ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (380)
  • Kinetics
  • American Association for the Advancement of Science (AAAS)  (569)
  • 2010-2014  (382)
  • 1980-1984  (187)
Collection
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-07-22
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033778/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033778/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenberg, Miriam I -- Desplan, Claude -- R01 GM064864/GM/NIGMS NIH HHS/ -- R01 GM064864-07/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 16;329(5989):284-5. doi: 10.1126/science.1192769.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647453" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Conserved Sequence ; DNA-Binding Proteins/genetics/*metabolism ; Drosophila Proteins/*genetics/metabolism ; Drosophila melanogaster/embryology/*genetics ; Embryo, Nonmammalian/*metabolism ; Epidermis/cytology ; Evolution, Molecular ; *Gene Expression Regulation, Developmental ; Genes, Insect ; Mutation ; Peptides/*genetics/metabolism ; Protein Processing, Post-Translational ; RNA, Untranslated/*genetics ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-10
    Description: Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xiao-Wei -- Yan, Xiao-Jing -- Zhou, Zi-Ren -- Yang, Fei-Fei -- Wu, Zi-Yu -- Sun, Hong-Bin -- Liang, Wen-Xue -- Song, Ai-Xin -- Lallemand-Breitenbach, Valerie -- Jeanne, Marion -- Zhang, Qun-Ye -- Yang, Huai-Yu -- Huang, Qiu-Hua -- Zhou, Guang-Biao -- Tong, Jian-Hua -- Zhang, Yan -- Wu, Ji-Hui -- Hu, Hong-Yu -- de The, Hugues -- Chen, Sai-Juan -- Chen, Zhu -- New York, N.Y. -- Science. 2010 Apr 9;328(5975):240-3. doi: 10.1126/science.1183424.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Road II, Shanghai 200025, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20378816" target="_blank"〉PubMed〈/a〉
    Keywords: Arsenic/*metabolism ; Arsenicals/*metabolism/*pharmacology ; Cell Line ; Humans ; Leukemia, Promyelocytic, Acute/drug therapy/genetics ; Mutant Proteins/chemistry/metabolism ; Mutation ; Nuclear Proteins/chemistry/genetics/*metabolism ; Oncogene Proteins, Fusion/chemistry/genetics/*metabolism ; Oxazines/metabolism ; Oxides/*metabolism/*pharmacology ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Retinoic Acid/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Small Ubiquitin-Related Modifier Proteins/metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Transcription Factors/chemistry/genetics/*metabolism ; Tumor Suppressor Proteins/chemistry/genetics/*metabolism ; Ubiquitination ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-05-22
    Description: Cell surface receptors convert extracellular cues into receptor activation, thereby triggering intracellular signaling networks and controlling cellular decisions. A major unresolved issue is the identification of receptor properties that critically determine processing of ligand-encoded information. We show by mathematical modeling of quantitative data and experimental validation that rapid ligand depletion and replenishment of the cell surface receptor are characteristic features of the erythropoietin (Epo) receptor (EpoR). The amount of Epo-EpoR complexes and EpoR activation integrated over time corresponds linearly to ligand input; this process is carried out over a broad range of ligand concentrations. This relation depends solely on EpoR turnover independent of ligand binding, which suggests an essential role of large intracellular receptor pools. These receptor properties enable the system to cope with basal and acute demand in the hematopoietic system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Becker, Verena -- Schilling, Marcel -- Bachmann, Julie -- Baumann, Ute -- Raue, Andreas -- Maiwald, Thomas -- Timmer, Jens -- Klingmuller, Ursula -- New York, N.Y. -- Science. 2010 Jun 11;328(5984):1404-8. doi: 10.1126/science.1184913. Epub 2010 May 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division Systems Biology of Signal Transduction, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20488988" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/*metabolism ; Computer Simulation ; Endocytosis ; Epoetin Alfa ; Erythropoietin/metabolism/pharmacology ; Kinetics ; Ligands ; Mice ; Models, Biological ; Protein Binding ; Receptors, Erythropoietin/*metabolism ; Recombinant Proteins ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-11
