ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (139,339)
  • Public Library of Science  (109,169)
  • Wiley  (30,170)
  • 2015-2019  (139,339)
  • Medicine  (139,339)
Collection
  • Articles  (139,339)
Years
Year
Journal
  • 1
    Publication Date: 2015-08-11
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-12
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-09
    Description: World Health Organization reports that methicillin-resistant Staphylococcus aureus (MRSA) is the origin of higher proportion of hospital acquired infections. In order to combat the effect of MRSA infection, an ideal drug should stimulate the allosteric exposure of active site, prompting penicillin binding proteins (PBP2a) to bind with that particular compound. Ceftaroline shows high binding affinity towards PBP2a and also confers resistance against degrading enzymes. Recently, two amino acid alterations in the allosteric site of PBP2a, asparagine (N) to lysine (K) at position 146 and glutamic acid (E) to lysine at position 150 are reported to confer resistance against ceftaroline resulting in the rise of ceftaroline-resistant MRSA strains. The present study focuses on the identification of potential ligands that can effectively bind with allosteric site of PBP2a, that leads to the access of active site and entry of a β-lactam antibiotic for effective inhibition. The results obtained from our study will be useful for designing effective compounds with potential therapeutic effects against ceftaroline resistant MRSA strains. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-09
    Description: The human protein kinase X gene (PRKX) and cAMP-dependent protein kinase (PKA) are both c-AMP-dependent serine/threonine protein kinases within the protein kinase AGC subgroup. Of all the protein kinases in this group, PRKX is the least studied. PRKX has been isolated from patients with chondrodysplasia punctate and is involved in numerous processes, including sexual differentiation and fertilization, normal kidney development, and autosomal dominant polycystic kidney disease (ADPKD), blood maturation, neural development and angiogenesis in vitro. Although the role of PRKX in development and disease has been reported recently, the underlying mechanism of PRKX activity is largely unknown. In addition, based on the expression pattern of PRKX and the extensive role of PKA in disease and development, PRKX might have additional crucial functions that have not been addressed in the literature. In this review, we summarize the characteristics and developmental functions of PRKX that have been reported by recent studies. In particular, we elucidate the structural and functional differences between PRKX and PKA, as well as the possible roles of PRKX in development and related diseases. Finally, we propose future studies that could lead to important discoveries of more PRKX functions and the underlying mechanisms involved. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-12
    Description: The endocannabinoid system is the target of the main psychoactive component of the plant Cannabis sativa , the Δ 9 -tetrahydrocannabinol (THC). This system is composed by the cannabinoid receptors, the endogenous ligands, and the enzymes involved in their metabolic processes, which works both centrally and peripherally to regulate a plethora of physiological functions. This review aims at explaining how the site-specific actions of the endocannabinoid system impact on memory and feeding behavior through the cannabinoid receptors 1 (CB 1 R). Centrally, CB 1 R is widely distributed in many brain regions, different cell types (e.g. neuronal or glial cells) and intracellular compartments (e.g. mitochondria). Interestingly, cellular and molecular effects are differentially mediated by CB 1 R according to their cell-type localization (e.g. glutamatergic or GABAergic neurons). Thus, understanding the cellular and subcellular function of CB 1 R will provide new insights and aid the design of new compounds in cannabinoid-based medicine. The widespread localization of CB1 receptors in different brain regions (e.g. hippocampus, hypothalamus, and cortex), cell types (e.g. GABAergic and glutamatergic neurons), and subcellular domains (e.g. plasma membrane and mitochondria) allows the endocannabinoid system to control different behaviors (e.g. memory and food intake) in a multimodal and versatile fashion. Also watch the Video Abstract .
    Print ISSN: 0265-9247
    Electronic ISSN: 1521-1878
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-09
    Description: Several key transcription factors regulate cell growth, survival, and differentiation during neural crest and melanoblast development in the embryo, and these same pathways may be reactivated in tumors arising from the progenitors of these cells. The transcription factors PAX3 and FOXD3 have essential roles in melanoblasts and melanoma. In this study, we define a regulatory pathway where FOXD3 promotes the expression of PAX3. Both factors are expressed in melanoma cells and there is a positive correlation between the transcript levels of PAX3 and FOXD3. The PAX3 gene contains two FOX binding motifs within highly conserved enhancer regulatory elements that are essential for neural crest development. FOXD3 binds to both of these motifs in vitro but only one of these sites is preferentially utilized in melanoma cells. Overexpression of FOXD3 upregulates PAX3 levels while inhibition of FOXD3 function does not alter PAX3 protein levels, supporting that FOXD3 is sufficient but not necessary to drive PAX3 expression in melanoma cells. Here, we identify a molecular pathway where FOXD3 upregulates PAX3 expression and therefore contributes to melanoma progression. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-09
