ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Internal waves  (17)
  • American Meteorological Society  (9)
  • Woods Hole Oceanographic Institution  (7)
  • MDPI AG  (1)
  • 2015-2019  (17)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 2381–2406, doi:10.1175/JPO-D-14-0086.1.
    Description: While near-inertial waves are known to be generated by atmospheric storms, recent observations in the Kuroshio Front find intense near-inertial internal-wave shear along sloping isopycnals, even during calm weather. Recent literature suggests that spontaneous generation of near-inertial waves by frontal instabilities could represent a major sink for the subinertial quasigeostrophic circulation. An unforced three-dimensional 1-km-resolution model, initialized with the observed cross-Kuroshio structure, is used to explore this mechanism. After several weeks, the model exhibits growth of 10–100-km-scale frontal meanders, accompanied by O(10) mW m−2 spontaneous generation of near-inertial waves associated with readjustment of submesoscale fronts forced out of balance by mesoscale confluent flows. These waves have properties resembling those in the observations. However, they are reabsorbed into the model Kuroshio Front with no more than 15% dissipating or radiating away. Thus, spontaneous generation of near-inertial waves represents a redistribution of quasigeostrophic energy rather than a significant sink.
    Description: “The Study of Kuroshio Ecosystem Dynamics for Sustainable Fisheries (SKED)” supported by MEXT, MIT-Hayashi Seed Fund, ONR (Awards N000140910196 and N000141210101), NSF (Award OCE 0928617, 0928138) for support.
    Description: 2016-03-01
    Keywords: Circulation/ Dynamics ; Frontogenesis/frontolysis ; Fronts ; Internal waves ; Turbulence ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1789-1797, doi:10.1175/JPO-D-16-0240.1.
    Description: Internal solitary waves are commonly observed in the coastal ocean where they are known to contribute to mass transport and turbulent mixing. While these waves are often generated by cross-isobath barotropic tidal currents, novel observations are presented suggesting that internal solitary waves result from along-isobath tidal flows over channel-shoal bathymetry. Mooring and ship-based velocity, temperature, and salinity data were collected over a cross-channel section in a stratified estuary. The data show that Ekman forcing on along-channel tidal currents drives lateral circulation, which interacts with the stratified water over the deep channel to generate a supercritical mode-2 internal lee wave. This lee wave propagates onto the shallow shoal and evolves into a group of internal solitary waves of elevation due to nonlinear steepening. These observations highlight the potential importance of three-dimensionality on the conversion of tidal flow to internal waves in the rotating ocean.
    Description: National Science Foundation (OCE-1061609)
    Description: 2018-01-03
    Keywords: Estuaries ; Internal waves ; Solitary waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fluids 2 (2017): 36, doi:10.3390/fluids2030036.
    Description: There is no theoretical underpinning that successfully explains how turbulent mixing is fed by wave breaking associated with nonlinear wave-wave interactions in the background oceanic internal wavefield. We address this conundrum using one-dimensional ray tracing simulations to investigate interactions between high frequency internal waves and inertial oscillations in the extreme scale separated limit known as “Induced Diffusion”. Here, estimates of phase locking are used to define a resonant process (a resonant well) and a non-resonant process that results in stochastic jumps. The small amplitude limit consists of jumps that are small compared to the scale of the resonant well. The ray tracing simulations are used to estimate the first and second moments of a wave packet’s vertical wavenumber as it evolves from an initial condition. These moments are compared with predictions obtained from the diffusive approximation to a self-consistent kinetic equation derived in the ‘Direct Interaction Approximation’. Results indicate that the first and second moments of the two systems evolve in a nearly identical manner when the inertial field has amplitudes an order of magnitude smaller than oceanic values. At realistic (oceanic) amplitudes, though, the second moment estimated from the ray tracing simulations is inhibited. The transition is explained by the stochastic jumps obtaining the characteristic size of the resonant well. We interpret this transition as an adiabatic ‘saturation’ process which changes the nominal background wavefield from supporting no mixing to the point where that background wavefield defines the normalization for oceanic mixing models.
