ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (191,939)
  • 2015-2019  (181,902)
  • 1950-1954  (10,037)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Limnology and Oceanography, Wiley, 63(3), pp. 1444-1444, ISSN: 0024-3590
    Publication Date: 2024-05-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-16
    Description: With the increasing anthropogenic impacts on fish habitats, it has become more important to understand which primary resources sustain fish populations. This resource utilization can differ between fish life stages, and individuals can migrate between habitats in search of resources. Such lifetime information is difficult to obtain due to the large spatial and temporal scales of fish behavior. The otolith organic matrix has the potential to indicate this resource utilization and migration with δ13C values of essential amino acids (EAAs), which are a direct indication of the primary producers. In a proof-of-concept study, we selected the Acoupa weakfish, Cynoscion acoupa, as a model fish species with distinct ontogenetic migration patterns. While it inhabits the Brazilian mangrove estuaries during juvenile stages, it moves to the coastal shelf as an adult. Thus, we expected that lifetime resource utilization and migration would be reflected in δ13CEAA patterns and baseline values in C. acoupa otoliths. By analyzing the C. acoupa otolith edges across a size range of 12–119 cm, we found that baseline δ13CEAA values increased with size, which indicated an estuarine to coastal shelf distribution. This trend is highly correlated with inorganic δ13C values. The δ13CEAA patterns showed that estuarine algae rather than mangrove-derived resources supported the juvenile C. acoupa populations. Around the juvenile size of 40 cm, resource utilization overlapped with those of adults and mean baseline δ13CEAA values increased. This trend was confirmed by comparing otolith core and edges, although with some individuals potentially migrating over longer distances than others. Hence, δ13CEAA patterns and baseline values in otoliths have great potential to reconstruct ontogenetic shifts in resource use and habitats. The insight could aid in predictions on how environmental changes affect fish populations by identifying the controlling factors at the base of the food web.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-08
    Description: The Lagrangian method-where current location and intensity are determined by tracking the movement of flow along its path-is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid-20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice-free oceans and begin to construct basin-scale, and eventually global-scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-22
    Description: Carbonate buildups and mounds are impressive biogenic structures throughout Earth history. In the recent NE Atlantic, cold-water coral (CWC) reefs form giant carbonate mounds of up to 300 m of elevation. The expansion of these coral carbonate mounds is paced by climatic changes during the past 2.7 Myr. Environmental control on their development is directly linked to controls on its main constructors, the reef-building CWCs. Seawater density has been identified as one of the main controlling parameter of CWC growth in the NE Atlantic. One possibility is the formation of a pycnocline above the carbonate mounds, which is increasing the hydrodynamic regime, supporting elevated food supply, and possibly facilitating the distribution of coral larvae. The potential to reconstruct past seawater densities from stable oxygen isotopes of benthic foraminifera has been further developed: a regional equation gives reliable results for three different settings, peak interglacials (e.g., Holocene), peak glacials (e.g., Last Glacial Maximum), and intermediate setting (between the two extremes). Seawater densities are reconstructed for two different NE Atlantic CWC carbonate mounds in the Porcupine Seabight indicating that the development of carbonate mounds is predominantly found at a seawater density range between 27.3 and 27.7 kg m−3 (σΘ notation). Comparable to recent conditions, we interpret the reconstructed density range as a pycnocline serving as boundary layer, on which currents develop, carrying nutrition and possibly coral larvae. The close correlation of CWC reef growth with reconstructed seawater densities through the Pleistocene highlights the importance of pycnoclines and intermediate water mass dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-22
