ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical Engineering
  • LUNAR AND PLANETARY EXPLORATION
  • Waves
  • 2010-2014  (18)
  • 1935-1939  (8)
Collection
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C01027, doi:10.1029/2003JC001877.
    Description: Vertical flow structure and turbulent dissipation in the swash zone are estimated using cross-shore fluid velocities observed on a low-sloped, fine-grained sandy beach [Raubenheimer, 2002] with two stacks of three current meters located about 2, 5, and 8 cm above the bed. The observations are consistent with an approximately logarithmic vertical decay of wave orbital velocities within 5 cm of the bed. The associated friction coefficients are similar in both the uprush and downrush, as in previous laboratory results. Turbulent dissipation rates estimated from velocity spectra increase with decreasing water depth from O(400 cm2/s3) in the inner surf zone to O(1000 cm2/s3) in the swash zone. Friction coefficients in the swash interior estimated with the logarithmic model and independently estimated by assuming that turbulent dissipation is balanced by production from vertical shear of the local mean flow and from wave breaking are between 0.02 and 0.06. These values are similar to the range of friction coefficients (0.02–0.05) recently estimated on impermeable, rough, nonerodible laboratory beaches and to the range of friction coefficients (0.01–0.03) previously estimated from field observations of the motion of the shoreward edge of the swash (run-up).
    Description: This research was supported by ONR and NSF.
    Keywords: Beach ; Swash ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2605–2623, doi:10.1175/2010JPO4132.1.
    Description: Steady scale-invariant solutions of a kinetic equation describing the statistics of oceanic internal gravity waves based on wave turbulence theory are investigated. It is shown in the nonrotating scale-invariant limit that the collision integral in the kinetic equation diverges for almost all spectral power-law exponents. These divergences come from resonant interactions with the smallest horizontal wavenumbers and/or the largest horizontal wavenumbers with extreme scale separations. A small domain is identified in which the scale-invariant collision integral converges and numerically find a convergent power-law solution. This numerical solution is close to the Garrett–Munk spectrum. Power-law exponents that potentially permit a balance between the infrared and ultraviolet divergences are investigated. The balanced exponents are generalizations of an exact solution of the scale-invariant kinetic equation, the Pelinovsky–Raevsky spectrum. A small but finite Coriolis parameter representing the effects of rotation is introduced into the kinetic equation to determine solutions over the divergent part of the domain using rigorous asymptotic arguments. This gives rise to the induced diffusion regime. The derivation of the kinetic equation is based on an assumption of weak nonlinearity. Dominance of the nonlocal interactions puts the self-consistency of the kinetic equation at risk. However, these weakly nonlinear stationary states are consistent with much of the observational evidence.
    Description: This research is supported by NSF CMG Grants 0417724, 0417732 and 0417466. YL is also supported by NSF DMS Grant 0807871 and ONR Award N00014-09-1-0515.
    Keywords: Waves ; Oceanic ; Internal waves ; Spectral analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 1993
    Description: Breaking waves charge the surface layer of the ocean with small air bubbles which play an important role in air-sea gas transfer and in underwater acoustics near the ocean surface. This work reports on a series of laboratory and field experiments on the measurement on air entrainment by breaking waves. The first part of this thesis addresses the measurement of high volumetric concentrations of air (0.3% to 100% void-fraction) found immediately beneath breaking waves. Instrumentation based on the change of electrical impedance of the bubbly mixture with change in void-fraction is developed. Laboratory measurements are conducted in a wave channel and in a large three-dimensional wave basin. Maps of the evolution of the void-fraction distribution in bubble plumes generated by various size breaking waves are presented. Moments of the void-fraction field are shown to scale with the initially enclosed air volume at breaking and the energy dissipated by breaking. A significant fraction (30 to 50%) of the energy dissipated by breaking is found to be expanded in entraining bubbles against their buoyancy. The results reveal that the bubble plumes experience rapid transformations within the first wave period after the onset of breaking. In particular, the plumes loose 95% of the initially entrained air volume during the fust wave period. Predictions of the low-frequency resonant oscillations of the bubble plumes from measurements of the void-fraction compare well with acoustic measurements. Measurements near the ocean surface show high void-fractions up to 24% immediately beneath breaking waves. These are several orders of magnitude greater than previously reported time-averaged measurements. The second part addresses the measurement of very low void-fractions. Instrumentation based on the propagation velocity of low-frequency acoustic pulses is developed. Simultaneous measurements of the sound-speed (and thus the void-fraction) at several depths are conducted during two field experiments. Time-series of sound-speed and attenuation show dramatic fluctuations over time periods on the order of minutes or less. These are attributed to the formation of bubble plumes or passage of bubble clouds. Frequent occurences of sound-speed anomalies greater than 1 OOrnls and attenuation greater than 30dB/m are observed for moderate wind conditions (8m/s). The signals at various depths are highly correlated and mostly coherent at frequencies below 0.05Hz. The time-averaged (20min) sound-speed profile is found to be significantly more pronounced and shallower than previously reported. Simultaneous measurements at several acoustic frequencies show that the sound-speed is non-dispersive below 20kHz for moderate wind conditions. Bubble size distributions are inferred from the soundspeed and attenuation measurements.
