ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3,356)
  • Hindawi  (1,847)
  • Institute of Electrical and Electronics Engineers (IEEE)  (1,509)
  • 2015-2019  (3,356)
  • Energy, Environment Protection, Nuclear Power Engineering  (3,356)
Collection
  • Articles  (3,356)
Years
Year
Journal
  • 1
    Publication Date: 2015-08-04
    Description: This paper presents design and testing of a shell-encapsulated solar collector which can be used in north area of China for wall-amounting installation. The designed solar collector is based on the combination of a novel compound curved surface concentrator and an aluminum concentric solar receiver, which is contained in a glass evacuated-tube. As there is no perforative joint between the double-skin glass evacuated-tube and the aluminum concentric solar receiver, the difficulty of vacuum keeping for a glass-metal joint is avoided. The cavity shell provides an additional thermal insulation to reduce heat loss of the designed solar collector. The working principle of the compound curved surface concentrator is described. The ray-tracing results are given to show the effect of deviation angle of the concentrator on its optical efficiency, hence determining its maximum acceptance angle. A prototype of the designed solar collector has been constructed and tested under the sunny winter weather condition. The experimental results indicate that the hot water temperature higher than 80°C with a daily average efficiency of about 45~50% has been achieved at the average ambient temperature below 0°C, so the designed solar collector can produce hot water at a useful temperature in winter.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-05
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-05
    Description: A novel all-glass evacuated tube collector manifold header with an inserted tube is proposed in this paper which makes water in all-glass evacuated solar collector tube be forced circulated to improve the performance of solar collector. And a dynamic numerical model was presented for the novel all-glass evacuated tube collector manifold header water heater system. Also, a test rig was built for model validation and comparison with traditional all-glass evacuated tube collector. The experiment results show that the efficiency of solar water heater with a novel collector manifold header is higher than traditional all-glass evacuated tube collector by about 5% and the heat transfer model of water heater system is valid. Based on the model, the relationship between the average temperature of water tank and inserted tube diameter (water mass flow) has been studied. The results show that the optimized diameter of inserted tube is 32 mm for the inner glass with the diameter of 47 mm and the water flow mass should be less than 1.6 Kg/s.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-05
    Description: The performance of a dual-function solar collector (DFSC) that can work as either water heater or air heater depending on seasonal requirement is investigated via both experimental and numerical approaches in this paper. The numerical results are well consistent with the experimental results. Daily efficiency of the thermosiphon system with DFSC is more than 55% in water heating mode and the instantaneous air heating efficiency of the collector reaches 60%. The effects of inner parameters on the thermal efficiency of the collector are analyzed by numerical simulations of the operation of DFSC in two working modes. It is found that the depths of the two air channels in DFSC have an optimal range suitable for both working modes. The thickness of back insulation should be no less than 0.06 m to prevent heat loss via backboard, and the diameter and number of copper tubes show notable effect on the efficiency of DFSC in water heating mode but slight effect in air heating mode.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-05
    Description: Nuclear power plants are highly complex systems and the issues related to their safety are of primary importance. Probabilistic safety assessment is regarded as the most widespread methodology for studying the safety of nuclear power plants. As maintenance is one of the most important factors for affecting the reliability and safety, an enhanced preventive maintenance optimization model based on a three-stage failure process is proposed. Preventive maintenance is still a dominant maintenance policy due to its easy implementation. In order to correspond to the three-color scheme commonly used in practice, the lifetime of system before failure is divided into three stages, namely, normal, minor defective, and severe defective stages. When the minor defective stage is identified, two measures are considered for comparison: one is that halving the inspection interval only when the minor defective stage is identified at the first time; the other one is that if only identifying the minor defective stage, the subsequent inspection interval is halved. Maintenance is implemented immediately once the severe defective stage is identified. Minimizing the expected cost per unit time is our objective function to optimize the inspection interval. Finally, a numerical example is presented to illustrate the effectiveness of the proposed models.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-05
    Description: An integrated deterministic and probabilistic safety analysis (IDPSA) was carried out to assess the performances of the firefighting means to be applied in a nuclear power plant. The tools used in the analysis are the code FDS (Fire Dynamics Simulator) for fire simulation and the tool MCDET (Monte Carlo Dynamic Event Tree) for handling epistemic and aleatory uncertainties. The combination of both tools allowed for an improved modelling of a fire interacting with firefighting means while epistemic uncertainties because lack of knowledge and aleatory uncertainties due to the stochastic aspects of the performances of the firefighting means are simultaneously taken into account. The MCDET-FDS simulations provided a huge spectrum of fire sequences each associated with a conditional occurrence probability at each point in time. These results were used to derive probabilities of damage states based on failure criteria considering high temperatures of safety related targets and critical exposure times. The influence of epistemic uncertainties on the resulting probabilities was quantified. The paper describes the steps of the IDPSA and presents a selection of results. Focus is laid on the consideration of epistemic and aleatory uncertainties. Insights and lessons learned from the analysis are discussed.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-08-05
    Description: In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. In addition, the impact of power uprate is determined in terms of both core damage probability and safety margins.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-05
    Description: In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be analysed as beyond design basis hazard. The aim of the analysis is to define the postevent condition of the plant, definition of plant vulnerabilities, and identification of the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The procedure includes identification of the scope of the safety analysis and the acceptable limit cases for plant structures having different role from accident management point of view. Considerations are made for identification of dominating effects of liquefaction. The possibility of the decoupling of the analysis of liquefaction effects from the analysis of vibratory ground motion is discussed. It is shown in the paper that the practicable empirical methods for definition of liquefaction susceptibility provide rather controversial results. Selection of method for assessment of soil behaviour that affects the integrity of structures requires specific considerations. The case of nuclear power plant at Paks, Hungary, is used as an example for demonstration of practical importance of the presented results and considerations.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-05
    Description: The loss of off-site power (LOOP) event occurs when all electrical power to the nuclear power plant from the power grid is lost. Complete failure of both off-site and on-site alternating current (AC) power sources is referred to as a station blackout (SBO). Combined LOOP and SBO events are analyzed in this paper. The analysis is done for different time delays between the LOOP and SBO events. Deterministic safety analysis is utilized for the assessment of the plant parameters for different time delays of the SBO event. Obtained plant parameters are used for the assessment of the probabilities of the functional events in the SBO event tree. The results show that the time delay of the SBO after the LOOP leads to a decrease of the core damage frequency (CDF) from the SBO event tree. The reduction of the CDF depends on the time delay of the SBO after the LOOP event. The results show the importance of the safety systems to operate after the plant shutdown when the decay heat is large. Small changes of the basic events importance measures are identified with the introduction of the delay of the SBO event.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-18
    Print ISSN: 0018-9499
    Electronic ISSN: 1558-1578
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-18
    Description: Programming languages like C and Ada combined with proprietary embedded operating systems have dominated the real-time application space for decades. The new C++11 standard includes native, language-level support for concurrency, a required feature for any nontrivial event-oriented real-time software. Threads, Locks, and Atomics now exist to provide the necessary tools to build the structures that make up the foundation of a complex real-time system. The National Spherical Torus Experiment Upgrade (NSTX-U) at the Princeton Plasma Physics Laboratory (PPPL) is breaking new ground with the language as applied to the needs of fusion devices. A new Digital Coil Protection System (DCPS) will serve as the main protection mechanism for the magnetic coils, and it is written entirely in C++11 running on Concurrent Computer Corporation’s real-time operating system, RedHawk Linux. It runs over 600 algorithms in a 5 kHz control loop that determine whether or not to shut down operations before physical damage occurs. To accomplish this, NSTX-U engineers developed software tools that do not currently exist elsewhere, including real-time atomic synchronization, real-time containers, and a real-time logging framework. Together with a recent (and carefully configured) version of the GCC compiler, these tools enable data acquisition, processing, and output using a conventional operating system to meet a hard real-time deadline (that is, missing one periodic is a failure) of 200 microseconds.
    Print ISSN: 0018-9499
    Electronic ISSN: 1558-1578
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-18
    Description: Thallium-bromide (TlBr) is currently under investigation as an alternative room-temperature semiconductor gamma-ray spectrometer due to its favorable material properties (large bandgap, high atomic numbers, and high density). Previous work has shown that 5 mm thick pixelated TlBr detectors can achieve sub-1% FWHM energy resolution at 662 keV for single-pixel events. These results are limited to $ - 20{^ circ }{rm C}$ operation where detector performance is stable. During the first one to five days of applied bias at $ - 20{^ circ }{rm C}$ , many TlBr detectors undergo a conditioning phase, where the energy resolution improves and the depth-dependent electron drift velocity stabilizes. In this work, the spectroscopic performance, drift velocity, and freed electron concentrations of multiple 5 mm thick pixelated TlBr detectors are monitored throughout the conditioning phase. Additionally, conditioning is performed twice on the same detector at different times to show that improvement mechanisms relax when the detector is stored without bias. We conclude that the improved spectroscopy results from internal electric field stabilization and uniformity caused by fewer trapped electrons.
    Print ISSN: 0018-9499
    Electronic ISSN: 1558-1578
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-18
    Description: Silicon Photomultipliers (SiPMs) are attractive candidates for light detectors for next generation liquid xenon double-beta decay experiments, like nEXO (next Enriched Xenon Observatory). In this paper we discuss the requirements that the SiPMs must satisfy in order to be suitable for nEXO and similar experiments, describe the two test setups operated by the nEXO collaboration, and present the results of characterization of SiPMs from several vendors. In particular, we find that the photon detection efficiency at the peak of xenon scintillation light emission (175-178 nm) approaches the nEXO requirements for tested FBK and Hamamatsu devices. Additionally, the nEXO collaboration performed radio-assay of several grams of bare FBK devices using neutron activation analysis, indicating levels of $^{40}{rm K}$ , $^{232}{rm Th}$ , and $^{238}{rm U}$ of the order of $ 〈 0.15$ , ( $ 6.9cdot 10^{ - 4} - 1.3 cdot 10^{ - 2}$ ), and $ 〈 0.11 ~hbox{mBq}/hbox{kg}$ , respectively.