    Description: The complex deglacial to Holocene oceanographic development in the Gulf of Guayaquil (Eastern Equatorial Pacific) is reconstructed for sea surface and subsurface ocean levels from (isotope) geochemical proxies based on marine sediment cores. At sea surface, southern sourced Cold Coastal Water and tropical Equatorial Surface Water/Tropical Surface Water are intimately related. In particular since ~10 ka, independent sea surface temperature proxies capturing different seasons emphasize the growing seasonal contrast in the Gulf of Guayaquil, which is in contrast to ocean areas further offshore. Cold Coastal Water became rapidly present in the Gulf of Guayaquil during the austral winter season in line with the strengthening of the Southeast Trades, while coastal upwelling off Peru gradually intensified and expanded northward in response to a seasonally changing atmospheric circulation pattern affecting the core locations intensively since 4 ka BP. Equatorial Surface Water, instead, was displaced and Tropical Surface Water moved northward together with the Equatorial Front. At subsurface, the presence of Equatorial Under Current-sourced Equatorial Subsurface Water was continuously growing, prominently since ~10–8 ka B.P. During Heinrich Stadial 1 and large parts of the Bølling/Allerød, and similarly during short Holocene time intervals at ~5.1–4 ka B.P. and ~1.5–0.5 ka B.P., the admixture of Equatorial Subsurface Water was reduced in response to both short-term weakening of Equatorial Under Current strength from the northwest and emplacement by tropical Equatorial Surface Water, considerably warming the uppermost ocean layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-22
    Description: High-latitude cold-water coral (CWC) reefs are particularly susceptible due to enhanced CO2 uptake in these regions. Using precisely dated (U/Th) CWCs (Lophelia pertusa) retrieved during research cruise POS 391 (Lopphavet 70.6°N, Oslofjord 59°N) we applied boron isotopes (δ11B), Ba/Ca, Li/Mg and U/Ca ratios to reconstruct the environmental boundary conditions of CWC reef growth. The sedimentary record from these CWC reefs reveals a lack of corals between ∼ 6.4 and 4.8 ka. The question remains if this phenomenon is related to changes in the carbonate system or other causes. The initial postglacial setting had elevated Ba/Ca ratios, indicative of meltwater fluxes showing a decreasing trend towards cessation at 6.4 ka with a oscillation pattern similar to continental glacier fluctuations. Downcore U/Ca ratios reveal an increasing trend, which is outside the range of modern U/Ca variability in L. pertusa, suggesting changes of seawater pH near 6.4 ka. The reconstructed BWT at Lopphavet reveals a striking similarity to Barent Sea-Surface and sub-Sea-Surface-Temperature records. We infer that meltwater pulses weakened the North Atlantic Current system resulting in southward advances of cold and CO2 rich Arctic waters. A corresponding shift in the δ11B record from ∼ 25.0‰ to ∼ 27.0 ‰ probably implies enhanced pH-up regulation of the CWCs due to the higher pCO2 concentrations of ambient seawater, which hastened Mid-Holocene CWC reef decline on the Norwegian Margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-29
    Description: Continental slopes are areas of high primary productivity, in particular where strong winds allow cold, nutrient‐laden deep water to upwell. The seafloor in upwelling areas is affected by repeated large submarine landslides, but the special environmental conditions have as yet not been taken into account in the analysis of these landslides. We show evidence for a potential link between environmental conditions and landslide occurrence for the Cap Blanc Slide Complex in the center of the Cap Blanc upwelling zone. Ocean Drilling Program Site 658 was drilled inside the slide complex, and its integration with high‐resolution seismic lines reveals that the onset of sliding postdates the onset of glaciations in the Northern Hemisphere. The sediment associated with failure surfaces of all seven slide events comprises of diatom ooze, the conditions for the formation of which are only met at the end of glacials. Preconditioning of the slope in the Cap Blanc Slide Complex is thus climatically controlled. We conclude that the presence of ooze formed under specific environmental conditions is an important factor in preconditioning slopes to fail in the Cap Blanc Slide Complex and potentially also at other continental slopes with high primary productivity.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Transactions of the Institute of British Geographers, Wiley, 43(1), pp. 61-78, ISSN: 0020-2754
    Publication Date: 2024-02-07