    Description: Fungal degradation of plant biomass may provide insights for improving cellulosic biofuel production. We show that the model cellulolytic fungus Neurospora crassa relies on a high-affinity cellodextrin transport system for rapid growth on cellulose. Reconstitution of the N. crassa cellodextrin transport system in Saccharomyces cerevisiae promotes efficient growth of this yeast on cellodextrins. In simultaneous saccharification and fermentation experiments, the engineered yeast strains more rapidly convert cellulose to ethanol when compared with yeast lacking this system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galazka, Jonathan M -- Tian, Chaoguang -- Beeson, William T -- Martinez, Bruno -- Glass, N Louise -- Cate, Jamie H D -- New York, N.Y. -- Science. 2010 Oct 1;330(6000):84-6. doi: 10.1126/science.1192838. Epub 2010 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829451" target="_blank"〉PubMed〈/a〉
    Keywords: *Biofuels ; Biological Transport ; Biomass ; Cellobiose/metabolism ; Cellulase/metabolism ; Cellulose/*analogs & derivatives/*metabolism ; Dextrins/*metabolism ; Ethanol/metabolism ; Fermentation ; Fungal Proteins/genetics/*metabolism ; Genetic Engineering ; Kinetics ; Membrane Transport Proteins/genetics/*metabolism ; Neurospora crassa/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae/genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; beta-Glucosidase/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-12-04
    Description: Asymmetric segregation of P granules during the first four divisions of the Caenorhabditis elegans embryo is a classic example of cytoplasmic partitioning of germline determinants. It is thought that asymmetric partitioning of P granule components during mitosis is essential to distinguish germline from soma. We have identified a mutant (pptr-1) in which P granules become unstable during mitosis and P granule proteins and RNAs are distributed equally to somatic and germline blastomeres. Despite symmetric partitioning of P granule components, pptr-1 mutants segregate a germline that uniquely expresses P granules during postembryonic development. pptr-1 mutants are fertile, except at high temperatures. Hence, asymmetric partitioning of maternal P granules is not essential to specify germ cell fate. Instead, it may serve to protect the nascent germline from stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072820/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072820/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gallo, Christopher M -- Wang, Jennifer T -- Motegi, Fumio -- Seydoux, Geraldine -- GM080042/GM/NIGMS NIH HHS/ -- HD007276/HD/NICHD NIH HHS/ -- HD037047/HD/NICHD NIH HHS/ -- R01 HD037047/HD/NICHD NIH HHS/ -- R01 HD037047-12/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Dec 17;330(6011):1685-9. doi: 10.1126/science.1193697. Epub 2010 Dec 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of Medicine, 725 North Wolfe Street, PCTB 706, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blastomeres/*physiology ; Caenorhabditis elegans/*embryology/genetics/metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism/physiology ; Cytoplasm/*metabolism ; Cytoplasmic Granules/*physiology/ultrastructure ; Embryo, Nonmammalian/physiology ; Embryonic Development ; Germ Cells/*physiology ; Interphase ; Microscopy, Confocal ; Mitosis ; Mutation ; Nuclear Proteins/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; RNA, Helminth/*metabolism ; RNA-Binding Proteins/metabolism ; Recombinant Fusion Proteins/metabolism ; Zygote/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-07-10
    Description: Self-organization of nanoparticles is an efficient strategy for producing nanostructures with complex, hierarchical architectures. The past decade has witnessed great progress in nanoparticle self-assembly, yet the quantitative prediction of the architecture of nanoparticle ensembles and of the kinetics of their formation remains a challenge. We report on the marked similarity between the self-assembly of metal nanoparticles and reaction-controlled step-growth polymerization. The nanoparticles act as multifunctional monomer units, which form reversible, noncovalent bonds at specific bond angles and organize themselves into a colloidal polymer. We show that the kinetics and statistics of step-growth polymerization enable a quantitative prediction of the architecture of linear, branched, and cyclic self-assembled nanostructures; their aggregation numbers and size distribution; and the formation of structural isomers.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Kun -- Nie, Zhihong -- Zhao, Nana -- Li, Wei -- Rubinstein, Michael -- Kumacheva, Eugenia -- 1-R01-HL077546-03A2/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2010 Jul 9;329(5988):197-200. doi: 10.1126/science.1189457.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20616274" target="_blank"〉PubMed〈/a〉