    Print ISSN: 0018-9499
    Electronic ISSN: 1558-1578
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-18
    Description: It is very important for plant operators to be informed of the departure from nucleate boiling ratio (DNBR) to prevent the fuel cladding from melting and a boiling crisis in a nuclear reactor. The reactor core monitoring and protection systems require a minimum DNBR value to monitor reactor coolant conditions. In this study, in order to estimate the minimum DNBR value, a cascaded fuzzy neural network (CFNN) method was used. The CFNN model can be used to estimate the minimum DNBR value through the process of adding fuzzy neural networks (FNNs) repeatedly. The proposed DNBR estimation algorithm was verified by applying the nuclear and thermal data acquired from many numerical simulations of the optimized power reactor 1000 (OPR1000). The CFNN model was compared to previously developed models and was found to be superior to them. Therefore, this model can be used to effectively monitor and predict the minimum DNBR in the reactor core.
    Print ISSN: 0018-9499
    Electronic ISSN: 1558-1578
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-08-18
    Print ISSN: 0018-9499
    Electronic ISSN: 1558-1578
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-08-13
    Description: Concentrator solar cells that operate at high solar concentration level must be cooled. In this paper, direct liquid immersion cooling of triple-junction solar cells (InGaP/InGaAs/Ge) is proposed as a heat dissipation solution for dense-array high concentrating photovoltaic (HCPV) systems. The advantages of triple-junction CPV cells immersed in a circulating dielectric liquid and dish HCPV technology are integrated into a CPV system to improve the system electrical conversion efficiency. An analytical model for the direct liquid-immersed solar receiver with triple-junction CPV cells is presented. The main outputs of the model are the components temperatures of the receiver and the system electrical efficiency. The influence of concentration factor, mass flow rate, and inlet liquid temperature on the operating temperature of the triple-junction CPV cells and the system electrical conversion efficiency are discussed. It is shown that the system electrical conversion efficiency is very high for a wide range of operating conditions. The three operating parameters have a major effect on the operating temperature of the triple-junction CPV cells and, by extension, system output power. The flow rate selection should match concentration factor to keep the triple-junction CPV cells temperature lower and increase the electrical conversion efficiency of the dense-array HCPV system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-04
    Description: Solar aided coal-fired power generation system (SACFPGS) combines solar energy and traditional coal-fired units in a particular way. This study mainly improves the solar thermal storage system. Genetic algorithm is used to optimize the SACFPGS. The best integration approach of the system, the collector area, and the corresponding thermal storage capacity to replace each high-pressure extraction are obtained when the amount of coal saving in unit solar investment per hour is at its largest. System performance before and after the improvement is compared. Results show that the improvement of the thermal storage system effectively increases the economic benefit of the integrated system.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-04
    Description: A spectral selectivity surface for both solar heating and radiative cooling was proposed. It has a high spectral absorptivity (emissivity) in the solar radiation band and atmospheric window band (i.e., 0.2~3 μm and 8~13 μm), as well as a low absorptivity (emissivity) in other bands aside from the solar radiation and atmospheric window wavelengths (i.e., 3~8 μm or above 13 μm). A type of composite surface sample was trial-manufactured combining titanium-based solar selective absorbing coating with polyethylene terephthalate (TPET). Sample tests showed that the TPET composite surface has clear spectral selectivity in the spectra of solar heating and radiation cooling wavelengths. The equilibrium temperatures of the TPET surface under different sky conditions or different inclination angles of surface were tested at both day and night. Numerical analysis and comparisons among the TPET composite surface and three other typical surfaces were also performed. These comparisons indicated that the TPET composite surface had a relative heat efficiency of 76.8% of that of the conventional solar heating surface and a relative temperature difference of 75.0% of that of the conventional radiative cooling surface, with little difference in cooling power.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-05
    Description: In this paper, taking Lushan West Sea highway green rest area in Jiangxi Province of China as the case study, the suitable types, applicability, advantages, and effective methods of solar lighting technologies for highway rest area were determined based on the analysis of characteristics of highway green rest area. It was proved that solar lighting technologies including the natural light guidance system, solar LED lighting, and maximizing natural light penetration were quite suitable for highway rest area in terms of lighting effects and energy and economic efficiency. The illuminance comparison of light guidance system with electrical lighting was made based on the on-site experiment. Also, the feasibility of natural light guidance system was well verified in terms of the lighting demand of the visitor centre in the rest area by the illuminance simulation analysis. The evaluation of the energy saving, economic benefits, and environmental effects of solar lighting technologies for highway rest area was, respectively, made in detail. It was proved that the application of solar technology for green lighting of highway rest facilities not only could have considerable energy saving capacity and achieve high economic benefits, but also make great contributions to the reduction of environment pollution.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-05
    Description: Integrated Deterministic-Probabilistic Safety Assessment (IDPSA) combines deterministic model of a nuclear power plant with a method for exploration of the uncertainty space. Huge amount of data is generated in the process of such exploration. It is very difficult to “manually” process and extract from such data information that can be used by a decision maker for risk-informed characterization, understanding, and eventually decision making on improvement of the system safety and performance. Such understanding requires an approach for interpretation, grouping of similar scenario evolutions, and classification of the principal characteristics of the events that contribute to the risk. In this work, we develop an approach for classification and characterization of failure domains. The method is based on scenario grouping, clustering, and application of decision trees for characterization of the influence of timing and order of events. We demonstrate how the proposed approach is used to classify scenarios that are amenable to treatment with Boolean logic in classical Probabilistic Safety Assessment (PSA) from those where timing and order of events determine process evolution and eventually violation of safety criteria. The efficiency of the approach has been verified with application to the SARNET benchmark exercise on the effectiveness of hydrogen management in the containment.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-05
    Description: The analytical/deterministic modelling and simulation/probabilistic methods are used separately as a rule in order to analyse the physical processes and random or uncertain events. However, in the currently used probabilistic safety assessment this is an issue. The lack of treatment of dynamic interactions between the physical processes on one hand and random events on the other hand causes the limited assessment. In general, there are a lot of mathematical modelling theories, which can be used separately or integrated in order to extend possibilities of modelling and analysis. The Theory of Probabilistic Dynamics (TPD) and its augmented version based on the concept of stimulus and delay are introduced for the dynamic reliability modelling and the simulation of accidents in hybrid (continuous-discrete) systems considering uncertain events. An approach of non-Markovian simulation and uncertainty analysis is discussed in order to adapt the Stimulus-Driven TPD for practical applications. The developed approach and related methods are used as a basis for a test case simulation in view of various methods applications for severe accident scenario simulation and uncertainty analysis. For this and for wider analysis of accident sequences the initial test case specification is then extended and discussed. Finally, it is concluded that enhancing the modelling of stimulated dynamics with uncertainty and sensitivity analysis allows the detailed simulation of complex system characteristics and representation of their uncertainty. The developed approach of accident modelling and analysis can be efficiently used to estimate the reliability of hybrid systems and at the same time to analyze and possibly decrease the uncertainty of this estimate.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-06-09
    Description: We demonstrate an innovative CIGS-based solar cells model with a graded doping concentration absorber profile, capable of achieving high efficiency values. In detail, we start with an in-depth discussion concerning the parametrical study of conventional CIGS solar cells structures. We have used the wxAMPS software in order to numerically simulate cell electrical behaviour. By means of simulations, we have studied the variation of relevant physical and chemical parameters—characteristic of such devices—with changing energy gap and doping density of the absorber layer. Our results show that, in uniform CIGS cell, the efficiency, the open circuit voltage, and short circuit current heavily depend on CIGS band gap. Our numerical analysis highlights that the band gap value of 1.40 eV is optimal, but both the presence of Molybdenum back contact and the high carrier recombination near the junction noticeably reduce the crucial electrical parameters. For the above-mentioned reasons, we have demonstrated that the efficiency obtained by conventional CIGS cells is lower if compared to the values reached by our proposed graded carrier concentration profile structures (up to 21%).