    Description: The Pacific region of Colombia, like many sparsely populated places in developing countries, has been imagined as empty in social terms, and yet full in terms of natural resources and biodiversity. These imaginaries have enabled the creation of frontiers of land and sea control, where the state as well as private and illegal actors have historically dispossessed Afro-descendant and indigenous peoples. This paper contributes to the understanding of territorialisation in the oceans, where political and legal framings of the sea as an open-access public good have neglected the existence of marine social processes. It shows how Afro-descendant communities and non-state actors are required to use the language of resources, rather than socio-cultural attachment, to negotiate state marine territorialisation processes. Drawing on a case study on the Pacific coast of Colombia, we demonstrate that Afro-descendant communities hold local aquatic epistemologies, in which knowledge and the production of space are entangled in fluid and volumetric spatio-temporal dynamics. However, despite the social importance of aquatic environments, they were excluded from Afro-descendants' collective territorial rights in the 1990s. Driven by their local aquatic epistemologies, coastal communities are reclaiming authority over the seascape through the creation of a marine protected area. We argue that they have transformed relations of authority at sea to ensure local access and control, using state institutional instruments to subvert and challenge the legal framing of the sea as an open access public good. As such, this marine protected area represents a place of resistance that ironically subjects coastal communities to disciplinary technologies of conservation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-01-29
    Description: Marine sediments host large amounts of methane (CH4), which is a potent greenhouse gas. Quantitative estimates for methane release from marine sediments are scarce, and a poorly constrained temporal variability leads to large uncertainties in methane emission scenarios. Here, we use 2D and 3D seismic reflection, multibeam bathymetric, geochemical and sedimentological data to (I) map and describe pockmarks in the Witch Ground Basin (central North Sea), (II) characterize associated sedimentological and fluid migration structures, and (III) analyze the related methane release. More than 1500 pockmarks of two distinct morphological classes spread over an area of 225 km2. The two classes form independently from another and are corresponding to at least two different sources of fluids. Class 1 pockmarks are large in size (〉 6 m deep, 〉 250 m long, and 〉 75 m wide), show active venting, and are located above vertical fluid conduits that hydraulically connect the seafloor with deep methane sources. Class 2 pockmarks, which comprise 99.5 % of all pockmarks, are smaller (0.9‐3.1 m deep, 26‐140 m long, and 14‐57 m wide) and are limited to the soft, fine‐grained sediments of the Witch Ground Formation and possibly sourced by compaction‐related dewatering. Buried pockmarks within the Witch Ground Formation document distinct phases of pockmark formation, likely triggered by external forces related to environmental changes after deglaciation. Thus, greenhouse gas emissions from pockmark fields cannot be based on pockmark numbers and present‐day fluxes but require an analysis of the pockmark forming processes through geological time.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Forschung, Wiley, 43(1), pp. 16-21, ISSN: 0172-1518
    Publication Date: 2024-01-22
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Plattentektonik, vulkanische Aktivität und Spreizung des Ozeanbodens in der Arktis: Die Emmy Noether‐Gruppe MOVE gewinnt nach aufwendigen Forschungs‐expeditionen und Erdbebenmessungen überraschende Erkenntnisse zur Entstehung und Struktur der Ozeanlithosphäre. Ein Werkstattbericht〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3German Research, Wiley, 41(2), pp. 8-13, ISSN: 0172-1526
    Publication Date: 2024-01-22
    Description: 〈jats:title〉Abstract〈/jats:title〉〈jats:p〉Plate tectonics, volcanic activity and ocean floor spreading in the Arctic: Following several complex research expeditions and earthquake measurements, the Emmy Noether group MOVE has obtained some surprising findings about the formation and structure of the ocean lithosphere. A look at the results so far〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-01-12
    Description: We present a phylogenetic analysis of spiders using a dataset of 932 spider species, representing 115 families (only the family Synaphridae is unrepresented), 700 known genera, and additional representatives of 26 unidentified or undescribed genera. Eleven genera of the orders Amblypygi, Palpigradi, Schizomida and Uropygi are included as outgroups. The dataset includes six markers from the mitochondrial (12S, 16S, COI) and nuclear (histone H3, 18S, 28S) genomes, and was analysed by multiple methods, including constrained analyses using a highly supported backbone tree from transcriptomic data. We recover most of the higher-level structure of the spider tree with good support, including Mesothelae, Opisthothelae, Mygalomorphae and Araneomorphae. Several of our analyses recover Hypochilidae and Filistatidae as sister groups, as suggested by previous transcriptomic analyses. The