ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous  (4)
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (3)
  • Wiley-Blackwell  (7)
  • Copernicus
  • 2015-2019  (7)
Collection
Years
Year
  • 1
    Publication Date: 2021-03-18
    Description: This article presents an integrated approach for the probabilistic systemic risk analysis of a road network considering spatial seismic hazard with correlation of ground motion intensities, vulnerability of the network components, and the effect of interactions within the network, as well as, between roadway components and built environment to the network functionality. The system performance is evaluated at the system level through a global connectivity performance indicator, which depends on both physical damages to its components and induced functionality losses due to interactions with other systems. An object-oriented modeling paradigm is used, where the complex problem of several interacting systems is decomposed in a number of interacting objects, accounting for intra- and interdependencies between and within systems. Each system is specified with its components, solving algorithms, performance indicators and interactions with other systems. The proposed approach is implemented for the analysis of the road network in the city of Thessaloniki (Greece) to demonstrate its applicability. In particular, the risk for the road network in the area is calculated, specifically focusing on the short-term impact of seismic events (just after the earthquake). The potential of road blockages due to collapses of adjacent buildings and overpass bridges is analyzed, trying to individuate possible criticalities related to specific components/subsystems. The application can be extended based on the proposed approach, to account for other interactions such as failure of pipelines beneath the road segments, collapse of adjacent electric poles, or malfunction of lighting and signaling systems due to damage in the electric power network.
    Description: Published
    Description: 524–540
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Systemic vulnerability ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-22
    Description: Operative seismic aftershock risk forecasting can be particularly useful for rapid decision-making in the presence of an ongoing sequence. In such a context, limit state first-excursion probabilities (risk) for the forecasting interval (a day) can represent the potential for progressive state of damage in a structure. This work lays out a performance-based framework for adaptive aftershock risk assessment in the immediate post-mainshock environment. A time-dependent structural performance variable is adopted in order to measure the cumulative damage in a structure. A set of event-dependent fragility curves as a function of the first-mode spectral acceleration for a prescribed limit state is calculated by employing back-to-back non- linear dynamic analyses. An epidemic-type aftershock sequence model is employed for estimating the spatio-temporal evolution of aftershocks. The event-dependent fragility curves for a given limit state are then integrated together with the probability distribution of aftershock spectral acceleration based on the epidemic-type aftershock sequence aftershock hazard. The daily probability of limit state first-excursion is finally calculated as a weighted combination of the sequence of limit state probabilities conditioned on the num- ber of aftershocks. As a numerical example, daily aftershock risk is calculated for the L’Aquila 2009 aftershock sequence (central Italy). A representative three-story reinforced concrete frame with infill panels, which has cyclic strength and stiffness degradation, is used in order to evaluate the progressive damage. It is observed that the proposed framework leads to a sound forecasting of limit state first-excursion in the structure for two limit states of significant damage and near collapse. Copyright © 2014 John Wiley & Sons, Ltd.