    Description: Metabolic networks are significantly altered in neoplastic cells. This altered metabolic program leads to increased glycolysis and lipogenesis and decreased dependence on oxidative phosphorylation and oxygen consumption. Despite their limited mitochondrial respiration, cancer cells, nonetheless, derive sufficient energy from alternative carbon sources and metabolic pathways to maintain cell proliferation. They do so, in part, by utilizing fatty acids, amino acids, ketone bodies and acetate, in addition to glucose. The alternative pathways used in the metabolism of these carbon sources provide opportunities for therapeutic manipulation. Acetate, in particular, has garnered increased attention in the context of cancer as both an epigenetic regulator of posttranslational protein modification, and as a carbon source for cancer cell biomass accumulation. However, to date, the data have not provided a clear understanding of the precise roles that protein acetylation and acetate oxidation play in carcinogenesis, cancer progression or treatment. This review highlights some of the major issues, discrepancies and opportunities associated with the manipulation of acetate metabolism and acetylation-based signaling in cancer development and treatment. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-12
    Description: Direct application of histone-deacetylase-inhibitors (HDACis) to dental pulp cells (DPCs) induces chromatin changes, promoting gene expression and cellular-reparative events. We have previously demonstrated that HDACis (Valproic acid, Trichostatin A) increase mineralization in dental papillae-derived cell-lines and primary DPCs by stimulation of dentinogenic gene expression. Here, we investigated novel genes regulated by the HDACi, suberoylanilide hydroxamic acid (SAHA), to identify new pathways contributing to DPC differentiation. SAHA significantly compromised DPC viability only at relatively high concentrations (5 μM); while low concentrations (1 μM) SAHA did not increase apoptosis. HDACi-exposure for 24 h induced mineralization-per-cell dose-dependently after 2 weeks; however, constant 14d SAHA-exposure inhibited mineralization. Microarray analysis (24 h and 14d) of SAHA exposed cultures highlighted that 764 transcripts showed a significant 〉2.0-fold change at 24 h, which reduced to 36 genes at 14d. 59% of genes were down-regulated at 24 h and 36% at 14d, respectively. Pathway analysis indicated SAHA increased expression of members of the matrix metalloproteinase (MMP) family. Furthermore, SAHA-supplementation increased MMP-13 protein expression (7d, 14 d) and enzyme activity (48 h, 14d). Selective MMP-13-inhibition (MMP-13i) dose-dependently accelerated mineralization in both SAHA-treated and non-treated cultures. MMP-13i-supplementation promoted expression of several mineralization-associated markers, however, HDACi-induced cell migration and wound healing were impaired. Data demonstrate that short-term low-dose SAHA-exposure promotes mineralization in DPCs by modulating gene pathways and tissue proteases. MMP-13i further increased mineralization-associated events, but decreased HDACi cell migration indicating a specific role for MMP-13 in pulpal repair processes. Pharmacological inhibition of HDAC and MMP may provide novel insights into pulpal repair processes with significant translational benefit. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-15
    Description: Adipogenesis comprises a complex network of signaling pathways and transcriptional cascades; the GSK3β-C/EBPβ- srebf1a axis is a critical signaling pathway at early stages leading to the expression of PPARγ2, the master regulator of adipose differentiation. Previous work has demonstrated that retinoic acid inhibits adipogenesis affecting different signaling pathways. Here, we evaluated the anti-adipogenic effect of retinoic acid on the adipogenic transcriptional cascade, and the expression of adipogenic genes cebpb , srebf1a , srebf1c , pparg2 , and cebpa . Our results demonstrate that retinoic acid blocks adipose differentiation during commitment, returning cells to an apparent non-committed state, since they have to be newly induced to adipose conversion after the retinoid is removed from the culture medium. Retinoic acid down regulates the expression of the adipogenic genes, srebf1a, srebf1c , pparg2 , and cebpa . Retinoic acid did not down regulate the expression of cebpb , but it inhibited C/EBPβ phosphorylation at Thr188, a critical step for the progression of the adipogenic program. We also found that RA inhibition of adipogenesis did not increase the expression of dlk1 , the gene encoding for Pref1, a well-known anti-adipogenic transcription factor. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-30
    Description: ABSTRACT Platelets are important in hemostasis, but also detect particles and pathogens in the circulation. Phagocytic and endocytic activities of platelets are widely recognized, however, receptors and mechanisms involved remain poorly understood. We previously demonstrated that platelets internalize and store phospholipid microvesicles enriched in human tissue factor (TF + MVs) and that platelet-associated TF enhances thrombus formation at sites of vascular damage. Here we investigate the mechanisms implied in the interactions of TF + MVs with platelets and the effects of specific inhibitory strategies. Aggregometry and electron microscopy were used to assess platelet activation and TF + MVs uptake. Cytoskeletal assembly and activation of phosphoinositide 3-kinase (PI3K) and RhoA were analyzed by western blot and ELISA. Exposure of platelets to TF + MVs caused reversible platelet aggregation, actin polymerization and association of contractile proteins to the cytoskeleton being maximal at 1 min. The same kinetics were observed for activation of PI3K and translocation of RhoA to the cytoskeleton. Inhibitory strategies to block glycoprotein IIb-IIIa (GPIIb-IIIa), scavenger receptor CD36, serotonin transporter (SERT) and PI3K, fully prevented platelet aggregation by TF + MVs. Ultrastructural techniques revealed that uptake of TF + MVs was efficiently prevented by anti-CD36 and SERT inhibitor, but only moderately interfered by GPIIb-IIIa blockade. We conclude that internalization of TF + MVs by platelets occurs independently of receptors related to their main hemostatic function (GPIIb-IIIa), involves the scavenger receptor CD36, SERT and engages PI3-Kinase activation and cytoskeletal assembly. CD36 and SERT appear as potential therapeutic targets to interfere with the association of TF + MVs with platelets and possibly downregulate their prothrombotic phenotype. This article is protected by copyright. All rights reserved
    Electronic ISSN: 0091-7419
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...