    Keywords: Cetrimonium Compounds/chemistry ; Colloids ; Cyclization ; Gold ; Isomerism ; Kinetics ; Metal Nanoparticles/*chemistry ; Microscopy, Electron, Transmission ; Nanotechnology/methods ; Physicochemical Processes ; Polymers ; Polystyrenes/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-12-04
    Description: Although cellular behaviors are dynamic, the networks that govern these behaviors have been mapped primarily as static snapshots. Using an approach called differential epistasis mapping, we have discovered widespread changes in genetic interaction among yeast kinases, phosphatases, and transcription factors as the cell responds to DNA damage. Differential interactions uncover many gene functions that go undetected in static conditions. They are very effective at identifying DNA repair pathways, highlighting new damage-dependent roles for the Slt2 kinase, Pph3 phosphatase, and histone variant Htz1. The data also reveal that protein complexes are generally stable in response to perturbation, but the functional relations between these complexes are substantially reorganized. Differential networks chart a new type of genetic landscape that is invaluable for mapping cellular responses to stimuli.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006187/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3006187/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bandyopadhyay, Sourav -- Mehta, Monika -- Kuo, Dwight -- Sung, Min-Kyung -- Chuang, Ryan -- Jaehnig, Eric J -- Bodenmiller, Bernd -- Licon, Katherine -- Copeland, Wilbert -- Shales, Michael -- Fiedler, Dorothea -- Dutkowski, Janusz -- Guenole, Aude -- van Attikum, Haico -- Shokat, Kevan M -- Kolodner, Richard D -- Huh, Won-Ki -- Aebersold, Ruedi -- Keogh, Michael-Christopher -- Krogan, Nevan J -- Ideker, Trey -- P30CA013330/CA/NCI NIH HHS/ -- P50 GM081879/GM/NIGMS NIH HHS/ -- R01 ES014811/ES/NIEHS NIH HHS/ -- R01 ES014811-01A1/ES/NIEHS NIH HHS/ -- R01 ES014811-02/ES/NIEHS NIH HHS/ -- R01 ES014811-02S1/ES/NIEHS NIH HHS/ -- R01 ES014811-03/ES/NIEHS NIH HHS/ -- R01 ES014811-04/ES/NIEHS NIH HHS/ -- R01 ES014811-05/ES/NIEHS NIH HHS/ -- R01 ES014811-05S1/ES/NIEHS NIH HHS/ -- R01 ES014811-06/ES/NIEHS NIH HHS/ -- R01 GM026017/GM/NIGMS NIH HHS/ -- R01 GM084279/GM/NIGMS NIH HHS/ -- R01 GM084279-01A1/GM/NIGMS NIH HHS/ -- R01 GM084279-02/GM/NIGMS NIH HHS/ -- R01 GM084279-02S1/GM/NIGMS NIH HHS/ -- R01 GM084279-03/GM/NIGMS NIH HHS/ -- R01 GM084279-04/GM/NIGMS NIH HHS/ -- R01 GM084448/GM/NIGMS NIH HHS/ -- R01-ES14811/ES/NIEHS NIH HHS/ -- R01-GM084279/GM/NIGMS NIH HHS/ -- R37 GM026017/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Dec 3;330(6009):1385-9. doi: 10.1126/science.1195618.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21127252" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/metabolism ; *DNA Damage ; DNA Repair/*genetics ; DNA, Fungal/genetics ; *Epistasis, Genetic ; *Gene Regulatory Networks ; Genes, Fungal ; Histones/genetics/metabolism ; Methyl Methanesulfonate/pharmacology ; Mitogen-Activated Protein Kinases/genetics/metabolism ; Mutagens/pharmacology ; Mutation ; Phosphoprotein Phosphatases/genetics/metabolism ; Protein Interaction Mapping ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Saccharomyces cerevisiae/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Signal Transduction ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-16
