ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-06-08
    Description: A continuous-flow GC/IRMS technique has been developed to analyse δ15N values for molecular nitrogen in gas samples. This method provides reliable results with accuracy better than 0.15‰and reproducibility (1σ) within ±0.1‰ for volumes of N2 between 1.35 (about 56 nmol) and 48.9μL (about 2μmol). The method was tested on magmatic and hydrothermal gases as well as on natural gas samples collected from various sites. Since the analysis of nitrogen isotope composition may be prone to atmospheric contamination mainly in samples with low N2 concentration, we set the instrument to determine also N2 and 36Ar contents in a single run. In fact, based on the simultaneously determined N2/36Ar ratios and assuming that 36Ar content in crustal and mantle-derived fluids is negligible with respect to 36Ar concentration in the atmosphere, for each sample, the degree of atmospheric contamination can be accurately evaluated. Therefore, the measured δ15N values can be properly corrected for air contamination.
    Description: Published
    Description: 141–155
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Argon-36 ; isotope measurement and technique ; nitrogen-15 ; volcanic and hydrothermal gas ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-11-25
    Description: Here we inverted the GPS data to infer the coseismic slip of the Tohoku-Oki earthquake and the time-dependent afterslip distribution in the 4 months following the main shock. The Tohoku-Oki earthquake showed an unexpected magnitude and a characteristic depth-dependent differentiation of seismic energy radiation. In this context the estimation and comparison of the distribution of the fault portions that slip coseismically and post-seismically contribute to a better understanding of the variation of frictional characteristics of the plate interface. The inferred coseismic slip extends in a relatively compact region located updip from the hypocentre and reaches its highest value (about 60 m) near the trench. Afterslip occurs mostly outside the coseismic rupture and is distributed in two main modal centres. It reaches its largest values in an area located downdip of the coseismic slip and extends to a depth of 80 km. In the depth range between 30 and 50 km afterslip overlaps the portion of the fault that experienced historical moderate earthquakes, high-frequency seismic radiation and thrust-type aftershocks. The behaviour of this area can be explained by a rheologically heterogeneous region made of a ductile fault matrix interspersed with compact brittle asperities. On the contrary, the region beneath 50–60 km depth is probably characterized by a fully velocity strengthening behaviour. Southern afterslip, located off-Chiba Prefecture, is probably related to the Mw 7.9 Ibaraki-Oki aftershock. The northward extension of the afterslip stops at a latitude of about 40◦ N, just south of the off-Aomori region. This may be related to three large events occurred in this area during the last century and the consequent strong coupling or complete depletion of the accumulated strain that characterize this region.
    Description: Published
    Description: 580-596
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy; Seismic cycle; Earthquake source observations; Subduction zone processes ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-16
    Description: Giant earthquake (moment magnitude Mw 〉=8.5) forecasts for subduction zones have been empirically related to both tectonic stresses and geometrical irregularities along the subduction interface. Both of these controls have been suggested as able to tune the ability of rupture to propagate laterally and, in turn, exert an important control on giant earthquake generation. Here we test these hypotheses, and their combined influence, by compiling a dataset of trench fill thickness (a proxy for smoothing of subducting plate relief by sediment input into the subduction channel) and upper plate strain (a proxy for the tectonic stresses applied to the subduction interface) for 44 segments of the global subduction network. We statistically compare relationships between upper plate strain, trench sediment thickness and maximal earthquake magnitude. We find that the combination of both large trench fill (≥1 km) and neutral upper plate strain explains spatial patterns of giant earthquake occurrence to a statistically significant degree. In fact, the concert of these two factors is more highly correlated with giant earthquake occurrence than either factor on its own. Less frequent giant earthquakes of lower magnitude are also possible at subduction zones with thinner trench fill and compressive upper plate strain. Extensional upper plate strain and trench fill 〈 0.5 km appear to be unfavorable conditions, as giant earthquakes have not been observed in these geodynamical environments during the last 111 years.