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-06-09
    Description: Microcrystalline silicon (μc-Si:H) thin-film solar cells are processed on glass superstrates having both micro- and nanoscale surface textures. The microscale texture is realised at the glass surface, using the aluminium-induced texturing (AIT) method, which is an industrially feasible process enabling a wide range of surface feature sizes (i.e., 700 nm–3 μm) of the textured glass. The nanoscale texture is made by conventional acid etching of the sputter-deposited transparent conductive oxide (TCO). The influence of the resulting “double texture” on the optical scattering is investigated by means of atomic force microscopy (AFM) (studying the surface topology), haze measurements (studying scattering into air), and short-circuit current enhancement measurements (studying scattering into silicon). A predicted enhanced optical scattering efficiency is experimentally proven by a short-circuit current enhancement of up to 1.6 mA/cm2 (7.7% relative increase) compared to solar cells fabricated on a standard superstrate, that is, planar glass covered with nanotextured TCO. Enhancing the autocorrelation length (or feature size) of the AIT superstrates might have the large potential to improve the μc-Si:H thin-film solar cell efficiency, by reducing the shunting probability of the device while maintaining a high optical scattering performance.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-06-09
    Description: We study the electrical and the optical behavior of HIT solar cell by means of measurements and optoelectrical simulations by TCAD simulations. We compare the HIT solar cell with a conventional crystalline silicon solar cell to identify the strengths and weaknesses of the HIT technology. Results highlight different mechanisms of electrical and optical efficiency losses caused by the presence of the amorphous silicon layer. The higher resistivity of the a-Si layers implies a smaller distance between the metal lines that causes a higher shadowing. The worst optical coupling between the amorphous silicon and the antireflective coating implies a slight increase of reflectivity around the 600 nm wavelength.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-06-09
    Description: The hydrogenated amorphous silicon (a-Si:H)/hydrogenated microcrystalline silicon (c-Si:H) double p-type window layer has been developed and applied for improving microcrystalline silicon-germanium p-i-n single-junction thin-film solar cells deposited on textured SnO2:F-coated glass substrates. The substrates of SnO2:F, SnO2:F/c-Si:H(p), and SnO2:F/a-Si:H(p) were exposed to H2 plasma to investigate the property change. Our results showed that capping a thin layer of a-Si:H(p) on SnO2:F can minimize the Sn reduction during the deposition process which had H2-containing plasma. Optical measurement has also revealed that a-Si:H(p) capped SnO2:F glass had a higher optical transmittance. When the 20 nm c-Si:H(p) layer was replaced by a 3 nm a-Si:H(p)/17 nm c-Si:H(p) double window layer in the cell, the conversion efficiency () and the short-circuit current density () were increased by 16.6% and 16.4%, respectively. Compared to the standard cell with the 20 nm c-Si:H(p) window layer, an improved conversion efficiency of 6.19% can be obtained for the cell having a-Si:H(p)/c-Si:H(p) window layer, with  = 490 mV,  = 19.50 mA/cm2, and FF = 64.83%.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-04
    Description: Atomic layer deposition was used to coat CdS photoanodes with 7 nm thick TiO2 films to protect them from photocorrosion during photoelectrochemical water splitting. Photoelectrochemical measurements indicate that the TiO2 coating does not provide full protection against photocorrosion. The degradation of the film initiates from small pinholes and shows oscillatory behavior that can be explained by an Avrami-type model for photocorrosion that is halfway between 2D and 3D etching. XPS analysis of corroded films indicates that a thin layer of CdS remains present on the surface of the corroded photoanode that is more resilient towards photocorrosion.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-04
    Description: A new trough solar concentrator which is composed of multiple reflection surfaces is developed in this paper. The concentrator was analyzed firstly by using optical software. The variation curves of the collecting efficiency affected by tracking error and the deviation angle were given out. It is found that the deviation tolerance for the collector tracking system is about 8 degrees when the receiver is a 90 mm flat. The trough solar concentrators were tested under real weather conditions. The experiment results indicate that, the new solar concentrator was validated to have relative good collecting efficiency, which can be more than 45 percent when it operated in more 145°C. It also has the characteristics of rdust, wind, and snow resistance and low tracking precision requirements.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2015-08-04
    Description: Several studies have found that the decrease of photovoltaic (PV) cell temperature would increase the solar-to-electricity conversion efficiency. Water type PV/thermal (PV/T) system was a good choice but it could become freezing in cold areas of Northern China. This paper proposed a simple combination of common-used PV panel and heat pipe, called PV-heat pipe (PV-HP) solar collector, for both electrical and thermal energy generation. A simplified one-dimensional steady state model was developed to study the electrical and thermal performance of the PV-HP solar collector under different solar radiations, water flow rates, and water temperatures at the inlet of manifold. A testing rig was conducted to verify the model and the testing data matched very well with the simulation values. The results indicated that the thermal efficiency could be minus in the afternoon. The thermal and electrical efficiencies decreased linearly as the inlet water temperature and water flow rate increased. The thermal efficiency increased while the electrical efficiency decreased linearly as the solar radiation increased.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-08-05
    Description: In integrated deterministic and probabilistic safety analysis (IDPSA), safe scenarios and prime implicants (PIs) are generated by simulation. In this paper, we propose a novel postprocessing method, which resorts to a risk-based clustering method for identifying Near Misses among the safe scenarios. This is important because the possibility of recovering these combinations of failures within a tolerable grace time allows avoiding deviations to accident and, thus, reducing the downtime (and the risk) of the system. The postprocessing risk-significant features for the clustering are extracted from the following: (i) the probability of a scenario to develop into an accidental scenario, (ii) the severity of the consequences that the developing scenario would cause to the system, and (iii) the combination of (i) and (ii) into the overall risk of the developing scenario. The optimal selection of the extracted features is done by a wrapper approach, whereby a modified binary differential evolution (MBDE) embeds a -means clustering algorithm. The characteristics of the Near Misses scenarios are identified solving a multiobjective optimization problem, using the Hamming distance as a measure of similarity. The feasibility of the analysis is shown with respect to fault scenarios in a dynamic steam generator (SG) of a nuclear power plant (NPP).
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-05
    Description: System codes for simulation of safety performance of nuclear plants may contain parameters whose values are not known very accurately. New information from tests or operating experience is incorporated into safety codes by a process known as calibration, which reduces uncertainty in the output of the code and thereby improves its support for decision-making. The work reported here implements several improvements on classic calibration techniques afforded by modern analysis techniques. The key innovation has come from development of code surrogate model (or code emulator) construction and prediction algorithms. Use of a fast emulator makes the calibration processes used here with Markov Chain Monte Carlo (MCMC) sampling feasible. This work uses Gaussian Process (GP) based emulators, which have been used previously to emulate computer codes in the nuclear field. The present work describes the formulation of an emulator that incorporates GPs into a factor analysis-type or pattern recognition-type model. This “function factorization” Gaussian Process (FFGP) model allows overcoming limitations present in standard GP emulators, thereby improving both accuracy and speed of the emulator-based calibration process. Calibration of a friction-factor example using a Method of Manufactured Solution is performed to illustrate key properties of the FFGP based process.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2015-08-10
    Description: Construction and characterization of an inflatable mirror prototype made out of flexible polymeric membranes are being presented. Surfaces were curved by imposing a slight excess of air pressure. Lightweighted, lowcost, and commercially available materials were selected in order to produce solar concentration elements at competitive prices. In this sense, large-area, image-forming mirrors with low optical acuity were achieved by concentration purposes. Optical characterization of the mirror’s shape at a given pressure or curvature radius was done by means of a structuredlight technique with a resolution of 0.1 mm finding a conical shape acquired by the inflated mirror as the best approximation. Concentration ratio achieved for a focal length of 5068 mm was of 25.1 suns, making a promising approach for lowering initial investment costs in applications such as hot-water, parabolic dish with Stirling engines, or concentrated photovoltaic electricity generation.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-09-17
    Description: This paper presents the results of the analysis of the Unprotected Loss of Flow (ULOF) experiment SHRT-45R performed in the EBR-II fast reactor. These experiments are being analyzed in the scope of a benchmark exercise coordinated by the IAEA. The SHRT-45R benchmark contains a neutronic and a thermal-hydraulic part and results are presented for both. Neutronic calculations are performed with the ERANOS2.0 code in combination with various sets of nuclear data. The thermal-hydraulic evaluation is done with RELAP5-3D. The results are that the major neutronic parameters are well predicted with error margins on the order of 1%. The thermal-hydraulic results are less favourable: a consistent overestimation of the outlet temperature occurs in combination with erroneous flow distribution. Observed differences with measured data cannot be explained easily. The work presented in this paper was undertaken to investigate and validate the effectiveness of the calculational tools and data that are commonly used in our lab for the design and analysis of liquid metal cooled fast reactors.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: Provides a listing of the editors, board members, and current staff for this issue of the publication.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: Nowadays, clean renewable energy extraction solutions are becoming a crucial practice in society. Many different sources are being developed including ocean energy and in specific, ocean waves. In deep water conditions, ocean waves can become very power dense, continuous, and forecastable. Wave height, velocity, and frequency are all variable wave characteristics making it challenging to capture wave power economically. The RTI F2 is a promising wave energy conversion device that is currently under research. Its method of power capture is a buoyant vessel oriented normal to oncoming waves. This paper discusses known control methods implemented on the RTI F2, the experimental setup used for control of the device, and wave tank testing done at the University of New Hampshire's Chase Laboratory. Experimental data was obtained across various wave conditions, plate angles, vessel weights, and control strategies. The results of these tests are presented in the subject matter.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: Many existing solar irradiance monitoring networks were built particularly for resource assessment purposes; they are often spatially sparse. In order for the networks to handle other increasingly important tasks, such as irradiance forecasting for grid integration, their spatial sparsity must be addressed by adding in new monitoring stations. Optimally expanding these networks using historical information thus becomes an important research topic for engineers. Variability of solar irradiance in space and time can be quantified using statistics such as entropy and covariance. The deployment of the additional monitoring stations should, therefore, utilize these statistics to reduce the variability. More specifically, we aim at maximizing the entropy of the network. A practical difficulty in statistical modeling of solar irradiance is that the data are not ideal. Properties such as stationarity and isotropy are not observed in irradiance random field. We, therefore, focus on hypothesis testing and transformation of the irradiance data, so that the design procedure is statistically justified. We propose the redesign framework in a solar engineering context, using data from 24 irradiance monitoring stations on a tropical island. In the case study, we demonstrate how to find three optimal stations from a pool of 100 potential future monitoring sites.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: This paper proposes a novel forecasting model based on a mean trend detector (MTD) and a mathematical morphology-based local predictor (MMLP) to undertake short-term forecast of wind power generation. In the proposed MTD/MMLP model, the nonstationary time series describing wind power generation is first decomposed by the MTD, which employs some new notions and conventional morphological operators. The decomposition yields two componentsthe mean trend, which reveals the tendency of the time series, and the stochastic component, which depicts the fluctuations caused by high frequency of the variability. Subsequently, the $p$ -step forecast is conducted for these two components separately. The mean trend is forecasted on the basis of the least-square support vector machine (LS-SVM) model, while the $p$ -step forecast for the stochastic component is carried out by the MMLP, which involves performing morphological operations employing a novel structuring element (SE) in the phase space. Finally, the forecast of wind power generation is achieved by combining the separate forecasts of two components. In order to evaluate the accuracy and stability of the MTD/MMLP model, simulation studies are carried out using the data obtained from three widely used databases sampled in different periods. The results demonstrate that the MTD/MMLP model provides a more accurate and stable forecast compared to the traditional methods.