    Description: This research was funded by the Office of Naval Research (Ocean Acoustics and Oceanography) and the National Science Foundation.
    Keywords: Acoustic surface waves ; Air ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2132–2141, doi:10.1175/JPO-D-12-0182.1.
    Description: Repeated occupations of two hydrographic sections in the southwest Pacific basin from the 1990s to 2000s track property changes of Antarctic Bottom Water (AABW). The largest property changes—warming, freshening, increase in total carbon, and decrease in oxygen—are found near the basin’s deep western boundary between 50° and 20°S. The magnitude of the property changes decreases with increasing distance from the western boundary. At the deep western boundary, analysis of the relative importance of AABW (γn 〉 28.1 kg m−3) freshening, heating, or isopycnal heave suggests that the deep ocean stratification change is the result of both warming and freshening processes. The consistent deep ocean changes near the western boundary of the southwest Pacific basin dispel the notion that the deep ocean is quiescent. High-latitude climate variability is being directly transmitted into the deep southwest Pacific basin and the global deep ocean through dynamic deep western boundary currents.
    Description: BMS, SEW, and BT were supported by the Australian Climate Change Science Program, funded jointly by the Department of Climate Change and Energy Efficiency and CSIRO. Funding for AM was provided through NOAA GrantNA110AR4310063.
    Description: 2014-04-01
    Keywords: Circulation/ Dynamics ; Waves ; Oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C03016, doi:10.1029/2005JC003004.
    Description: Waves have many effects on near-surface dynamics: Breaking waves enhance mixing, waves are associated with a Lagrangian mean drift (the Stokes drift), waves act on the mean flow by creating Langmuir circulations and a return flow opposite to the Stokes drift, and, last but not least, waves modify the atmospheric surface roughness. A realistic ocean model is proposed to embrace all these aspects, focusing on near-surface mixing and surface drift associated with the wind and generated waves. The model is based on the generalized Lagrangian mean that separates the momentum into a wave pseudomomentum and a quasi-Eulerian momentum. A wave spectrum with a reasonably high frequency range is used to compute the Stokes drift. A turbulent closure scheme based on a single evolution equation for the turbulent kinetic energy includes the mixing due to breaking wave effects and wave-turbulence interactions. The roughness length of the closure scheme is adjusted using observations of turbulent kinetic energy near the surface. The model is applied to unstratified and horizontally uniform conditions, showing good agreement with observations of strongly mixed quasi-Eulerian currents near the surface when waves are developed. Model results suggest that a strong surface shear persists in the drift current because of the Stokes drift contribution. In the present model the surface drift only reaches 1.5% of the wind speed. It is argued that stratification and the properties of drifting objects may lead to a supplementary drift as large as 1% of the wind speed.
    Keywords: Stokes drift ; Surface drift ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1997
    Description: A series of numerical experiments is conducted in order to examine the role of topographic irregularities in generation of subinertial cross-channel barotropic currents and to obtain quantitative estimates of the offshore flow amplitude, its ratio to the magnitude of the alongshore currents and the alongshore correlation scale. A periodic (along the coast) channel with geometry representative of continental margins is considered. Topographic disturbances have multiple alongshore wavenumber contributions, kT, and the amplitude proportional to kT-2 (except one experiment). The motion is forced by spatially uniform and temporally varying alongshore wind stress, which drives the background current along the channel. The background current adjusts to topographic disturbances and, in particular, Barotropic Shelf Waves (BSW) result. That gives rise to the offshore currents. The amplitude of the cross-channel flow is shown to increase with kT in the long wave limit (order of 100 km in the model) and, in contrast, to decrease with kT in the short wave limit (less than 20 km in the model). As a rule, the strongest response is attained on the intermediate scales where lee waves form most efficiently. Hart's {1990} quasi-geostrophic solution provided quantitative parameters to explain the scale dependence and helped to interpret the results of simulations meant to examine sensitivity of the cross-channel flow characteristics to variation of the governing parameters. It is shown that the structure of the resonant wave is established by the combination of spatial properties of the bottom bumps, and by the period and amplitude of the fluctuating background current. On the basis of this analysis, it is demonstrated how the BSW dispersion diagram can be used for diagnostic purposes. The averaged (in time and along the channel) amplitude of subinertial cross-channel currents ranged from negligible values to about 5.5 cm/sec, indicating that, indeed, rather substantial offshore flow can be generated due to the effect of the topographic irregularities. The alongshore correlation scale was no smaller than about 5 km and in a few simulations (for instance, with lee-wave-favourable mean wind included) reached 30 - 50 km.
    Description: This work was supported by the Office of Naval Research, Coastal Science Program, Grant N00014-95-1-0580.