    Description: Published
    Description: L05304
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: subduction zones ; trench sediment thickness ; Upper plate strain ; megathrust earthquakes ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-01-27
    Description: We present the first nitrogen isotope data from hydrothermal fluids of Graciosa, Terceira and S. Miguel Islands (Azores, Portugal), together with helium isotope composition. 15N values are slightly enriched in light isotopes (from -0.7‰ to -2.2‰) with respect to air, while 3He/4He ratios range from 5 to 6 Ra in Sao Miguel island and from 8 to 9.1 Ra in Graciosa and Terceira islands. The latter values are similar to those found in olivine phenocrysts of basalts (Moreira et al., 1999; Madureira et al., 2005). Such isotope signatures seem to point to the presence of two different deeply-derived end-members: a 3He-rich primitive end-member evident in Terceira and Graciosa islands samples and a 3He-poor end-member characterizing samples from S. Miguel island. According to Madureira et al. (2005), the He primitive component which is more evident in the central parts of the Azores archipelago has to be related to a lower mantle contribution into the prevailing MORB component. On the contrary, the origin of the radiogenic crustal component is still open and debated between the contribution of recycled terrigenous sediments (Turner et al., 1997) and oceanic mantle lithosphere (Schaefer et al., 2002). Since 15N values from fluids vents and inclusions in basalt glasses were discovered to be good geochemical tracers of magma genetic processes, we determined molecular and isotope nitrogen composition (15NN2) in some hydrothermal fluids with the aim to provide additional information on the mantle composition beneath the Azores archipelago. Based on the N2/36Ar ratio we computed for each samples the 15N values of the non-atmospheric nitrogen (15Ndeep). Volatiles emitted from Graciosa and Terceira islands seem to have a common deep nitrogen isotope signature of about -1.5‰ likely resulting from a mixing between lower mantle (15N from 1‰ to 4‰) and upper mantle (15NMORB from -3‰ to -7‰). On the other hand, the 15Ndeep feeding the fumaroles at S. Miguel is close to -5.5‰. Such a 15N-depleted values seem to indicate a probable nitrogen origin from a deep source derived from the recycling of ancient oceanic plate into the upper mantle (MORB). rather than from the recycling of terrigenous sediments transported on top of the descending plate that should have lead to 15N-enrichments.
    Description: Published
    Description: La Malbaie, Quebec, Canada
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 3.2. Tettonica attiva
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: Nitrogen isotopes ; Hydrothermal fluids ; Azores Islands ; Volcanic gases ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-03
    Description: The Messina Straits is the locus of one of the strongest seismic event that ever hit Italy during historical times, the 1908 Mw 7.1 earthquake, and the same region also suffered major damage from other strong earthquakes in the last few centuries. However, despite the large amount of data and studies carried out, our knowledge of the present-day deformation of this area is still debated. While a general consensus has been reached about the kinematics of the 1908 causative fault, less is known about the rate and shape of interseismic loading across the Straits, and debate continues also about the general kinematics and geodynamic framework of this region which are strongly influenced by subduction and retreat of Ionian lithosphere. Thanks to the increasing number of GPS Networks in the study region it is now possible to study both the regional kinematics and strain loading across active faults. In this work we analyze all the observations collected over the Messina non-permanent GPS Network for the 1994-2008 time span, and data from about 600 CGPS stations in the Euro-Mediterranean region, using the GAMIT software. The output of our analysis is a new and denser velocity field, which is used to study the plate kinematics and the rate of interseismic strain building across the Straits. GPS velocities show a sudden change in their orientation across the Straits moving to NNW-ward, in Estern Sicily, to NNE-ward in Western Calabria, depicting this area as a primary boundary between two different tectonic domains. The maximum strain-rates observed across the Straits are about 120 nanostrain/yr, with extension oriented about normal to the coasts of Sicily according to the presence of a normal fault. The measured velocity gradient can be used to model the creeping dislocation at depth, however, over the Messina Straits the interseismic elastic strains accumulating across other nearby active faults can significantly affect the observed velocity gradient.For this reason we investigate, using a regional elastic block-modeling approach, these effects. We use the block model to test for different microplates configurations and to account for nearby active faults while inverting for optimal fault geometry and intersismic slip-rates across the Straits.
    Description: Published
    Description: vienna, austria.
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: open
    Keywords: block model ; gps ; messina straits ; calabria ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-03
    Description: We use Global Positioning System (GPS) velocities and dislocation modeling to investigate the rate and nature of interseismic strain accumulation in the area affected by the 1908 Mw 7.1 Messina earthquake (southern Italy) within the framework of the complex central Mediterranean microplate kinematics. Our data confirm a change in the velocity trends between Sicily and Calabria, moving from NNW-ward to NE- ward with respect to Eurasia, and detail a fan-like pattern across the Messina Straits where maximum extensional strain rates are ~65 nanostrains/yr. Extension normal to the coast of northern Sicily is consistent with the presence of SW–NE trending normal faults. Half-space dislocation models of the GPS velocities are used to infer the slip-rates and geometric fault parameters of the fault zone that ruptured in the Messina − 1.3 earthquake. The inversion, and the bootstrap analysis of model uncertainties, finds optimal values of 3. 5 + 2.0 − 0.2− 0.7 and 1.6 + 0.3 mm/yr for the dip–slip and strike–slip components, respectively, along a 30 + 1.1° SE-ward dipping normal fault, locked above 7.6−2.9 km depth. By developing a regional elastic block model that + 4.6 accounts for both crustal block rotations and strain loading at block-bounding faults, and adopting two different competing models for the Ionian–Calabria convergence rates, we show that the measured velocity gradient across the Messina Straits may be significantly affected by the elastic strain contribution from other nearby faults. In particular, when considering the contribution of the possibly locked Calabrian subduction interface onto the observed velocity gradients in NE-Sicily and western Calabria, we find that this longer wavelength signal can be presently super-imposed on the observed velocity gradients in NE-Sicily and Calabria. The inferred slip-rate on the Messina Fault is significantly impacted by elastic strain from the subduction thrust. By varying the locking of the subduction thrust fault, in fact, the Messina Fault slip-rate varies from 0 to 9 mm/yr.