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: The distribution network planning under active network management (ANM) schemes is becoming of interest due to substantial benefits in facilitating the increasing integration of renewable energy sources. This paper presents various potential ANM schemes based on the photovoltaic inverter control (PVIC) considering enhanced utilization of the inverter reactive power capability. Depending on the active power generation of PV arrays, inverter size and desired reactive power settings, several PVIC schemes are proposed. The PVIC schemes are incorporated in the optimal power flow (OPF) and formulated as a nonlinear programming (NLP) problem. In this study, the PVIC schemes are applied to maximize the total wind-distributed generation (DG) penetration on a typical U.K. distribution system. Various case studies are presented and compared to evaluate the performance. The results show that the proposed schemes can significantly increase the wind penetration levels by 45.4% and up to 92.3%.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: In this paper, a health monitoring method for photovoltaic (PV) systems based on probabilistic neural network (PNN) is proposed that detects and classifies short- and open-circuit faults in real time. To implement and validate the proposed method in computer programs, a new approach for modeling PV systems is proposed that only requires information from manufacturers datasheet reported under normal-operating cell temperature (NOCT) conditions and standard-operating test conditions (STCs). The proposed model precisely represents characteristics of PV systems at different temperatures, as the temperature dependency of parameters such as ideality factor, series resistance, and thermal voltage is considered in the proposed model. Although this model can be applied to a variety of applications, it is specifically used to test and validate the performance of the proposed fault detection and classification method.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-09-18
    Description: Intermittent generation from wind farms leads to fluctuating power system operating conditions pushing the stability margin to its limits. The traditional way of determining the worst case generation dispatch for a system with several semi-scheduled wind generators yields a conservative solution. This paper proposes a fast estimation of the transient stability margin (TSM) incorporating the uncertainty of wind generation. First, the Kalman filter (KF) is used to provide linear estimation of system angle and then unscented transformation (UT) is used to estimate the distribution of the TSM. The proposed method is compared with the traditional Monte Carlo (MC) method and the effectiveness of the proposed approach is verified using Single Machine Infinite Bus (SMIB) and IEEE 14 generator Australian dynamic system. This method will aid grid operators to perform fast online calculations to estimate TSM distribution of a power system with high levels of intermittent wind generation.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-09-18
    Description: This paper presents a probabilistic-based approach for available transfer capability (ATC) assessment. A composite algorithm is developed to generate ensembles of future wind generation scenarios for the existing and planned wind sites using both measured and model-produced wind data. Then, the ensembles of wind and load are used to calculate their respective probability density functions (pdfs), which are subsequently used to calculate the probabilistic-based ATC for a selected transmission corridor. The method has been tested and validated using historical and operational data provided by the Idaho Power Co. The results show that the method can effectively quantify the uncertainties in the ATC assessment introduced by variable generation resources and load variations. As a result, the grid planners will inform the likelihood for the transmission corridor to exceed its transfer capacity in any targeted future years as well as the duration of such events.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-09-18
    Description: With the increasing size of wind farms, the impact of the wake effect on wind farm energy yields become more and more evident. The arrangement of locations of the wind turbines (WTs) will influence the capital investment and contribute to the wake losses, which incur the reduction of energy production. As a consequence, the optimized placement of the WTs may be done by considering the wake effect as well as the components cost within the wind farm. In this paper, a mathematical model which includes the variation of both wind direction and wake deficit is proposed. The problem is formulated by using levelized production cost (LPC) as the objective function. The optimization procedure is performed by a particle swarm optimization (PSO) algorithm with the purpose of maximizing the energy yields while minimizing the total investment. The simulation results indicate that the proposed method is effective to find the optimized layout, which minimizes the LPC. The optimization procedure is applicable for optimized placement of WTs within wind farms and extendible for different wind conditions and capacity of wind farms.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-09-18
    Description: This paper proposes a novel short-term wind power forecasting approach by mining the bad data of numerical weather prediction (NWP). Today's short-term wind power forecast (WPF) highly depends on the NWP, which contributes the most in the WPF error. This paper first introduces a bad data analyzer to fully study the relationship between the WPF error with several new extracted features from the raw NWP. Second, a hierarchical structure is proposed, which is composed of a K -means clustering-based bad data detection module and a neural network (NN)-based forecasting module. In the NN module, the WPF is fully adjusted based on the output of the bad data analyzer. Simulations are performed comparing with two other different methods. It proves that the proposed approach can improve the short-term wind power forecasting by effectively identifying and adjusting the errors from NWP.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: The objective of this study was to develop a reduced-order small-signal model of a microgrid system capable of operating in both the grid-tied and the islanded conditions. The nonlinear equations of the proposed system were derived in the $dq$ reference frame and then linearized around stable operating points to construct a small-signal model. The high-order state matrix was then reduced using the singular perturbation technique. The dynamic equations were divided into two groups based on the small-signal model parameters $varepsilon$ . The slow states, which dominated the systems dynamics, were preserved, whereas the fast states were eliminated. Step responses of the model were compared to the experimental results from a hardware test to assess their accuracy and similarity to the full-order system. The proposed reduced-order model was applied to a modified IEEE-37 bus grid-tied microgrid system to evaluate systems dynamic response in grid-tied mode, islanded mode, and transition from grid-tied to islanded mode.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: Many benefits can be achieved through the implementation of a Microgrid controller, such as minimized cost, reduction in peak power, power smoothing, greenhouse gas emission reduction, and increased reliability of service. However, most Microgrid controllers found in the literature and in the industry optimize a single objective, which either exacerbates or does not solve the problems with integrating a high penetration of renewable energy. This paper presents a methodology of formulating a multiobjective optimization (MOO) so that each objective is quantified through valuation functions that can be specific to every Microgrid. The proposed approach attains a Pareto-optimal solution by directly comparing the quantified valuation functions and solving as if it were a single-objective optimization (SOO) problem. Three cases of controllers are presented and compared: 1)a base case system with no controller; 2)an SOO that optimizes the cost of energy; and 3)an MOO that optimizes five identified benefits. Results show that the proposed controller can mitigate the negative impacts of volatile generation to levels below that of the system load.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-09-18
    Description: Variable over voltage, excessive tap counts, and voltage regulator (VR) runaway condition are major operational challenges in distribution network while accommodating generation from photovoltaics (PVs). The conventional approach to achieve voltage control based on offline simulation for voltage set point calculation does not consider forecast errors. In this work, a stochastic optimal voltage control strategy is proposed while considering load and irradiance forecast errors. Stochastic operational risks such as overvoltage and VR runaway are defined through a chance constrained optimization (CCO) problem. This classical formulation to mitigate runaway is further improved by introducing a stochastic index called the Tap Tail Expectation . Operational objectives such as power losses and excessive tap count minimization are considered in the formulation. A sampling approach is proposed to solve the CCO. Along with other voltage control devices, the PV inverter voltage support features are coordinated. The simulation study is performed using a realistic distribution system model and practically measured irradiance to demonstrate the effectiveness of the proposed technique. The proposed approach is a useful operational procedure for distribution system operators. The approach can minimize feeder power losses, avoid voltage violations, and alleviate VR runaway.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: The electromagnetic stability issues of the grid-connected doubly fed induction generator (DFIG) system are usually overlooked. This paper presents a reduced order small-signal model that can be used to analyze the stability of DFIGs dc-link voltage control system, especially under weak ac grid conditions. This model neglects DFIG flux and fast current control dynamics. However, the effects of operating points, grid strengths and control loops interactions on system dynamic performance are taken into account. An eigenvalue comparison shows the proposed model holds dominant oscillation mode featured by the detailed model and is suitable for stability analysis of dc-link voltage control system of DFIG. Influence coefficients reflecting control loops interactions are also presented. Application studies of the proposed model show it is suitable for illustrating the effect of grid strength on dynamic performance of the DFIGs dc-link voltage control system. Meanwhile, phase-locked loop (PLL) and rotor-side converter (RSC) active power control (APC)/reactive power controls (RPC) effect on system stability are also explored.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: Photovoltaic (PV) generation is increasingly popular in power systems. The nonlinear dependence associated with a large number of distributed PV sources adds the complexity to construct an accurate probability model and negatively affects confidence levels and reliability, thereby resulting in a more challenging operation of the systems. Most probability models have many restrictions when constructing multiple PV sources with complex dependence. This paper proposes a versatile probability model of PV generation on the basis of pair copula construction. In order to tackle the computational burden required to construct pair copula in high-dimensional cases, a systematic simplification technique is utilized that can significantly reduce the computational effort while preserving satisfactory precision. The proposed method can simplify the modeling procedure and provide a flexible and optimal probability model for the PV generation with complex dependence. The proposed model is tested using a set of historical data from colocated PV sites. It is then applied to the probabilistic load flow (PLF) study of the IEEE 118-bus system. The results demonstrate the effectiveness and accuracy of the proposed model.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: It is important to forecast the wind speed for managing operations in wind power plants. However, wind speed prediction is extremely complex and difficult due to the volatility and deviation of the wind. As existing forecasting methods directly model the raw wind speed data, it is difficult for them to provide higher inference accuracy. Differently, this paper presents a sophisticated deep-learning technique for short-term and long-term wind speed forecast, i.e., the predictive deep Boltzmann machine (PDBM) and corresponding learning algorithm. The proposed deep model forecasts wind speed by analyzing the higher level features abstracted from lower level features of the wind speed data. These automatically learnt features are very informative and appropriate for the prediction. The proposed PDBM is a deep stochastic model that can represent the wind speed very well, and is inspired by two aspects. 1)The stochastic model is suitable to capture the probabilistic characteristics of wind speed. 2)Recent developments in neural networks with deep architectures show that deep generative models have competitive capability to approximate nonlinear and nonsmooth functions. The evaluation of the proposed PDBM model is depicted by both hour-ahead and day-ahead prediction experiments based on real wind speed datasets. The prediction accuracy of the PDBM model outperforms existing methods by more than 10%.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: This paper presents a new maximum power point tracking (MPPT) method for photovoltaic (PV) systems. The proposed method improves the working of the conventional perturb and observe (P&O) method in changing environmental conditions by using the fractional short-circuit current (FSCC) method. It takes the initial operating point of a PV system by using the short-circuit current method and later shifts to the conventional P&O technique. The advantage of having this two-stage algorithm is rapid tracking under changing environmental conditions. In addition, this scheme offers low-power oscillations around MPP and, therefore, more power harvesting compared with the common P&O method. The proposed MPPT decides intelligently about the moment of measuring short-circuit current and is, therefore, an irradiance sensorless scheme. The proposed method is validated with computer software simulation followed by a dSPACE DS1104-based experimental setup. A buck-boost dc-dc converter is used for simulation and experimental confirmation. Furthermore, the reliability of the proposed method is also calculated. The results show that the proposed MPPT technique works satisfactorily under given environmental scenarios.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-09-18