    Keywords: Upwelling ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution October 1987
    Description: A two-layer shallow water equation model is used to investigate the linear stability of a coastal upwelling front. The model features a surface front near a coastal boundary and bottom topography which is an arbitrary function of the cross-shelf coordinate. By combining the various conservation statements for the global properties of the system, a general stability theorem is established which allows the a priori determination of the stability of a coastal upwelling front. Unstable waves are found for the modelled coastal upwelling front. The unstable wave motions are frontally-trapped and dominant in the upper layer. The wave propagates phase in the direction of the basic state flow and the primary energy conversion is via baroclinic instability. The effect of varying the model parameters is presented. Moving the front closer than ~ 2 Rossby radii to the coastal boundary results in a decrease in the growth rate of the fastest growing wave. Increasing the overall vertical shear of the basic state flow, by either decreasing the lower layer depth or increasing the steepness of the interface, results in an increase in the growth of the fastest growing wave. A bottom sloping in the same sense as the interface results in a decrease of the growth rates and alongfront wavenumbers of the unstable waves in the system. Linearized bottom friction is included in the stability model and results in a decrease in the growth rates of the unstable waves by extracting energy from the system. Since the unstable mode is strongest in the upper layer, bottom friction will not stabilize the upwelling front. A comparison between the predictions from the simple two-layer model and observed alongfront variability for three areas of active upwelling is presented. Reasonable agreement is found, suggesting that observed alongfront variability can be interpreted in terms of the instability of a coastal upwelling front.
    Description: This study was supported by the National Science Foundation Grant OCE 84-08563 and the Office of Naval Research Coastal Ocean Sciences Program 10/1984.37.
    Keywords: Upwelling ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Ocean Engineer at the Massachusetts Institute of Technology and Woods Hole Oceanographic Institution September 1994
    Description: This paper presents a method for estimating the spectra of water wave disturbances on five of the six axes of a stationary, slender body underwater vehicle in an inertia dominated wave force regime, both in head seas and in beam seas. Inertia dominated wave forces are typical of those encountered by a 21 inch diameter, torpedo shaped underwater vehicle operating in coastal waters and sea state 2. Strip theory is used to develop transfer function phase and magnitude between surface water waves and the slender body pitch, heave, and surge forces and moment for the vehicle in head seas, and for pitch, heave, yaw, and sway forces and moments in beam seas. Experiments are conducted which verify this method of transfer function calculation, and demonstrate the effects of vehicle forward motion in the head seas case. Using known sea spectra and linear time invariant systems theory allows for estimation of the water wave disturbance spectra for these forces and moments. Application of sliding control techniques are then developed for the underwater vehicle longitudinal plane equations of motion. Computer simulations are used to demonstrate the dependence of underwater vehicle depth control upon the pitch control, and adaptive pitch control is shown to provide good performance in the presence of substantial parametric uncertainty. Pitch disturbance rejection properties of variations of the sliding controller are investigated. Both single frequency and stochastic disturbances are used, and the stochastic disturbance is developed using the results of the earlier investigation.
    Description: This research was sponsored in part by ONR Contract N00014-90-J-1912.
    Keywords: Submersibles ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L24604, doi:10.1029/2012GL054034.
    Description: Eddies and vortices associated with breaking waves rapidly disperse pollution, nutrients, and terrestrial material along the coast. Although theory and numerical models suggest that vorticity is generated near the ends of a breaking wave crest, this hypothesis has not been tested in the field. Here we report the first observations of wave-generated vertical vorticity (e.g., horizontal eddies), and find that individual short-crested breaking waves generate significant vorticity [O(0.01 s−1)] in the surfzone. Left- and right-handed wave ends generate vorticity of opposite sign, consistent with theory. In contrast to theory, the observed vorticity also increases inside the breaking crest, possibly owing to onshore advection of vorticity generated at previous stages of breaking or from the shape of the breaking region. Short-crested breaking transferred energy from incident waves to lower frequency rotational motions that are a primary mechanism for dispersion near the shoreline.
    Description: Funding was provided by a National Security Science and Engineering Faculty Fellowship, the Office of Naval Research, and a Woods Hole Oceanographic Institution Postdoctoral Fellowship.
    Description: 2013-06-21
    Keywords: Mixing ; Nearshore ; Turbulence ; Vorticity ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Ocean Engineer at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1991
    Description: A model is developed for the prediction of the seismo-acoustic noise spectrum in the microseism peak region (0.1 to 0.7 Hz). The model uses a theory developed by Cato [J. Acoust. Soc. Am., 89 , 1096-1112 (1991)] for an infinite depth ocean in which the surface orbital motion caused by gravity waves may produce acoustic waves at twice the gravity wave frequency. Using directional wave spectra as inputs, acoustic source levels are computed and incorporated into a more realistic environment consisting of a horizontally stratified ocean with an elastic bottom. Noise predictions are made using directional wave spectra obtained from the SWADE surface buoys moored off the coast of Virginia and the SAFARI sound propagation code, with a bottom model derived using wave speeds measured in the EDGE deep seismic reflection survey. The predictions are analyzed for noise level variations with frequency, wave height, wind direction, and receiver depth. These predictions are compared to noise measurements made in ECONOMEX using near-bottom receivers located close to the surface buoys. Good agreement is found between the predictions and observations under a variety of environmental conditions.
    Keywords: Underwater acoustics ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...