Synspermiata are robustly supported, and the families Trogloraptoridae and Caponiidae are found as sister to the Dysderoidea. Our results support the Lost Tracheae clade, including Pholcidae, Tetrablemmidae, Diguetidae, Plectreuridae and the family Pacullidae (restored status) separate from Tetrablemmidae. The Scytodoidea include Ochyroceratidae along with Sicariidae, Scytodidae, Drymusidae and Periegopidae; our results are inconclusive about the separation of these last two families. We did not recover monophyletic Austrochiloidea and Leptonetidae, but our data suggest that both groups are more closely related to the Cylindrical Gland Spigot clade rather than to Synspermiata. Palpimanoidea is not recovered by our analyses, but also not strongly contradicted. We find support for Entelegynae and Oecobioidea (Oecobiidae plus Hersiliidae), and ambiguous placement of cribellate orb-weavers, compatible with their non-monophyly. Nicodamoidea (Nicodamidae plus Megadictynidae) and Araneoidea composition and relationships are consistent with recent analyses. We did not obtain resolution for the titanoecoids (Titanoecidae and Phyxelididae), but the Retrolateral Tibial Apophysis clade is well supported. Penestomidae, and probably Homalonychidae, are part of Zodarioidea, although the latter family was set apart by recent transcriptomic analyses. Our data support a large group that we call the marronoid clade (including the families Amaurobiidae, Desidae, Dictynidae, Hahniidae, Stiphidiidae, Agelenidae and Toxopidae). The circumscription of most marronoid families is redefined here. Amaurobiidae include the Amaurobiinae and provisionally Macrobuninae. We transfer Malenellinae (Malenella, from Anyphaenidae), Chummidae (Chumma) (new syn.) and Tasmarubriinae (Tasmarubrius, Tasmabrochus and Teeatta, from Amphinectidae) to Macrobuninae. Cybaeidae are redefined to include Calymmaria, Cryphoeca, Ethobuella and Willisius (transferred from Hahniidae), and Blabomma and Yorima (transferred from Dictynidae). Cycloctenidae are redefined to include Orepukia (transferred from Agelenidae) and Pakeha and Paravoca (transferred from Amaurobiidae). Desidae are redefined to include five subfamilies: Amphinectinae, with Amphinecta, Mamoea, Maniho, Paramamoea and Rangitata (transferred from Amphinectidae); Ischaleinae, with Bakala and Manjala (transferred from Amaurobiidae) and Ischalea (transferred from Stiphidiidae); Metaltellinae, with Austmusia, Buyina, Calacadia, Cunnawarra, Jalkaraburra, Keera, Magua, Metaltella, Penaoola and Quemusia; Porteriinae (new rank), with Baiami, Cambridgea, Corasoides and Nanocambridgea (transferred from Stiphidiidae); and Desinae, with Desis, and provisionally Poaka (transferred from Amaurobiidae) and Barahna (transferred from Stiphidiidae). Argyroneta is transferred from Cybaeidae to Dictynidae. Cicurina is transferred from Dictynidae to Hahniidae. The genera Neoramia (from Agelenidae) and Aorangia, Marplesia and Neolana (from Amphinectidae) are transferred to Stiphidiidae. The family Toxopidae (restored status) includes two subfamilies: Myroinae, with Gasparia, Gohia, Hulua, Neomyro, Myro, Ommatauxesis and Otagoa (transferred from Desidae); and Toxopinae, with Midgee and Jamara, formerly Midgeeinae, new syn. (transferred from Amaurobiidae) and Hapona, Laestrygones, Lamina, Toxops and Toxopsoides (transferred from Desidae). We obtain a monophyletic Oval Calamistrum clade and Dionycha; Sparassidae, however, are not dionychans, but probably the sister group of those two clades. The composition of the Oval Calamistrum clade is confirmed (including Zoropsidae, Udubidae, Ctenidae, Oxyopidae, Senoculidae, Pisauridae, Trechaleidae, Lycosidae, Psechridae and Thomisidae), affirming previous findings on the uncertain relationships of the \xe2\x80\x9cctenids\xe2\x80\x9d Ancylometes and Cupiennius, although a core group of Ctenidae are well supported. Our data were ambiguous as to the monophyly of Oxyopidae. In Dionycha, we found a first split of core Prodidomidae, excluding the Australian Molycriinae, which fall distantly from core prodidomids, among gnaphosoids. The rest of the dionychans form two main groups, Dionycha part A and part B. The former includes much of the Oblique Median Tapetum clade (Trochanteriidae, Gnaphosidae, Gallieniellidae, Phrurolithidae, Trachelidae, Gnaphosidae, Ammoxenidae, Lamponidae and the Molycriinae), and also Anyphaenidae and Clubionidae. Orthobula is transferred from Phrurolithidae to Trachelidae. Our data did not allow for complete resolution for the gnaphosoid families. Dionycha part B includes the families Salticidae, Eutichuridae, Miturgidae, Philodromidae, Viridasiidae, Selenopidae, Corinnidae and Xenoctenidae (new fam., including Xenoctenus, Paravulsor and Odo, transferred from Miturgidae, as well as Incasoctenus from Ctenidae). We confirm the inclusion of Zora (formerly Zoridae) within Miturgidae.