    Description: In this paper, hardware-in-the-loop (HIL) implementation of solar photovoltaic (PV) array feeding autonomous load, without dump load, is investigated. Two control algorithms based on the sliding mode approach are designed to guarantee a fast and finite-time convergence without adjustment of the system parameters. The dc-dc boost converter and the current controlled-voltage source converter (CC-VSC) are controlled to maximize the power from the PV, to protect the battery energy storage system (BESS) from overcharging, and to regulate the voltage and frequency at the point of common coupling (PCC). An accurate stability analysis of the system is presented and discussed in this work. The effectiveness and the robustness of the developed controllers are validated by simulation and experimental results during the load perturbation and varying climate conditions.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: This paper proposes to use discrete Fourier transform (DFT) and discrete wavelet transform (DWT) methods to schedule grid-scale energy storage systems to mitigate wind power forecast error impacts while considering energy storage properties. This is accomplished by decomposing the wind forecast error signal to different time-varying periodic components to schedule sodium sulfur (NaS) batteries, compressed air energy storage (CAES), and conventional generators. The advantage of signal processing techniques is that the resultant decomposed components are appropriate for cycling of each energy storage technology. It is also beneficial for conventional generators, which are more efficient to operate close to rated capacity. The tradeoff between installing more energy storage units and decreasing the wind spillage, back-up energy, and the standard deviation of residual forecast error signal is analyzed. The NaS battery life cycle analysis and CAES contribution on increasing NaS battery lifetime are studied. The impact of considering the frequency bias constant to allow small frequency deviations is also investigated. To showcase the applicability of the proposed approach, a simulation case study based on a real-world 5-min interval wind data from Bonneville Power Administration (BPA) in 2013 is presented.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: One role of grid operators is to identify potential problems before they occur and, if necessary, take preemptive actions. As wind generation becomes increasingly widespread, there is the potential for credible, simultaneous fluctuations of output at different locations to result in limit violations. Existing analysis methods that consider forecast errors either inadequately model the control responses available to system operators (e.g., using participation factors) or ignore network constraints, which limits their utility in identifying situations that would require operator action. An alternative method of handling forecast errors, utilizing bilevel programming, is proposed here to identify situations that may result in branch overloads. What distinguishes this method from prior approaches is that it only identifies overloads that can occur despite optimal operator reaction to forecast errors--i.e., when the overload is unavoidable, given current control capabilities. Studies conducted on 37- and 118-bus test systems demonstrate both the utility and feasibility of using this method for online operations.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-09-18
    Description: In this paper, a control strategy for the participation of photovoltaic (PV) systems in frequency regulation is suggested. A number of strings from every inverter of a PV system are kept as reserve by disconnecting them through dc-relays. Hence, as the control algorithm monitors the grid frequency, it reconnects or disconnects strings, according to the occurring frequency deviations (negative and positive, respectively). Contrary to previous approaches, the suggested methodology here avoids the use of storage devices, which implies additional investment costs, and/or the manipulation of the maximum power point tracking (MPPT) algorithm of the inverter, which represents higher control complexity and special considerations depending on each algorithm. Simulation results from frequency phenomena and solar irradiation changes on a two-bus system in MATLAB Simulink are presented to show the favorable behavior and effective performance of the proposed control strategy. The design concept is also experimentally tested under various operating conditions and on different devices; the results also confirm the feasibility and simplicity of the method.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-09-18
    Description: In case of abnormal conditions, distribution systems should be reconfigured to overcome the impacts of outages such as overloads of network components and increased power losses. For this purpose, energy storage systems (ESS) and renewable energy sources (RES) can be applied to improve operating conditions. An optimal contingency assessment model using two-stage stochastic linear programming including wind power generation and a generic ESS is presented. The optimization model is applied to find the best radial topology by determining the best switching sequence to solve contingencies. The proposed model is applied to a 69-node distribution system and the results of all possible contingencies in the network are examined considering three different case studies with several scenarios. In addition, a reconfiguration analysis including all the contingencies is presented for the case studies.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: Ocean energy is a promising resource for renewable electricity generation that presents many advantages, such as being more predictable than wind energy, but also some disadvantages such as large and slow amplitude variations in the generated power. This paper presents a hardware-in-the-loop prototype that allows the study of the electric power profile generated by a wave power plant based on the oscillating water column (OWC) principle. In particular, it facilitates the development of new solutions to improve the intermittent profile of the power fed into the grid or the test of the OWC behavior when facing a voltage dip. Also, to obtain a more realistic model behavior, statistical models of real waves have been implemented.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: With the significant penetration of wind generation, the variability and uncertainty of wind energy poses new challenges to power system operations. In particular, more rapid reserve is required, which may result in the scarcity of balancing services. With the increasing penetration of renewable generation, it is envisaged that renewable resources will be required to partake in the system balancing tasks. In this paper, a combined flexible dispatch and reserve scheduling policy is proposed by determining a flexible wind dispatch margin. In order to provide a flexible dispatch margin, wind generators underschedule in the hour-ahead energy market, so as to hold some expected output for reserves. Additional wind energy is then available for mitigating forecast errors and other system uncertainties. This paper presents a framework to find the optimal policy to incorporate the flexible wind dispatch margin into the hour-ahead market. A finite-state Markov chain wind power forecast model, based on spatio-temporal analysis, is utilized. The presented framework is used to find the appropriate level of wind dispatch margin. The proposed approach is tested and the wind generation data are used to analyze the effectiveness of the presented model in coping with forecast errors and achieving a more secure system operation.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-09-18
    Description: A megawatt (MW)-scale hydro-viscous transmission-based continuously variable speed wind turbine is proposed to guarantee a smooth transition among different operating regions and hence to improve power efficiency and quality. This turbine is achieved by highly integrating a hydro-viscous element into the turbine drive-train to mitigate the upstream wind-loading fluctuations. This element allows the turbine speed to be directly regulated by continuously changing the oil film thickness in this element. Three important operating modes of this turbine system are proposed. The control-oriented drive-train model is also established and validated based on experimental data. A cooperative control strategy over the full operating range is then proposed based on such modes. A series of comparative cosimulations are carried out to evaluate the stability and effectiveness of the proposed turbine system in speed and power regulations. This proposed system holds several advantages such as large power capacity, high efficiency, downsized power converters, and low cost. Such advantages make this turbine system particularly attractive and promising for medium-to-large-scale wind power applications.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2015-09-18
    Description: In this paper, a novel ensemble method consisting of neural networks, wavelet transform, feature selection, and partial least-squares regression (PLSR) is proposed for the generation forecasting of a wind farm. Based on the conditional mutual information, a feature selection technique is developed to choose a compact set of input features for the forecasting model. In order to overcome the nonstationarity of wind power series and improve the forecasting accuracy, a new wavelet-based ensemble scheme is integrated into the model. The individual forecasters are featured with different mixtures of the mother wavelet and the number of decomposition levels. The individual outputs are combined to form the ensemble forecast output using the PLSR method. To confirm the effectiveness, the proposed method is examined on real-world datasets and compared with other forecasting methods.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-08-27
    Description: Green synthesis of metallic particles has become an economic way to improve and protect the environment by decreasing the use of toxic chemicals and eliminating dyes. The synthesis of metal particles is gaining more importance due to its simplicity, rapid rate of synthesis of particles, and environmentally friendly. The present work aims to report a novel and environmentally friendly method for the synthesis of iron particles using deoiled Pimenta dioica L. Merrill husk as support. The indigo carmine removal efficiency by ozonation and catalyzed ozonation is also presented. Synthesized materials were characterized by N2 physisorption and scanning electron microscopy (SEM/EDS). By UV-Vis spectrophotometry the removal efficiency of indigo carmine was found to be nearly 100% after only 20 minutes of treatment under pH 3 and with a catalyst loading of 1000 mgL−1. Analytical techniques such as determination of the total organic carbon content (TOC) and chemical oxygen demand (COD) showed that iron particles supported on deoiled Pimenta dioica L. Merrill husk can be efficiently employed to degrade indigo carmine and achieved a partial mineralization (conversion to CO2 and H2O) of the molecule. From the results can be inferred that the prepared biocomposite increases the hydroxyl radicals generation.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-08-27
    Description: The individual methods of disinfection peracetic acid (PAA) and UV radiation and combined process PAA/UV in water (synthetic) and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater), and coliphages (such as virus indicators). Under the experimental conditions investigated, doses of 2, 3, and 4 mg/L of PAA and contact time of 10 minutes and 60 and 90 s exposure to UV radiation, the results indicated that the combined method PAA/UV provided superior efficacy when compared to individual methods of disinfection.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-06-02
    Description: The big advantage of LED is the flexible spectral design to make white light using different color mixing schemes. Recently, the color mixing of RGB LEDs is mostly done by sealing all three chips at single package and regulated the mix ratio of these three colors to produce the color of light. And, by changing the LEDs array alignment, RGB chips can achieve overlapping colors of light and create the fun of changing colors in light mixing. Therefore, the purpose of this study is to propose an innovative technique of light mixing. By applying the mechanism design, a RGB light mixing mechanism is produced. Each of the RGB LEDs lamp-type is installed on the couple link of the three mechanisms, respectively. By driving a crank makes the couple link and an output link to produce the relative motion, this will result in the fact that the RGB lamps can project lights on the same plane in order to obtain the color mixing. Unlike mixing technique by control system, this design generates light mixing and changes of color with the synchronized driving of three mechanisms, thus achieving the dazzling perception of single-color lights or mixing of multiple colors for creating ambience of a space.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-05-28