    Description: Published
    Description: 347-360
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Messina Straits ; Global Positioning System ; strain accumulation ; plate kinematics ; dislocation modeling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-26
    Description: : In the western Mediterranean area, after a long period (late Paleogene-Neogene) of Nubian northward subduction beneath Eurasia, subduction is almost ceased as well as convergence accommodation in the subduction zone. With the progression of Nubia-Eurasia convergence, a tectonic reorganization is therefore necessary to accommodate future contraction. Previously-published tectonic, seismological, geodetic, tomographic, and seismic reflection data (integrated by some new GPS velocity data) are reviewed to understand the reorganization of the convergent boundary in the western Mediterranean. Between northern Morocco, to the west, and northern Sicily, to the east, contractional deformation has shifted from the former subduction zone to the margins of the two backarc oceanic basins (Algerian-Liguro-Provençal and Tyrrhenian basins) and it is now active in the south-Tyrrhenian (northern Sicily), northern Liguro-Provençal, Algerian, and Alboran (partly) margins. Compression and basin inversion has propagated in a scissor-like manner from the Alboran (c. 8 Ma) to the Tyrrhenian (younger than c. 2 Ma) basins following a similar propagation of the subduction cessation and slab breakoff, i.e., older to the west and younger to the east. It follows that basin inversion is rather advanced in the Algerian margin, where a new southward subduction seems to be in its very infant stage, while it has still to properly start in the Tyrrhenian margin, where contraction has resumed at the rear of the fold-thrust belt and may soon invert the Marsili oceanic basin. GPS-derived strain rates higher in the Tyrrhenian margin than in the Algerian boundary suggest that this latter manner of contraction accommodation (contraction resumption at the rear of the orogenic wedge) is more efficient than subduction inception and basin inversion along newly-generated reverse faults (Algeria), but the differential strain rates may also be explained with the heterogeneous distribution of GPS stations. Part of the contractional deformation may have shifted toward the north in the Liguro-Provençal basin possibly because of its weak rheological properties compared with the area between Tunisia and Sardinia, where no oceanic crust occurs and seismic deformation is absent or limited compared with the adjacent strands of the Nubia-Eurasia boundary. The tectonic reorganization of the Nubia-Eurasia boundary in the study area is still strongly controlled by the inherited tectonic fabric and rheological attributes, which are both discontinuous and non-cylindrical along the boundary. These features prevent, at present, the development of long and continuous thrust faults. In an extreme and approximate synthesis, the evolution of the western Mediterranean is inferred as being similar to a Wilson Cycle in the following main steps: (1) northward Nubian subduction with Mediterranean backarc extension (since ~35 Ma); (2) progressive cessation, from west to east, of Nubian main subduction (since ~15 Ma); (3) progressive compression, from west to east, in the former backarc domain and consequent basin inversion (since ~8-10 Ma); (4) possible future subduction of former backarc basins.