    Keywords: Ecology ; Evolution ; Behavior and Systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    Publication Date: 2023-11-08
    Description: We use a simple 1-D model representing an isolated density surface in the ocean and 3-D global ocean biogeochemical models to evaluate the concept of computing the subsurface oceanic oxygen utilization rate (OUR) from the changes of apparent oxygen utilization (AOU) and water age. The distribution of AOU in the ocean is not only the imprint of respiration in the ocean's interior but is strongly influenced by transport processes and eventually loss at the ocean surface. Since AOU and water age are subject to advection and diffusive mixing, it is only when they are affected both in the same way that OUR represents the correct rate of oxygen consumption. This is the case only when advection prevails or with uniform respiration rates, when the proportions of AOU and age are not changed by transport. In experiments with the 1-D tube model, OUR underestimates respiration when maximum respiration rates occur near the outcrops of isopycnals and overestimates when maxima occur far from the outcrops. Given the distribution of respiration in the ocean, i.e., elevated rates near high-latitude outcrops of isopycnals and low rates below the oligotrophic gyres, underestimates are the rule. Integrating these effects globally in three coupled ocean biogeochemical and circulation models, we find that AOU-over-age based calculations underestimate true model respiration by a factor of 3. Most of this difference is observed in the upper 1000 m of the ocean with the discrepancies increasing toward the surface where OUR underestimates respiration by as much as factor of 4.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-11-08
    Description: Upper‐plate normal faults are a widespread structural element in erosive plate margins. Increasing coverage of marine geophysical data has proven that similar features also exist in accretionary margins where horizontal compression usually results in folding and thrust‐faulting. There is a general lack of understanding of the role and importance of normal faulting for the structural and tectonic evolution of accretionary margins. Here, we use high‐resolution 2D and 3D seismic reflection data and derived seismic attributes to map and analyze upper‐plate normal faulting in the marine forearc of the accretionary Hikurangi margin, New Zealand. We document extension of the marine forearc over a wide area along the upper continental slope. The seismically imaged normal faults show low vertical displacements, high dip angles, a preference for landward dip and often en echelon patterns. We evaluate different processes, which may cause the observed extension, including (1) stress change during the earthquake cycle, (2) regional or local uplift and decoupling of shallow strata from compression at depth, as well as (3) rotation of crustal blocks and resulting differential stresses at the block boundaries. The results suggest that normal faults play an important role in the structural and tectonic evolution of accretionary margins, including the northern Hikurangi forearc.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-11-08
    Description: The North Brazil Current (NBC) constitutes a bottleneck for the mean northward return flow of the Atlantic Meridional Overturning Circulation (AMOC) in the tropical South Atlantic. Previous studies suggested a link between interannual to multidecadal NBC and AMOC transport variability and proposed to use NBC observations as an index for the AMOC. Here we use a set of hindcast, sensitivity, and perturbation experiments performed within a hierarchy of ocean general circulation models to show that decadal to multidecadal buoyancy-forced changes in the basin-scale AMOC transport indeed manifest themselves in the NBC. The relation is, however, masked by a strong interannual to decadal wind-driven gyre variability of the NBC. While questioning the NBC transport as a direct index for the AMOC, the results support its potential merit for an AMOC monitoring system, provided that the wind-driven circulation variability is properly accounted for.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2023-11-08