    Description: We report on the photodegradation of diclofenac (DCF) by hydrothermal anatase nanocrystals either free or immobilized in porous silica matrix (TS) in connection to the type and amount of reactive oxygen species (ROS), in order to have deeper insight into their role in the photocatalysis and to provide an effective tool to implement the DCF mineralization. TiO2 and TS exhibit a remarkable efficiency in the DCF abatement, supporting that the utilization of anatase nanoparticles with the highly reactive , , and exposed surfaces can be an effective way for enhancing the photooxidation even of the persistent pollutants. Furthermore, the hydrothermal TiO2, when immobilized in silica matrix, preserves its functional properties, combining high photoactivity with an easy technical use and recovery of the catalyst. The catalysts performances have been related to the presence of OH•, , and species by electron paramagnetic resonance spin-trap technique. The results demonstrated that the ROS concentration increases with the increase of photoactivity and indicated a significant involvement of in the DCF degradation. The efficacy of TiO2 when immobilized on a silica matrix was associated with the high ROS life time and with the presence of singlet oxygen, which contributes to the complete photomineralization of DCF.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-07-15
    Description: This paper reports two numerical simulation methods for modeling displacement instabilities around a surface groove in a metal substrate used in nuclear power plant. The amplitude change in the groove, the downward displacement at the base node, and the groove displacement at the periphery were simulated using ABAQUS to compare the results from two methods, as well as the tangential stress in the elements at the groove base and periphery. The comparison showed that for the tangential stress two methods were in close agreement for all thermal cycles. For the amplitude change, the downward displacement, the groove displacement, and the stress distribution, the two methods were in close agreement for the first 3 to 6 thermal cycles. After that, inconsistency increased with the number of thermal cycles. It is interesting that the thermal cycle at which the discrepancy between the two methods began to occur corresponded to a thermally grown oxide (TGO) thickness of 1 μm, which showed the accuracy of the present work over the classic method. It is concluded that the present work’s numerical simulation scheme worked better with a thinner TGO layer than the classic method and could overcome the limitation of TGO thickness by simulating any thickness.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2016-08-01
    Description: The aim of this work was to couple physical-chemical approaches with photocatalysis to reduce by a simple, inexpensive way the organic load of olive mill wastewater (OMW), mandatorily prior to the final discharge. Before irradiation, different sorbents were tested to remove part of the organic fraction, monitored by measuring chemical oxygen demand (COD) and polyphenols (PP). Different low-cost, safe materials were tested, that is, Y zeolite (ZY), montmorillonite, and sepiolite. Considerable decrease of organic load was obtained, with the highest abatement (40%) provided by ZY (10 g L−1 in 1 : 10 OMW). Use of the three sorbents, in particular ZY, was convenient compared to commercial activated carbons. UV light photocatalytic tests, performed using P25 TiO2 on ZY-treated OMW, yielded quantitative remediation (ca. 90%). Also solar light provided significative results, PP being lowered by 74% and COD by 56%. Sol-gel anatase TiO2 and N-doped anatase TiO2 were also tested, obtaining good results, around 80% PP and 40% COD. Finally, an integrated approach was experimented by ZY-supported anatase TiO2 (TiO2@ZY). This photoreactive sorbent allowed one-pot treatment of OMW significative abatements of PP (77%) and COD (39%) with only 1 g L−1 material, under solar light.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2016-08-03
    Description: Molybdenum (Mo) thin films are widely used as rear electrodes in copper indium gallium diselenide (CIGS) solar cells. The challenge in Mo deposition by magnetron sputtering lies in simultaneously achieving good adhesion to the substrates while retaining the electrical and optical properties. Bilayer Mo films, comprising five different thickness ratios of a high pressure (HP) deposited bottom layer and a low pressure (LP) deposited top layer, were deposited on 40 cm × 30 cm soda-lime glass substrates by DC magnetron sputtering. We focus on understanding the effects of the individual layer properties on the resulting bilayer Mo films, such as microstructure, surface morphology, and surface oxidation. We show that the thickness of the bottom HP Mo layer plays a major role in determining the micromechanical and physical properties of the bilayer Mo stack. Our studies reveal that a thicker HP Mo bottom layer not only improves the adhesion of the bilayer Mo, but also helps to improve the film crystallinity along the preferred [] direction. However, the surface roughness and the porosity of the bilayer Mo films are found to increase with increasing bottom layer thickness, which leads to lower optical reflectance and a higher probability for oxidation at the Mo surface.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2016-08-05
    Description: Instrumental neutron activation analysis (INAA) is a powerful technique for trace element determination in rocks. Nine alabaster samples were collected from Wadi El-Nakhil located at the intersection of lat. 26°10′50′′N and long. 34°03′40′′E, central Eastern Desert, Egypt, for investigation by INAA and Energy Depressive X-Ray Fluorescence (EDXRF). The samples were irradiated by thermal neutrons at the TRIGA Mainz research reactor at a neutron flux of 7 × 1011 n/cm2·s. Twenty-two elements were determined, namely, As, Ba, Ca, Co, Cr, Sc, Fe, Hf, K, Mg, Mn, Na, Rb, U, Zn, Zr, Lu, Ce, Sm, La, Yb, and Eu. The chemical analysis of alabaster indicated having high contents of CaO and MgO and LOI and low contents of SiO2, Al2O3, Na2O, K2O, MnO, and Fe2O3.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2016-07-11
    Description: This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR). The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers), heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s). The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use radial nodes per assembly, axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2016-07-19
    Description: The double-ended guillotine break (DEGB) of the horizontal coaxial gas duct accident is a serious air ingress accident of the high temperature gas-cooled reactor pebble-bed module (HTR-PM). Because the graphite is widely used as the structure material and the fuel element matrix of HTR-PM, the oxidation analyses of this severe air ingress accident have got enough attention in the safety analyses of the HTR-PM. The DEGB of the horizontal coaxial gas duct accident is calculated by using the TINTE code in this paper. The results show that the maximum local oxidation of the matrix graphite of spherical fuel elements in the core will firstly reach  mol/m3 at about 120 h, which means that only the outer 5 mm fuel-free zone of matrix graphite will be oxidized out. Even at 150 h, the maximum local weight loss ratio of the nuclear grade graphite in the bottom reflectors is only 0.26. Besides, there is enough time to carry out some countermeasures to stop the air ingress during several days. Therefore, the nuclear grade graphite of the bottom reflectors will not be fractured in the DEGB of the horizontal coaxial gas duct accident and the integrity of the HTR-PM can be guaranteed.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2016-08-01
    Description: Three hydrocalumite-like compounds in a Ca/Al ratio of 2 containing nitrate and acetate anions in the interlaminar region were prepared by a simple, economic, and environmentally friendly method. The solids were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, nitrogen adsorption-desorption at −196°C, scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and UV-Vis Diffuse Reflectance Spectroscopy (DRS). The catalytic activity of the calcined solids at 700°C was tested in the photodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) where 57% degradation of 2,4-D (40 ppm) and a mineralization percentage of 60% were accomplished within 150 minutes. The photocatalytic properties were attributed to mayenite hydration, since the oxide ions in the cages are capable of reacting with water to form hydroxide anions capable of breaking down the 2,4-D molecules.
    Print ISSN: 1110-662X
    Electronic ISSN: 1687-529X
    Topics: Electrical Engineering, Measurement and Control Technology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2016-08-01
    Description: Gamma-ray measurements in various research fields require efficient detectors. One of these research fields is mass attenuation coefficients of different materials. Apart from experimental studies, the Monte Carlo (MC) method has become one of the most popular tools in detector studies. An NaI(Tl) detector has been modeled, and, for a validation study of the modeled NaI(Tl) detector, the absolute efficiency of 3 × 3 inch cylindrical NaI(Tl) detector has been calculated by using the general purpose Monte Carlo code MCNP-X (version 2.4.0) and compared with previous studies in literature in the range of 661–2620 keV. In the present work, the applicability of MCNP-X Monte Carlo code for mass attenuation of concrete sample material as building material at photon energies 59.5 keV, 80 keV, 356 keV, 661.6 keV, 1173.2 keV, and 1332.5 keV has been tested by using validated NaI(Tl) detector. The mass attenuation coefficients of concrete sample have been calculated. The calculated results agreed well with experimental and some other theoretical results. The results specify that this process can be followed to determine the data on the attenuation of gamma-rays with other required energies in other materials or in new complex materials. It can be concluded that data from Monte Carlo is a strong tool not only for efficiency studies but also for mass attenuation coefficients calculations.
    Print ISSN: 1687-6075
    Electronic ISSN: 1687-6083
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: An optimal reactive power dispatch strategy is proposed to minimize the total electrical losses of a wind farm (WF), including not only losses in the transmission cables and wind turbine (WT) transformers, but also losses inside wind energy generation systems. The reactive power dispatch inside a WT uses optimal splitting strategy over the stator and the grid side converter (GSC), which aims to minimize the total loss of the wind energy generation system, including the generator, the converters, and the filters. Optimization problems are formulated based on established loss models and WT reactive power limits. A WF is carefully designed and used for case studies. Wake effect is considered when calculating the active power at each WT. The total losses of the WF are calculated by implementing the proposed strategy at different wind speeds and reactive power references. The simulation results show the effectiveness of the proposed strategy.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2016-06-21
    Description: Multibody wave energy converters are composed of several bodies interconnected by joints. Two different formulations are adopted to describe the dynamics of multibody systems: the differential and algebraic equations (DAEs) formulation, and the ordinary differential equations (ODEs) formulation. While the number of variables required for the description of the dynamics of a multibody system is greater in the DAE formulation than in the ODE formulation, the ODE formulation involves an extra computational effort in order to describe the dynamics of the system with a smaller number of variables. In this paper, pseudo-spectral (PS) methods are applied in order to solve the dynamics of multibody wave energy converters using both DAE and ODE formulations. Apart from providing a solution to the dynamics of multibody systems, pseudo-spectral methods provide an accurate and efficient formulation for the control of multibody wave energy converters. As an application example, this paper focuses on the dynamic modeling of a three-body hinge-barge device, where wave-tank tests are carried out in order to validate the DAE and ODE models against experimental data. Comparison of the ODE and DAE PS methods against a reference model based on the straightforward (Runge-Kutta) integration of the equations of motion shows that pseudo-spectral methods are computationally more stable and require less computational effort for short time steps.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: Optimal and simultaneous siting and sizing of distributed generators and capacitor banks in distribution systems have attracted a lot of attention from distribution companies. The placement and capacity of these devices have direct effects on the system’s performance. This paper presents a model for the simultaneous allocation of capacitor banks and distributed generation, which takes into account the stochastic nature of distributed generation. To solve the model presented, we propose an efficient hybrid method based on Tabu search and genetic algorithms. The hybrid method is applied to a well-known system in literature.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2016-06-21