    Description: Mutation generates the heritable variation that genetic drift and natural selection shape. In classical quantitative genetic models, drift is a function of the effective population size and acts uniformly across traits, whereas mutation and selection act trait-specifically. We identified thousands of quantitative trait loci (QTLs) influencing transcript abundance traits in a cross of two Caenorhabditis elegans strains; although trait-specific mutation and selection explained some of the observed pattern of QTL distribution, the pattern was better explained by trait-independent variation in the intensity of selection on linked sites. Our results suggest that traits in C. elegans exhibit different levels of variation less because of their own attributes than because of differences in the effective population sizes of the genomic regions harboring their underlying loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138179/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3138179/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rockman, Matthew V -- Skrovanek, Sonja S -- Kruglyak, Leonid -- P50 GM071508/GM/NIGMS NIH HHS/ -- P50 GM071508-01/GM/NIGMS NIH HHS/ -- R01 GM089972/GM/NIGMS NIH HHS/ -- R01 GM089972-02/GM/NIGMS NIH HHS/ -- R01 HG004321/HG/NHGRI NIH HHS/ -- R01 HG004321-01/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Oct 15;330(6002):372-6. doi: 10.1126/science.1194208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Center for Genomics and Systems Biology, New York University, 100 Washington Square East, New York, NY 10003, USA. mrockman@nyu.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20947766" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Caenorhabditis elegans/*genetics/physiology ; Chromosome Mapping ; Chromosomes/*genetics ; Crosses, Genetic ; Evolution, Molecular ; Gene Expression ; Genes, Helminth ; *Genetic Variation ; Logistic Models ; Models, Genetic ; Mutation ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Polymorphism, Single Nucleotide ; Population Density ; *Quantitative Trait Loci ; *Quantitative Trait, Heritable ; Recombination, Genetic ; *Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barral, Yves -- New York, N.Y. -- Science. 2010 Sep 10;329(5997):1289-90. doi: 10.1126/science.1195445.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland. yves.barral@bc.biol.ethz.ch〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20829470" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism/ultrastructure ; *Cell Polarity ; Centrioles/metabolism ; Cilia/*metabolism/ultrastructure ; Cytoskeletal Proteins/chemistry/*metabolism ; Diffusion ; GTP-Binding Proteins/chemistry/*metabolism ; Glycoproteins/genetics/metabolism ; Hedgehog Proteins/metabolism ; Humans ; Mutant Proteins/metabolism ; Mutation ; Receptors, Cell Surface/metabolism ; Signal Transduction ; Xenopus Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-01-02
    Description: Prions are infectious proteins consisting mainly of PrP(Sc), a beta sheet-rich conformer of the normal host protein PrP(C), and occur in different strains. Strain identity is thought to be encoded by PrP(Sc) conformation. We found that biologically cloned prion populations gradually became heterogeneous by accumulating "mutants," and selective pressures resulted in the emergence of different mutants as major constituents of the evolving population. Thus, when transferred from brain to cultured cells, "cell-adapted" prions outcompeted their "brain-adapted" counterparts, and the opposite occurred when prions were returned from cells to brain. Similarly, the inhibitor swainsonine selected for a resistant substrain, whereas, in its absence, the susceptible substrain outgrew its resistant counterpart. Prions, albeit devoid of a nucleic acid genome, are thus subject to mutation and selective amplification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848070/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Jiali -- Browning, Shawn -- Mahal, Sukhvir P -- Oelschlegel, Anja M -- Weissmann, Charles -- NS059543/NS/NINDS NIH HHS/ -- R01 NS059543/NS/NINDS NIH HHS/ -- R01 NS059543-01/NS/NINDS NIH HHS/ -- R01 NS059543-02/NS/NINDS NIH HHS/ -- R01 NS067214/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2010 Feb 12;327(5967):869-72. doi: 10.1126/science.1183218. Epub 2009 Dec 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20044542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Brain Chemistry ; Cell Line ; Cell Line, Tumor ; Culture Media ; Culture Media, Conditioned ; *Evolution, Molecular ; Mice ; Mice, Inbred C57BL ; Mutation ; *PrPSc Proteins/chemistry/classification/pathogenicity ; Prion Diseases ; Prions/chemistry/classification/*pathogenicity/*physiology ; Protein Conformation ; Swainsonine/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...