    Description: Changes in the ocean iron cycle could help explain the low atmospheric CO2 during the Last Glacial Maximum (LGM). Previous modeling studies have mostly considered changes in aeolian iron fluxes, although it is known that sedimentary and hydrothermal fluxes are important iron sources for today's ocean. Here we explore effects of preindustrial-to-LGM changes in atmospheric dust, sedimentary, and hydrothermal fluxes on the ocean's iron and carbon cycles in a global coupled biogeochemical-circulation model. Considering variable atmospheric iron solubility decreases LGM surface soluble iron fluxes compared with assuming constant solubility. This limits potential increases in productivity and export production due to surface iron fertilization, lowering atmospheric CO2 by only 4 ppm. The effect is countered by a decrease in sedimentary flux due to lower sea level, which increases CO2 by 15 ppm. Assuming a 10 times higher iron dust solubility in the Southern Ocean, combined with changes in sedimentary flux, we obtain an atmospheric CO2 reduction of 13 ppm. The high uncertainty in the iron fluxes does not allow us to determine the net direction and magnitude of variations in atmospheric CO2 due to changes in the iron cycle. Our model does not account for changes to iron-binding ligand concentrations that could modify the results. We conclude that when evaluating glacial-interglacial changes in the ocean iron cycle, not only surface but also seafloor fluxes must be taken into account.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-11-08
    Description: Atlantic Warm Pool (AWP) climate variability is subject to multiple influences of remote and local forcing. However, shortage of observational data before the mid‐20th century and of long‐term sea surface temperature (SST) and climate records has hampered the detection and investigation of decadal‐ and longer‐scale variability. We present new seasonally resolved 125‐year records of coral δ18O and Sr/Ca variations in the Central Caribbean Sea (Little Cayman, Cayman Islands; Diploria strigosa). Both geochemical proxies show decreasing long‐term trends, indicating long‐term warming. Sr/Ca indicates much stronger regional warming than large‐scale grid‐SST data, while δ18O tracks large‐scale SST changes in the AWP. Seawater δ18O variations are reconstructed, indicating a drying trend over the past century. High spatial correlation between coral δ18O and SST in the region of the Loop Current and Gulf Stream system suggests that Little Cayman is a sensitive location for detecting past large‐scale temperature variability beyond the central Caribbean region. More specifically, our δ18O data tracks changes in North Atlantic Oscillation (NAO) variability on decadal and multidecadal time scales providing insights into the temporal and spatial nonstationarity of the NAO. A combination of our δ18O record with two coral records from different Caribbean sites reveals high spatial correspondence between coral δ18O and SST variability in the North Atlantic subtropical gyre, where few instrumental measurements and proxies are available prior to the 20th century. Our results clearly demonstrate the potential of combining proxy data to provide information from sparsely sampled areas, helping to reduce uncertainty in model‐based projections.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2023-11-07
    Description: Global biogeochemical ocean models rely on many parameters, which govern the interaction between individual components, and their response to the physical environment. They are often assessed/calibrated against quasi-synoptic data sets of dissolved inorganic tracers. However, a good fit to one observation might not necessarily imply a good match to another. We investigate whether two different metrics—the root-mean-square error to nutrients and oxygen and a metric measuring the overlap between simulated and observed oxygen minimum zones (OMZs)—help to constrain a global biogeochemical model in different aspects of performance. Three global model optimizations are carried out. Two single-objective optimizations target the root-mean-square metric and a sum of both metrics, respectively. We then present and explore multiobjective optimization, which results in a set of compromise solutions. Our results suggest that optimal parameters for denitrification and nitrogen fixation differ when applying different metrics. Optimization against observed OMZs leads to parameters that enhance fixed nitrogen cycling; this causes too low nitrate concentrations and a too high global pelagic denitrification rate. Optimization against nutrient and oxygen concentrations leads to different parameters and a lower global fixed nitrogen turnover; this results in a worse fit to OMZs. Multiobjective optimization resolves this antagonistic effect and provides an ensemble of parameter sets, which help to address different research questions. We finally discuss how systematic model calibration can help to improve models used for projecting climate change and its effect on fisheries and climate gas emissions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-09-27