    Description: In this paper, distributed energy storage (DES) devices, like batteries and ultra-capacitors, are used to alleviate detrimental impacts of high penetration photovoltaic (PV) resources on distribution systems. The impacts are studied at mainly two time resolutions—one minute and one hour. To determine accurately the size of the required DES for the purpose of mitigating the impacts of large-scale distributed PV, sizing procedures based on OpenDSS are proposed. After determining the total size of the required DES, optimization techniques can be used to choose the optimal locations for the DES along the feeder, which is a continuous optimization problem taking into account equality constraints of the AC power flow. The continuity of the problem and the radial network structure make it possible to apply a convex optimization technique called second order cone programming (SOCP) relaxation to obtain the globally optimal solution and avoid the problem of NP-hardness. The exactness of the introduced SOCP relaxation is sensitive to the chosen objective function and additional quadratic equalities. The necessary and sufficient condition of exactness for the SOCP relaxation of the DES optimal allocation and operation in radial distribution systems is studied. The proposed methods are applied to an actual feeder in the southwestern US with high penetration of PV using actual measured data. The simulation results demonstrate the efficacy of the proposed approaches.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: This paper proposes an integrated stochastic day-ahead scheduling model to dispatch hourly generation and load resources and deploy flexible ramping for managing the variability of renewable energy system. A comprehensive framework for the natural gas transportation network is considered to address the dispatchability of a fleet of fuel-constrained natural gas-fired units. System uncertainties include the day-ahead load and renewable generation forecast errors. Illustrative examples demonstrate that the real-time natural gas delivery can directly impact the hourly dispatch, flexible ramp deployment, and power system operation cost. Meanwhile, the demand side participation can mitigate the dependency of electricity on natural gas by providing a viable option for flexible ramp when the natural gas system is constrained.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: If a large disturbance occurs in a power grid, two auxiliary loops for the inertial control of a wind turbine generator have been used: droop loop and rate of change of frequency (ROCOF) loop. Because their gains are fixed, difficulties arise in determining them suitable for all grid and wind conditions. This paper proposes a dynamic droop-based inertial control scheme of a doubly-fed induction generator (DFIG). The scheme aims to improve the frequency nadir (FN) and ensure stable operation of a DFIG. To achieve the first goal, the scheme uses a droop loop, but it dynamically changes its gain based on the ROCOF to release a large amount of kinetic energy during the initial stage of a disturbance. To do this, a shaping function that relates the droop to the ROCOF is used. To achieve the second goal, different shaping functions, which depend on rotor speeds, are used to give a large contribution in high wind conditions and prevent over-deceleration in low wind conditions during inertial control. The performance of the proposed scheme was investigated under various wind conditions using an EMTP-RV simulator. The results indicate that the scheme improves the FN and ensures stable operation of a DFIG.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2016-06-21
    Description: In this paper, the two-level hierarchical scheme, which consists of wide area centralized and local controls of the power oscillation damper (POD) installed with the doubly-fed induction generator (DFIG) wind turbine and the power system stabilizer (PSS) has been proposed for robust power oscillation damping. In the wide area level, the centralized POD and PSS has received the input signals from synchronized phasor measurement units (PMUs). The geometric measures of controllability and observability have been applied to select the suitable DFIG and synchronous generator (SG) for stabilizing the target oscillation modes, the proper input signals of the centralized POD and PSS, and the location of PMUs. In the local level, the suitable DFIG and SG have been equipped with POD and PSS, respectively. In the parameters optimization of POD and PSS, the practical issues such as damping performance, controller structure, communication latency, and robustness against system uncertainties have been considered. The controller efficiency and resiliency of the proposed controller have been evaluated in comparison with other controllers by eigenvalue analysis and nonlinear simulation for a wide range of operating conditions, line outage contingencies, severe faults, and communication failure.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: This paper describes a method for optimal scheduling of hydropower systems for a profit maximizing, price-taking, and risk neutral producer selling energy, and capacity to separate and sequentially cleared markets. The method is based on a combination of stochastic dynamic programming (SDP) and stochastic dual dynamic programming (SDDP), and treats inflow to reservoirs and prices for energy and capacity as stochastic variables. The proposed method is applied in a case study for a Norwegian watercourse, quantifying the expected changes in schedules, and water values when going from an energy-only market to a joint treatment of energy and reserve capacity markets.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2016-06-21
    Description: In this paper and its companion, the identification of mathematical models describing the behaviour of wave energy devices (WECs) in the ocean is investigated through the use of numerical wave tank (NWT) experiments. This paper deals with the identification tests used to produce the data for the model identification. NWTs, implemented using computational fluid dynamics (CFD), are shown as an effective platform to perform the identification tests. The design of the NWT experiments, to ensure the production of information-rich data for the model identification, is discussed. A case study is presented to illustrate the design and implementation of NWT experiments for the identification of WEC models.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: Optimum torque (OT)-based maximum power point tracking (MPPT) is widely used in high power turbines because of its simplicity. Several recent improvements claim better response speeds by augmenting the basic OT algorithm with a suitably scaled inertial torque. However, the underlying dynamic model for all these improved methods is premised on a rigid shaft, which ignores all torsional behavior. This lacuna is addressed in this paper, where a small-signal system description is developed considering a more accurate flexible shaft model. It is shown that the improvements have three possible forms, the third being proposed in this paper. Close-loop stability with each of these is analytically investigated using this accurate small-signal model. It is also proved that one of the reported approaches causes system instability while attempting even moderate improvement over the OT method. The problems in realization of the other two forms are highlighted and a realizable alternative proposed, which requires no additional sensor. Design of the proposed approach is presented in appropriate detail. It is analytically established that the proposed method ensures superior dynamic response. All analytical conclusions are validated by numerical simulations.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2016-06-21
    Description: Power generation uncertainty is an important characteristic of variable generation (VG) platforms, such as wind and solar power, which brings additional operational costs to the power systems. To manage this uncertainty, responsibilities should be properly allocated to encourage good behaviors of system participants, especially the VG producers. Currently, the imbalance-cost-based mechanism is most commonly used for uncertainty management. Based on this method, we consider a new mechanism in this paper for capturing the uncertainty, which may achieve a better mechanism performance. The basic idea is to allow producers to purchase generation intervals (GIs) for their potential production output. The analysis presented in this paper indicates that producers can be very responsive to this mechanism. With the proper pricing policies, producers can be encouraged to provide additional information on upcoming uncertainties to the system operators. Additionally, three strategies for pricing GIs are included in this paper. Case studies are used to demonstrate the application of the mechanism as well as its effectiveness.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: The paper proposes a gossip algorithm-based architecture for managing power flows on radial distribution grids applying decentralized management of demand. Demand flexibility is associated with a cost-like utility function expressing the inconvenience caused by curtailment. Every node of the distribution grid participates in power flow management by sending locally measured and calculated values to its neighboring nodes following a peer-to-peer architecture. The proposed algorithm is based on the application of gossip algorithms to estimate locally critical physical quantities by reaching a global consensus. More specifically, the solution implements gossip algorithms to achieve consensus in aggregated demand and in minimum cost for curtailment of flexible loads/increase of controllable distributed generators.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: The objective of this research was to develop and compare various airfoil precomputational parameterization and analysis techniques for aerostructural optimization of wind turbine blades. The airfoils along the blade were added as optimization design variables through precomputational parameterization methods using thickness-to-chord ratios and blended airfoil family factors. The airfoils’ aerodynamic performance was analyzed with three methods of increasing fidelity: a panel method (XFOIL), Navier–Stokes-based computational fluid dynamics (RANS CFD), and wind tunnel data. The optimizations minimized mass over annual energy production ( $m/AEP$ ) and thereby approximated the minimization of cost of energy. The results were compared to the NREL 5-MW reference turbine and a conventional optimization where the airfoils were fixed. Results showed an average $m/AEP$ reduction of 1.7% over conventional optimization methods. The primary benefit in adding the airfoil shape was through an increase in annual energy production (1.6%) with a similar decrease in turbine mass (1.8%). Using the precomputational airfoil parameterization methods provided significant reductions in the cost of energy with relatively minor additional computational cost.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2016-06-21
    Description: This paper proposes a co-ordinated four-loop switching controller (SC) for the doubly fed induction generator (DFIG) to improve the transient stability of wind power penetrated power systems. A short-term resilience index is introduced, and it reflects the dynamics of both system frequency and load bus voltage. A four-loop SC is driven by the four outputs of a DFIG, namely, the rotor speed deviation, the reactive power output of stator winding, the reactive power transferred through grid-side converter, and the DC-link voltage, respectively. Referring to a state-dependent switching strategy, the four-loop SC switches between a logic-based bang–bang constant funnel controller (LBCFC) and a vector control theory-based conventional controller (CC) in each control loop. The LBCFC is robust to system nonlinearities, uncertainties, and external disturbances. The control signal of the LBCFC is bang–bang with the upper and lower limits of control variables. Simulation studies are undertaken in a modified IEEE 16-generator 68-bus power system, in which four DFIG-based wind farms are penetrated to provide 9.94% power supply. The performance of the four-loop SC is evaluated in aspects of the integral control of the DFIG and the resilience enhancement of the multimachine power system, respectively.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2016-06-21
    Description: This paper investigates a control strategy for a wind farm with the direct-driven permanent-magnet synchronous generators (PMSG)-based wind turbines and the fixed speed induction generators (FSIG)-based wind turbines under unbalanced grid voltage condition. By controlling the PMSG-based wind farm to inject negative-sequence current for decreasing voltage unbalance factor (VUF) at point of common coupling (PCC), the double grid frequency oscillations in electromagnetic torque, active, and reactive power output from the FSIG-based wind farm can be suppressed. In this paper, the maximum amplitude of the negative-sequence current provided by the PMSG-based wind farm under different average active power output and different VUF conditions is deduced, and the impacts of its phase angle on the VUF mitigation control effect are further studied. The improved control strategy of injecting negative-sequence current from the PMSG-based wind farm by the modified negative-sequence voltage and current double closed-loop control system is then developed. Finally, the correctness of theoretical analysis and the effectiveness of the proposed control strategy are validated by the experimental results.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2016-06-21
    Description: In this paper and its companion, the identification of mathematical models describing the behaviour of wave energy devices (WECs) in the ocean is investigated through the use of numerical wave tank experiments. When the wave amplitude and the WEC displacement are not negligible with respect to the WEC dimensions, nonlinear hydrodynamic effects may appear, and the accuracy of linear hydrodynamic models is reduced, leading to the necessity of introducing some nonlinearities in the model structure. This paper proposes, for WEC modelling, the use of discrete-time nonlinear autoregressive with exogenous input (NARX) models, as an alternative to continuous-time models. Techniques of model identification are also explained and applied to a case study.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: Wind turbine power curves do not consider specific weather conditions, wind shear, turbulence effects of the location where the turbine is going to be installed, or its age. A true power curve is obtained by analyzing data from an installed wind turbine over a year. Here, a model for a true power curve is proposed, considering a normal distribution for each range of wind speed data. Furthermore, a Monte Carlo-based simulation technique is proposed to reproduce data following the normal-based model. The main use of the model is to simulate data to complete lacking real data or to perform long-term assessments. The model was checked with data from two wind turbines at the Sotavento experimental wind farm in the northwest of Spain.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2016-06-21
    Description: This paper discusses the control of large-scale grid-connected photovoltaic power plant (GCPPP) operating under unbalanced grid voltages. The positive and negative sequences of the grid currents need to be controlled to regulate the power injected into the grid during unbalanced grid voltages. This paper shows that the use of conventional proportional-integral-based controllers compromises stability and dynamic performance of the inverter. The reason is the delays introduced by the filters needed to extract the sequences of the transformed grid currents. Because of such delays, there is a strong restriction on choosing the parameters for the current and voltage controllers, which forces the GCPPP to perform slowly. This can be improved by using resonant controllers instead, which avoid the need for filtering the transformed grid currents. Additionally, a new overcurrent protection is proposed for the GCPPP when it is providing grid voltage support during voltage sags. Simulation and experimental results are presented to evaluate and compare the performance of the GCPPP when operating with the different controllers.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2016-06-21