    Description: Kurt L. Polzin gratefully acknowledges support from Woods Hole Oceanographic Institution’s Investment in Science Program (WHOI’s ISP) program. The authors gratefully acknowledge support from a collaborative National Science Foundation grant, award Nos. 1634644 (KP) and 1635866 (YVL).
    Keywords: Wave-wave interactions ; Internal waves ; Mixing ; Anderson localization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 1969-1993, doi:10.1175/JPO-D-18-0031.1.
    Description: Upstream mean semidiurnal internal tidal energy flux has been found in the Gulf Stream in hydrodynamical model simulations of the Atlantic Ocean. A major source of the energy in the simulations is the south edge of Georges Bank, where strong and resonant Gulf of Maine tidal currents are found. An explanation of the flux pattern within the Gulf Stream is that internal wave modal rays can be strongly redirected by baroclinic currents and even trapped (ducted) by current jets that feature strong velocities above the thermocline that are directed counter to the modal wavenumber vector (i.e., when the waves travel upstream). This ducting behavior is analyzed and explained here with ray-based wave propagation studies for internal wave modes with anisotropic wavenumbers, as occur in mesoscale background flow fields. Two primary analysis tools are introduced and then used to analyze the strong refraction and ducting: the generalized Jones equation governing modal properties and ray equations that are suitable for studying waves with anisotropic wavenumbers.
    Description: The Woods Hole research was supported by National Science Foundation Grant OCE-1060430 and by the Office of Naval Research Grants N00014-11-1-0701 and N00014-17-1-2624. The USM research was supported by ONR Grant N00014-15-1-2288 and National Science Foundation Grant OCE-1537449.
    Description: 2019-02-28
    Keywords: Internal waves ; Wave properties ; Tides ; Differential equations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 417-437, doi:10.1175/JPO-D-15-0055.1.
    Description: In the stratified ocean, turbulent mixing is primarily attributed to the breaking of internal waves. As such, internal waves provide a link between large-scale forcing and small-scale mixing. The internal wave field north of the Kerguelen Plateau is characterized using 914 high-resolution hydrographic profiles from novel Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. Altogether, 46 coherent features are identified in the EM-APEX velocity profiles and interpreted in terms of internal wave kinematics. The large number of internal waves analyzed provides a quantitative framework for characterizing spatial variations in the internal wave field and for resolving generation versus propagation dynamics. Internal waves observed near the Kerguelen Plateau have a mean vertical wavelength of 200 m, a mean horizontal wavelength of 15 km, a mean period of 16 h, and a mean horizontal group velocity of 3 cm s−1. The internal wave characteristics are dependent on regional dynamics, suggesting that different generation mechanisms of internal waves dominate in different dynamical zones. The wave fields in the Subantarctic/Subtropical Front and the Polar Front Zone are influenced by the local small-scale topography and flow strength. The eddy-wave field is influenced by the large-scale flow structure, while the internal wave field in the Subantarctic Zone is controlled by atmospheric forcing. More importantly, the local generation of internal waves not only drives large-scale dissipation in the frontal region but also downstream from the plateau. Some internal waves in the frontal region are advected away from the plateau, contributing to mixing and stratification budgets elsewhere.
    Description: A.M. was supported by the joint CSIRO-University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. K.L.P.’s salary support was provided by Woods Hole Oceanographic Institution bridge support funds. B.M.S. was supported by the Australian Climate Change Science Program.
    Description: 2016-06-07
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Internal waves ; Mixing ; Wave properties ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Also published as: Reviews of geophysics and space physics (1979) 17: 1524-1548
    Description: Progress in measuring, interpreting, and understanding oceanic internal gravity waves and fine and microstructure is reviewed; we emphasize the quadrennium 1975-1978. The context is how these subjects contribute to oceanic mixing. The overlap between the areas is examined, as is the relevance of the subjects to other aspects of Present trends and suggestions for future work are included, and we offer some speculation on possible progress during the next quadrennium, which may be substantial especially for finestructure understanding.
    Description: Prepared for the Office of Naval Research under Contracts N00014-76-C-0197; NR 083-004 and N00014-75-C-0502 (to the University of Washington) and for the National Science Foundation under Grant OCE 77-25803.