    Description: Published
    Description: 2179–2197
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: aftershock ; time-dependent reliability ; seismic risk ; etas modeling ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The M ∼ 7 1915 Fucino (Central Italy) earthquake represents one of the most destructive seismic events ever occurred in the Italian Peninsula. Several seismogenic faults have been proposed in the past decades as the source of the earthquake by means of different approaches and techniques that lead to a variety of speculations about the source mechanism and the fault location, often contrasting with one another. The 1915 earthquake produced a remarkable data set of 73 coseismic hydrological changes in the near and intermediate field that consist in variation of the flow of streams and springs, liquefaction, rise of water temperature and turbidity. In this paper, we study the coseismic water level changes induced by the 1915 earthquake in the near field to provide convincing clues on the geometry of the earthquake causative fault. We model the coseismic strain field induced by seventeen individual faults proposed through different approaches, and compare its pattern with the distribution of streamflow changes. We find: (i) clues on the most probable geometry of the earthquake causative fault. Best fits between modelled deformation and observed data are displayed by sources (derived by geological or seismological data) that share several distinctive features, as they are ∼135◦-striking, SW-dipping, 25–30-km-long normal faults located along the eastern side of the Fucino basin. These data point to the Serrone Fault and the Parasano Fault as the most likely causative structures and support the hypothesis that the coseismic ruptures observed in the field represented primary surface faulting. On the contrary, our calculations show that the Pescina Fault and the Ventrino Fault are secondary faults from the perspective of the hydrological response. Finally, one of the best scoring potential sources (from geological data) is a multifaulting system that considers the presence, in the central-western part of the basin, of fault splays synthetic and antithetic to the main seismogenic structures; therefore, we infer for these splays a possible active involvement in a 1915-like seismogenic process; (ii) evidence against a number of seismogenic structures that were previously associated with the earthquake. In particular, the plots of coseismic strain induced by sources uniquely derived by macroseismic or geodetic data prove to be inconsistent with the polarities of the hydrological signatures. Also, sources mainly characterized by reverse faulting and/or by right-lateral strike-slip component are discarded and (iii) as a final remark, we maintain that the study of the hydrological signatures of earthquake strain can offer an alternative tool in the investigation of the historical seismicity, to estimate the focal mechanism of major earthquakes capable of giving rise to a consistent data set of hydrological data.
    Description: Published
    Description: 1374-1388
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: 1915 Fucino earthquake ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this study we have investigated the forward directivity associated with the initial up-dip rupture propagation during the April 6th 2009 (MW 6.1) L’Aquila normal-faulting earthquake. The objective is the understanding of how the peculiar initial behavior of rupture history during the main shock has affected the near-source recorded ground motions in the L’Aquila town and surrounding areas. We have modeled the observed ground velocities at the closest near-source recording sites by computing synthetic seismograms using a discrete wavenumbers and finite difference approach in the low frequency bandwidth (0.02-0.4 Hz) to avoid site effects contaminations. We use both the rupture model retrieved by inverting ground motion waveforms and continuous high sampling-rate GPS time series as well as uniform-slip constant-rupture speed models. Our results demonstrate that the initial up-dip rupture propagation, characterizing the first three seconds of the rupture history during the L’Aquila main shock and releasing only ∼25% of total seismic moment, controls the observed ground motions in the near-source. This initial stage of the rupture is characterized by the generation of clear ground velocity pulses, which we interpret as a forward directivity effect. Our modeling results confirm a heterogeneous distribution of rupture velocity during the initial up-dip rupture propagation, since uniform rupture speed models overestimate up-dip directivity effects in the footwall of the causative fault. The up-dip directivity observed in the near field during the 2009 L’Aquila main shock is that predicted for a normal faulting earthquake by Somerville’s directivity model, but it differs from that inferred from far-field observations that conversely provide evidence of along-strike directivity. This calls for a careful analysis as well as for the realistic inclusion of rupture directivity to predict ground motions in the near source.
    Description: Published
    Description: 1618-1631
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: earthquake ground motion, earthquake source observations, computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Real-time seismology has made significant improvements in recent years, with source parameters now available within a few tens of minutes after an earthquake. It is likely that this time will be further reduced, in the near future, by means of increased efficiency in real-time transmission,increasingdatacoverageandimprovementofthemethodologies.Inthiscontext, together with the development of new ground motion predictive equations (GMPEs) that are abletoaccountforsourcecomplexity,thegenerationofstronggroundmotionshakingmapsin quasi-real time has become ever more feasible after the occurrence of a damaging earthquake. However, GMPEs may not reproduce reliably the ground motion in the near-source region where the finite fault parameters have a strong influence on the shaking. Inthispaperwetestwhetheraccountingforsource-relatedeffectsiseffectiveinbettercharacterizingthegroundmotion.WeintroduceamodificationoftheGMPEswithintheShakeMap softwarepackage,andsubsequentlytesttheaccuracyofthenewlygeneratedshakemapsinpredictingthegroundmotion.ThetestisconductedbycontrollingtheperformanceofShakeMap as we decrease the amount of the available information. We then update ShakeMap with the GMPE modified with a corrective factor accounting for source effects, in order to better constrain these effects that likely influence the level of (near-source) ground shaking. Weinvestigatetwowell-recordedearthquakesfromJapan(the2000Tottori, Mw 6.6,andthe 2008 Iwate-Miyagi, Mw7.0, events) where the instrumental coverage is as dense as needed to ensure an objective appraisal of the results. The results demonstrate that the corrected GMPE can capture only some aspects of the ground shaking in the near-source area, neglecting other multidimensional effects, such as propagation effects and local site amplification.