    Description: This paper proposes a novel probabilistic transient stability constrained optimal power flow (P-TSCOPF) model to simultaneously consider uncertainties and transient stability for power system preventive control. While detailed wind generator model with rotor flux magnitude and angle control strategy is used to describe the dynamic behaviors of wind generators, uncertain factors with correlations, such as probabilistic load injections, stochastic fault clearing time, and multiple correlated wind generations, are also included to form a representative P-TSCOPF model. A new GSO-PE approach, consisting of an improved group search optimization (GSO) and $2m + 1$ point estimated (PE) method with Cholesky decomposition, is then designed to effectively solve this challenging P-TSCOPF problem. The proposed P-TSCOPF model and GSO-PE solution approach have been thoroughly tested on a modified New England 39-bus system with correlated uncertain wind generations. Comparative results with Monte Carlo (MC) simulations have confirmed the validity of the P-TSCOPF model and demonstrated the effectiveness of GSO-PE method.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: Frequency regulation is critical to the successful operation of remote wind–diesel electrical grids. When the grid is in ‘wind–diesel’ mode, frequency regulation is (classically) the sole duty of the diesel electric generator (DEG). An alternative approach is proposed whereby responsibility for frequency regulation is shared by the DEG and a network of autonomous distributed secondary loads (DSLs) consisting of electric thermal storage (ETS) devices. This allows surplus wind to be distributed to residential consumers (as space heat) without the need for a centralized communication network. Numerical modeling of system dynamics with active DSLs is conducted using a SIMULINK wind–diesel hybrid test bed model. The effects of controller gain, installed capacity, switching time and unit coordination timing on frequency and voltage regulation is explored. It is shown that the DSLs can improve frequency regulation in wind–diesel mode while providing storable thermal energy to distributed consumers.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: Appropriate wind speed modeling for generating synthetic wind speed data is crucial in microgrid reliability evaluation studies. This paper proposes a 2-D wind speed statistical model based on historical wind speed data. The first dimension of the proposed wind model focuses on the probability distribution on the time duration of different wind speed scales, while the second dimension focuses on the probability distribution of wind speed in each wind speed scale. Unlike traditional wind speed models, the proposed model can simultaneously deal with the probabilistic characteristics of wind speed and wind time duration. This paper also presents a 2-D wind model-based data sampling method, and incorporates it into the microgrid reliability assessment algorithm. Using historical wind speed data in Tianjin, China, it shows that the proposed 2-D wind speed statistical model helps to fully simulate the volatility of wind energy. Furthermore, the proposed wind speed model is applied on the microgrid reliability evaluation study, which shows that the proposed model can be effectively utilized by planners to conduct reliability evaluation for microgrid.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2016-06-21
    Description: Wind generation is growing fast worldwide. The stochastic variation of large-scale wind generation may impact the power systems in almost every aspect. Probabilistic analysis method is an effective tool to study power systems with random factors. In this paper, a systematic nonlinear analytical probabilistic method is proposed to evaluate the possible effect of random wind power generation on power system small signal stability. A second-order polynomial is proposed to approximate the nonlinear relationship between the wind generation and the damping of a particular dynamic mode, such as the dominant mode. Gaussian mixture model formulates wind uncertainty in a uniform way. Spectral theorem is adopted to reshape the second-order polynomial into a form without cross-product terms. Cholesky decomposition is used to eliminate correlations among outputs of different wind farms. Thereafter the cumulative distribution function (CDF) of the damping ratio with respect to random wind power is consequently constructed. Numerical simulations are carried out in the IEEE standard test system. The proposed method is verified with higher accuracy than the traditional linearized method. Meanwhile, it is much more time-saving in calculation than Monte Carlo simulation.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2016-06-21
    Description: In this paper, a distributed local control scheme for dc microgrid is proposed along with the basic droop control. It eliminates the limitations of droop control when the distributed generators are geographically distributed, for which, the line resistances cannot be neglected. Effects of line inductance and constant power loading (CPL) are investigated by analyzing the voltage tracking transfer function for single source system. Stability of two sources single load microgrid with proposed controller is investigated. Simulated responses are presented for two sources single load microgrid (for the sake of simplicity) to depict the proper load sharing and voltage improvement capability of the proposed control method with the consideration of line resistances. However, this can be extended to multiple-source multiple-load configuration connected to the dc bus. A comparison of the result is presented to show the better performance of the proposed control scheme as compared to the conventional droop control and hierarchical secondary control. The interconnected operation of the microgrid is also investigated to show the applicability of the proposed control in the interconnected mode. A centralized controller in each area is used to make the tie-line power flow zero at steady state.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: There has been an increasing interest in transformerless inverter for grid-tied photovoltaic (PV) system due to low cost, high efficiency, light weight, etc. Therefore, many transformerless topologies have been proposed and verified with real power injection only. Recently, almost every international regulation has imposed that a definite amount of reactive power should be handled by the grid-tied PV inverter. According to the standard VDE-AR-N 4105, grid-tied PV inverter of power rating below 3.68KVA, should attain power factor (PF) from 0.95 leading to 0.95 lagging. In this paper, a new high efficiency transformerless topology is proposed for grid-tied PV system with reactive power control. The new topology structure and detail operation principle with reactive power flow is described. The high frequency common-mode (CM) model and the control of the proposed topology are analyzed. The inherent circuit structure of the proposed topology does not lead itself to the reverse recovery issues even when inject reactive power which allow utilizing MOSFET switches to boost the overall efficiency. The CM voltage is kept constant at mid-point of dc input voltage, results low leakage current. Finally, to validate the proposed topology, a 1 kW laboratory prototype is built and tested. The experimental results show that the proposed topology can inject reactive power into the utility grid without any additional current distortion and leakage current. The maximum efficiency and European efficiency of the proposed topology are measured and found to be 98.54% and 98.29%, respectively.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: Wave energy farms may cause voltage flicker on the local grid to which they will be connected due to the strong fluctuations that their output power may present. IEC standard 61400-21 describes methods for estimating the flicker level for different short-circuit ratios as well as for different numbers of devices composing the farm. This method was initially developed for wind farms but is applicable to wave energy farms as well. However, besides the short-circuit ratio and the number of devices composing the farm, the grid impedance angle has also a strong influence on flicker. Despite this, no method exists in the literature for estimating flicker as a function of this variable. This paper presents the results of a study intended to fill this gap by focusing on developing a simplified method for estimating the flicker level induced by a wave energy farm as a function of the grid impedance angle. The results obtained through this method are compared with those obtained from numerical load flow simulations performed with PowerFactory. These simulations were based on experimental power output time series of a wave energy prototype deployed at sea as part of the European CORES project. The voltage profiles thus generated were then processed by means of a flickermeter compliant with IEC standard 61000-4-15.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2016-06-21
    Description: A novel monotonic strategy following a consistent charging/discharging direction for each individual battery connected in parallel to form a large-scale battery energy storage system (BESS) is proposed in this paper. The BESS is coordinated with a large wind farm to smooth out the intermittent nature of the farm’s output fed to an electricity grid. The strategy is used to optimize the capacity of each battery reducing the system’s capital cost. The strategy also prolongs the battery’s lifetime and consequently minimizes the system’s operating cost. It is shown that the optimal capacity of the battery decreases as their number increases. Moreover, the optimal capacity of the BESS tends to some positive limit as the number of batteries approaches infinity. A rigorous proof of the mathematical theory underlying the proposed strategy and associated optimization are given in the paper. The effectiveness of the strategy is confirmed with data analysis taken from an actual wind farm. The strategy is generic enough to be applicable to other intermittent generation sources such as solar PV farms.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: In islanded microgrids (MGs), the reactive power cannot be shared proportionally among distributed generators (DGs) with conventional droop control, due to the mismatch in feeder impedances. For the purpose of proportional reactive power sharing, a multiagent system (MAS)-based distributed control model for droop-controlled MGs is proposed. The proposed control model consists of two layers, where the bottom layer is the electrical distribution MG, while the top layer is a communication network composed of agents. Moreover, agents on the communication network exchange the information acquired from DGs with neighbors, and calculate set points for DGs they connect to, according to the control laws. Furthermore, a theorem is demonstrated, which yields a systematic method to derive the control laws from a given communication network. Finally, three cases are carried out to test the performance of the control model, in which the uncertainty of intermittent DGs, variations in load demands, as well as impacts of time delays are considered. The simulation results demonstrate the effectiveness of the control model in proportional reactive power sharing, and the plug and play capability of the control model is also verified.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2016-06-21
    Description: Wind power generation is to play an important role in supplying electric power demand, and will certainly impact the design of future energy and reserve markets. Operators of wind power plants will consequently develop adequate offering strategies, accounting for the market rules and the operational capabilities of the turbines, e.g., to participate in primary reserve markets. We consider two different offering strategies for joint participation of wind power in energy and primary reserve markets, based on the idea of proportional and constant splitting of potentially available power generation from the turbines. These offering strategies aim at maximizing expected revenues from both market floors using probabilistic forecasts for wind power generation, complemented with estimated regulation costs and penalties for failing to provide primary reserve. A set of numerical examples, as well as a case-study based on real-world data, allows illustrating and discussing the properties of these offering strategies. An important conclusion is that, even though technically possible, it may not always make sense for wind power to aim at providing system services in a market environment.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2016-06-21
    Description: In addition to energy, a concentrating solar power (CSP) plant with thermal energy storage (TES) could also provide ancillary service (AS) in the reserve and regulation markets. On one hand, providing AS contributes to the flexibility of the power systems and increases the revenue of CSP plants. On the other hand, the flexibility of CSP plants to accommodate solar energy, which is of great uncertainty, might be significantly weakened by an inappropriate offering strategy, e.g., offering excessive AS. Insufficient flexibility might cause massive solar energy curtailment and reduce the potential revenue. This paper develops a general model framework on the optimal offering strategy for CSP plants in joint day-ahead energy, reserve and regulation markets, which is robust for solar energy uncertainty and stochastic for market price uncertainty. On this basis, given the optimal day-ahead offering strategy, the offering curves to provide incremental AS capacities in the supplemental AS markets are further derived considering the opportunity cost. A new index, the maximum acceptable curtailment rate, is introduced to formulate the tradeoff of CSP plants between supplying AS to the system and reserving the flexibility for solar energy accommodation. The case study results demonstrate the validity of the proposed model.
    Print ISSN: 1949-3029
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...