doi: 10.1126/science.1188472.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947769" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/drug effects ; Brain-Derived Neurotrophic Factor/*metabolism ; Cocaine/*pharmacology ; Cocaine-Related Disorders/*metabolism ; Conditioning (Psychology) ; Light ; Mice ; Mice, Transgenic ; Mitogen-Activated Protein Kinase 1/metabolism ; Mitogen-Activated Protein Kinase 3/metabolism ; Models, Biological ; Motor Activity/drug effects ; Neurons/*metabolism ; Nucleus Accumbens/cytology/*metabolism ; RNA, Messenger/genetics/metabolism ; Receptor, trkB/genetics/*metabolism ; Receptors, Dopamine D1/metabolism ; Receptors, Dopamine D2/metabolism ; *Reward ; Rhodopsin/genetics/metabolism ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-11-26
    Description: In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, Matthew -- Gunderson, Carl W -- Mateescu, Eduard M -- Zhang, Zhongge -- Hwa, Terence -- R01GM77298/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Nov 19;330(6007):1099-102. doi: 10.1126/science.1192588.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Theoretical Biological Physics, Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21097934" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Proliferation ; Escherichia coli K12/*genetics/*growth & development ; Escherichia coli Proteins/genetics ; Gene Expression/*physiology ; Models, Biological ; Protein Biosynthesis ; RNA, Bacterial/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-08-07
    Description: Using optical trapping and fluorescence imaging techniques, we measured the step size and stiffness of single skeletal myosins interacting with actin filaments and arranged on myosin-rod cofilaments that approximate myosin mechanics during muscle contraction. Stiffness is dramatically lower for negatively compared to positively strained myosins, consistent with buckling of myosin's subfragment 2 rod domain. Low stiffness minimizes drag of negatively strained myosins during contraction at loaded conditions. Myosin's elastic portion is stretched during active force generation, reducing apparent step size with increasing load, even though the working stroke is approximately constant at about 8 nanometers. Taking account of the nonlinear nature of myosin elasticity is essential to relate myosin's internal structural changes to physiological force generation and filament sliding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaya, Motoshi -- Higuchi, Hideo -- New York, N.Y. -- Science. 2010 Aug 6;329(5992):686-9. doi: 10.1126/science.1191484.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo, 113-0033 Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20689017" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*physiology ; Actomyosin/chemistry/physiology ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Animals ; Compliance ; Elasticity ; Models, Biological ; *Muscle Contraction ; Muscle Fibers, Skeletal/chemistry/physiology ; Muscle, Skeletal ; Myosin Subfragments/physiology ; Myosins/chemistry/*physiology ; Quantum Dots ; Rabbits
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-07-31
    Description: During embryonic development, many organs form by extensive branching of epithelia through the formation of clefts and buds. In cleft formation, buds are delineated by the conversion of epithelial cell-cell adhesions to cell-matrix adhesions, but the mechanisms of cleft formation are not clear. We have identified Btbd7 as a dynamic regulator of branching morphogenesis. Btbd7 provides a mechanistic link between the extracellular matrix and cleft propagation through its highly focal expression leading to local regulation of Snail2 (Slug), E-cadherin, and epithelial cell motility. Inhibition experiments show that Btbd7 is required for branching of embryonic mammalian salivary glands and lungs. Hence, Btbd7 is a regulatory gene that promotes epithelial tissue remodeling and formation of branched organs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412157/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Onodera, Tomohiro -- Sakai, Takayoshi -- Hsu, Jeff Chi-feng -- Matsumoto, Kazue -- Chiorini, John A -- Yamada, Kenneth M -- ZIA DE000525-20/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 30;329(5991):562-5. doi: 10.1126/science.1191880.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20671187" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cadherins/metabolism ; Cell Adhesion ; Cell Line ; Cell Movement ; Dogs ; Epithelial Cells/*physiology ; Fibronectins/genetics/metabolism ; Genes, Regulator ; Lung/*embryology/metabolism ; Mice ; Mice, Inbred ICR ; Models, Biological ; Molecular Sequence Data ; *Morphogenesis ; Nuclear Proteins ; Organ Culture Techniques ; Proteins/chemistry/*genetics/*physiology ; RNA, Small Interfering ; Salivary Glands/*embryology/metabolism ; Submandibular Gland/embryology ; Transcription Factors/genetics/metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-06-05
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023166/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3023166/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parvatiyar, Kislay -- Harhaj, Edward W -- R01 GM083143/GM/NIGMS NIH HHS/ -- R01 GM083143-03/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jun 4;328(5983):1244-5. doi: 10.1126/science.1192296.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20522767" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Cell-Free System ; DEAD-box RNA Helicases/chemistry/*metabolism ; Humans ; Interferon Regulatory Factor-3/*metabolism ; Models, Biological ; Polyubiquitin/*metabolism ; Protein Binding ; RNA, Viral/*metabolism ; *Signal Transduction ; Transcription Factors/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination ; Virus Diseases/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-24
    Description: In the social amoebae Dictyostelium discoideum, periodic synthesis and release of extracellular cyclic adenosine 3',5'-monophosphate (cAMP) guide cell aggregation and commitment to form fruiting bodies. It is unclear whether these oscillations are an intrinsic property of individual cells or if they exist only as a population-level phenomenon. Here, we showed by live-cell imaging of intact cell populations that pulses originate from a discrete location despite constant exchange of cells to and from the region. In a perfusion chamber, both isolated single cells and cell populations switched from quiescence to rhythmic activity depending on the concentration of extracellular cAMP. A quantitative analysis showed that stochastic pulsing of individual cells below the threshold concentration of extracellular cAMP plays a critical role in the onset of collective behavior.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120019/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120019/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gregor, Thomas -- Fujimoto, Koichi -- Masaki, Noritaka -- Sawai, Satoshi -- P50 GM071508/GM/NIGMS NIH HHS/ -- P50 GM071508-08/GM/NIGMS NIH HHS/ -- R01 GM098407/GM/NIGMS NIH HHS/ -- R01 GM098407-01A1/GM/NIGMS NIH HHS/ -- R01 GM098407-02/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 May 21;328(5981):1021-5. doi: 10.1126/science.1183415. Epub 2010 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20413456" target="_blank"〉PubMed〈/a〉
    Keywords: 3',5'-Cyclic-AMP Phosphodiesterases/metabolism ; Adenylyl Cyclases/metabolism ; Cell Aggregation ; Cell Count ; Cyclic AMP/*metabolism/pharmacology ; Cyclic AMP-Dependent Protein Kinases/genetics/metabolism ; Cytosol/metabolism ; Dictyostelium/cytology/genetics/growth & development/*physiology ; Fluorescence Resonance Energy Transfer ; Models, Biological ; Periodicity ; Protozoan Proteins/genetics/metabolism ; Quorum Sensing ; Signal Transduction ; Stochastic Processes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...