    Description: Italian Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile(DPC)under the contract 2007–2009 DPC-INGVS3project
    Description: Published
    Description: 1836-1848
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake ground motions ; Earthquake source observation ; Computational seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-14
    Description: Rayleigh wave group velocity dispersion measurements from local and regional earthquakes are used to interpret the lithospheric structure in the Gulf of California region. We compute group velocity maps for Rayleigh waves from 10 to 150 s using earthquakes recorded by broadband stations of the Network of Autonomously Recording Seismographs in Baja California and Mexico mainland, UNM in Mexico, BOR, DPP and GOR in southern California and TUC in Arizona. The study area is gridded in 120 longitude cells by 180 latitude cells, with an equal spacing of 10 × 10 km. Assuming that each gridpoint is laterally homogeneous, for each period the tomographic maps are inverted to produce a 3-D lithospheric shear wave velocity model for the region. Near the Gulf of California rift axis, we found three prominent low shear wave velocity regions, which are associated with mantle upwelling near the Cerro Prieto volcanic field, the Ballenas Transform Fault and the East Pacific Rise. Upwelling of the mantle at lithospheric and asthenospheric depths characterizes most of the Gulf. This more detailed finding is new when compared to previous surface wave studies in the region. A low-velocity zone in northcentral Baja at ∼28oN which extends east–south–eastwards is interpreted as an asthenospheric window. In addition, we also identify a well-defined high-velocity zone in the upper mantle beneath central-western Baja California, which correlates with the previously interpreted location of the stalled Guadalupe and Magdalena microplates. We interpret locations of the fossil slab and slab window in light of the distribution of unique post-subduction volcanic rocks in the Gulf of California and Baja California.We also observe a high-velocity anomaly at 50-km depth extending down to ∼130 km near the southwestern Baja coastline and beneath Baja, which may represent another remnant of the Farallon slab.
    Description: Published
    Description: 1861-1877
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: surface waves ; seismic tomography ; dynamics of lithosphere and mantle ; crustal structure ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-05
    Description: Secondary microseismic noise is generated by non-linear interactions between ocean waves at the ocean surface. We present here the theory for computing the site effect of the ocean layer upon body waves generated by noise sources distributed along the ocean surface. By defining the wavefield as the superposition of plane waves, we show that the ocean site effect can be described as the constructive interference of multiply reflected P waves in the ocean that are then converted to either P or SV waves at the ocean–crust interface. We observe that the site effect varies strongly with period and ocean depth, although in a different way for body waves than for Rayleigh waves. We also show that the ocean site effect is stronger for P waves than for S waves. We validate our computation by comparing the theoretical noise body wave sources with the sources inferred from beamforming analysis of the three seismogram components recorded by the Southern California Seismic Network. We use rotated traces for the beamforming analysis, and we show that we clearly detect P waves generated by ocean gravity wave interactions along the track of typhoon Ioke (2006 September). We do not detect the corresponding SV waves, and we demonstrate that this is because their amplitude is too weak.
    Description: Published
    Description: 1096-1106
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Body waves ; Site effects ; Theoretical Seismology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...