    Description: Published
    Description: 279-303
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: western Mediterranean ; convergent boundary ; tectonic reorganization ; subduction, ; backarc basin ; basin inversion ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-26
    Description: We present here a new high resolution regional P-wave velocity model for the lithosphere beneath the Italian region obtained by including information on the Moho topography, and integrating results from local earthquake tomography with 30 years of CSS data, applying the method of Waldhauser (1996). For the 3D moho map, we extended the crustal model, already available for the Alps by Lippitsch et al., 2003, to the Italian peninsula, Corsica, Sardinia, and Sicily. The tomographic model is obtained by inverting 166,000 Pg and Pn arrival times large part of which have been automatically picked and consistently weighted with an advanced automatic picking system (Aldersons, 2004). The resolution of the obtained velocity model is consistently higher and the grid spacing consistently smaller than in previous tomographic works targeting the same region. We are able to image the complex geometry of this part of the subduction-collision system between the Eurasian and African plates adding important details to the overview derived by the teleseismic tomography. Our results clearly show the plate boundary at Moho level from the Alps to the Southern Apennines and the Calabrian Arc in a volume unresolved in previous studies. The use of global 1D velocity models based on the flat Earth assumption is a pre-requisite to refine and interpret images and seismic responses of the earth obtained with geophysical studies (P and S tomography, surface wave tomography etc). Our model is suitable as a good starting point for a 3D velocity reference model of the crust and upper mantle beneath the Mediterranean area to be extended to the Adriatic Sea and to the Ionian Sea, with benefit for earthquakes location,teleseismic tomography, focal mechanisms and CMT
    Description: Published
    Description: Vienna
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: local earthquake tomography ; velocity model ; Italian Peninsula ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-10-19
    Description: We performed three-dimensional analysis of anisotropic parameters of body waves to develop a 3D self-consistent dynamic model of the syn-convergent extension in the Northern Apennines within the multidisciplinary project RETREAT. Simultaneous extension within the convergent margin can be the consequence of the retreat of the subducting Adriatic plate from the orogenic front, caused by sub-lithosphere mantle processes that seismic anisotropy can help to decipher. We use data recorded by the RETREAT temporary array consisting of 35 stations complemented by data of permanent INGV observatories. Currently, 18-months of data are available from some stations, representing half of the passive experiment duration. We detect many examples of core-refracted shear-wave splitting within the upper mantle, and observe both distinct lateral variations of anisotropic parameters and their dependence on the direction of propagation. In particular, the fast shear-wave polarization changes from slab-perpendicular to slab-parallel along the Apennines chain. There is also a distinct change in the anisotropic signals across the presumed boundary of the Tyrrhenian and Adriatic micro-plates. Variations of the splitting time delays and orientation of the fast shear waves, together with considerations on the geodynamics of the area, seem to exclude simple sub-lithosphere mantle corner flow as the only source of the observed anisotropy. Alternate models include (1) a frozen-in fabric of different lithosphere domains, and (2) complex mantle flow associated with the Plio-Pleisocene uplift and extension of Tuscany.
    Description: Published
    Description: Vienna
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: open
    Keywords: anisotropy ; SKS shear wave splitting ; Northern Apennines ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Subduction zones are the favorite places to generate tsunamigenic earthquakes, where friction between oceanic and continental plates causes the occurrence of a strong seismicity. The topics and the methodologies discussed in this thesis are focussed to the understanding of the rupture process of the seismic sources of great earthquakes that generate tsunamis. The tsunamigenesis is controlled by several kinematical characteristic of the parent earthquake, as the focal mechanism, the depth of the rupture, the slip distribution along the fault area and by the mechanical properties of the source zone. Each of these factors plays a fundamental role in the tsunami generation. Therefore, inferring the source parameters of tsunamigenic earthquakes is crucial to understand the generation of the consequent tsunami and so to mitigate the risk along the coasts. The typical way to proceed when we want to gather information regarding the source process is to have recourse to the inversion of geophysical data that are available. Tsunami data, moreover, are useful to constrain the portion of the fault area that extends offshore, generally close to the trench that, on the contrary, other kinds of data are not able to constrain. In this thesis I have discussed the rupture process of some recent tsunamigenic events, as inferred by means of an inverse method. I have presented the 2003 Tokachi-Oki (Japan) earthquake (Mw 8.1). In this study the slip distribution on the fault has been inferred by inverting tsunami waveform, GPS, and bottom-pressure data. The joint inversion of tsunami and geodetic data has revealed a much better constrain for the slip distribution on the fault rather than the separate inversions of single datasets. Then we have studied the earthquake occurred on 2007 in southern Sumatra (Mw 8.4). By inverting several tsunami waveforms, both in the near and in the far field, we have determined the slip distribution and the mean rupture velocity along the causative fault. Since the largest patch of slip was concentrated on the deepest part of the fault, this is the likely reason for the small tsunami waves that followed the earthquake, pointing out how much the depth of the rupture plays a crucial role in controlling the tsunamigenesis. Finally, we have presented a new rupture model for the great 2004 Sumatra earthquake (Mw 9.2). We have performed the joint inversion of tsunami waveform, GPS and satellite altimetry data, to infer the slip distribution, the slip direction, and the rupture velocity on the fault. Furthermore, in this work we have presented a novel method to estimate, in a self-consistent way, the average rigidity of the source zone. The estimation of the source zone rigidity is important since it may play a significant role in the tsunami generation and, particularly for slow earthquakes, a low rigidity value is sometimes necessary to explain how a relatively low seismic moment earthquake may generate significant tsunamis; this latter point may be relevant for explaining the mechanics of the tsunami earthquakes, one of the open issues in present day seismology. The investigation of these tsunamigenic earthquakes has underlined the importance to use a joint inversion of different geophysical data to determine the rupture characteristics. The results shown here have important implications for the implementation of new tsunami warning systems – particularly in the near-field – the improvement of the current ones, and furthermore for the planning of the inundation maps for tsunami-hazard assessment along the coastal area.
    Description: Università degli studi di Bologna
    Description: Published
    Description: 3.1. Fisica dei terremoti
    Description: open
    Keywords: Tsunami ; Rupture Process ; Joint inversion ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...