    Keywords: Internal waves ; Fine-structure constant ; Microstructure
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Marine Research 38 (1980): 135~145
    Description: The effects of critical level absorption of oceanic internal waves by a mean flow are estimated using the Garrett and Munk (1975) model spectrum. The horizontal currents of the wave field are found to be more intense perpendicular to the mean flow than parallel to it. The cause of this anisotropy is preferential absorption of waves travelling with the mean flow. However, the current anisotropy is only half as large as would be necessary to explain Frankignoul's (1974) observations. The wave momentum flux lost to critical level absorption is found to be nearly proportional to the mean velocity. When the momentum flux is deposited throughout a 400 m thick shear zone, typical of the main thermocline in the North-west Atlantic, the observed stress-shear relationship would correspond to a wave-induced eddy viscosity of -200 cm2 s-1. The effect of the absorbed momentum on the mean flow is to cause a slow (5 m/day) downward phase propagation and slow broadening of the shear profile.
    Description: Prepared for the Office of Naval Research under Contract N00014-76-C-0197; NR 083~400.
    Keywords: Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Derived from the equations of motion, the bispectrum of power indicates the rate of energy transfer among components of the internal wave field . This, or any other bispectrum, can be evaluated from weak resonant interaction theory given the wave spectrum. Using the Garrett and Munk model of the deep open ocean internal wave spectrum, the bispectrum of power and the closely related auto-bispectrum of vertical displacements are evaluated numerically with the intention of providing an observational test of the weak interaction theory and its predictions. The resulting levels of the bispectra for typical deep ocean internal waves are generally too low to be observed with any statistical confidence in an experiment of reasonable length and cost.
    Description: Prepared for the National Science Foundation under Grant OCE76-23532 and in part by Grants OCE77-25803 and OCE76-14739.
    Keywords: Internal waves ; Energy transfer
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Also published as: Journal of Geophysical Research 84 (1979): 769-776.
    Description: The relation between internal wave variability and larger and smaller scales of motion is investigated, using the IWEX data set. To investigate the role of internal waves in the vertical diffusion of large scale momentum, the time variability of the vertical flux of horizontal internal wave momentum (estimated from temperature and current data) is compared to that of the mean vertical shear. It is found that internal waves cannot cause a vertical viscosity as large as proposed by Müller (1976), but that the data are too noisy to detect a possible wave‐induced viscosity in absolute value of the order of 10−2 m2 s−1 or less. Similarities in the time behavior of the total internal wave energy and that of the square mean vertical shear suggest that some kind of dynamical coupling exists between internal waves and larger scale flows. There is some evidence that the level of temperature finestructure activity also varies in a related way. An analysis of CTD station data taken during Mode demonstrates the mappability of the finestructure activity, and again suggests a relation with the geostrophic eddy flow.
    Description: Prepared for the Office of Naval Research under Contracts N00014-74-C-0262; NR 083- 004 , N00014-76-C-0197: NR 083-400 and for the National Science Foundation under Grant OCE 74-19782 .
    Keywords: Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: A prototype four-dimensional (x,y,z,t) continental shelf/deep ocean model is described. In its present form, the model incorporates the effects of finite-amplitude topography, advective nonlinearities, and variable stratification and rotation. The model can be forced either directly by imposed atmospheric windstress and surface pressure distributions, and energetic mean currents imposed by the exterior oceanic circulation; or indirectly by initial distributions of shoreward propagating mesoscale waves and eddies. To avoid concerns over the appropriate specification of "open" boundary conditions on the cross-shelf and seaward model boundaries, a periodic channel geometry (oriented along-coast) is used. The model employs a traditional finite-difference expansion in the cross-shelf direction, and a Fourier (periodic) representation in the long-shelf coordinate. A modified sigma coordinate system, and a Chebyshev-tau approximation scheme, are used to incorporate the vertical dependence. The model has been validated against a variety of propagating topographic wave problems. Representative run times and error estimates are given.
    Description: Prepared for the National Aeronautics and Space Administration under Grant NAG 5-8.
    Keywords: Ocean waves ; Internal waves
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...