    Description: Climate models generally underestimate the pronounced warming in the sea surface temperature (SST) over the North Atlantic during the mid‐Pliocene that is suggested by proxy data. Here we investigate the influence of the North Atlantic cold SST bias, which is observed in many climate models, on the simulation of mid‐Pliocene surface climate in a series of simulations with the Kiel Climate Model. A surface freshwater‐flux correction is applied over the North Atlantic, which considerably improves simulation of North Atlantic Ocean circulation and SST under present‐day conditions. Using reconstructed mid‐Pliocene boundary conditions with closed Bering and Arctic Archipelago Straits, the corrected model depicts significantly reduced model‐proxy SST discrepancy in comparison to the uncorrected model. A key factor in reducing the discrepancy is the stronger and more sensitive Atlantic Meridional Overturning Circulation and poleward heat transport. We conclude that simulations of mid‐Pliocene surface climate over the North Atlantic can considerably benefit from alleviating model biases in this region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Ecosphere, Wiley, 8(3), pp. e01742-e01742, ISSN: 2150-8925
    Publication Date: 2023-09-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2023-09-22
    Description: There is still considerable debate about which mechanisms drive the relationship between biodiversity and ecosystem function (BEF). Although most scientists agree on the existence of two underlying mechanisms, complementarity and selection, experimental studies keep producing contrasting results on the relative contributions of the two effects. We present a spatially explicit resource competition model and investigate how the strength of these effects is influenced by trait and environmental variability, resource distribution, and species pool size. Our results demonstrate that the increase of biomass production with increasing species numbers depends on the concurrence of environmental and trait variability: BEF relationships are stronger if functionally different species coexist in a landscape with heterogeneous resource supply. These large biodiversity effects arise from complementarity effects, whereas selection effects are maximized when broad trait ranges coincide with narrow ranges of resource supply ratios. Our results will therefore help to resolve the debate on complementarity and selection mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2023-08-01
    Description: The δ30Si of biogenic silica ( urn:x-wiley:gbc:media:gbc20388:gbc20388-math-0001) in marine sediments is a promising proxy for the reconstruction of silicic acid utilization by diatoms in the geological past. The application of this proxy, however, requires an understanding of the modern δ30Si distributions and their controlling mechanisms. Here we present results from a modern climate simulation with a coupled ocean‐sediment model that includes a prognostic formulation of biogenic silica production with concurrent silicon isotopic fractionation. In agreement with previous studies, biological fractionation combined with physical transport and mixing determines the oceanic distribution of simulated δ30Si. A new finding is a distinct seasonal cycle of δ30Si in the surface ocean, which is inversely related to that of silicic acid concentration and mixed layer depth. We also provide the first simulation results of sedimentary δ30Si, which reveal that (1) the urn:x-wiley:gbc:media:gbc20388:gbc20388-math-0002 distribution in the surface sediment reflects the exported urn:x-wiley:gbc:media:gbc20388:gbc20388-math-0003 signal from the euphotic zone and (2) the dissolution of biogenic silica in the sediment acts as a source of relatively light δ30Si into the bottom waters of the polar oceans, while it is a source of heavier δ30Si to the subtropical South Atlantic and South Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2023-08-01
    Description: Simulations with a free-running coupled climate model show that heat release associated with Southern Ocean deep convection variability can drive centennial-scale Antarctic temperature variations of up to 2.0 °C. The mechanism involves three steps: Preconditioning: heat accumulates at depth in the Southern Ocean; Convection onset: wind and/or sea-ice changes tip the buoyantly unstable system into the convective state; Antarctic warming: fast sea-ice–albedo feedbacks (on annual–decadal timescales) and slow Southern Ocean frontal and sea-surface temperature adjustments to convective heat release (on multidecadal–century timescales) drive an increase in atmospheric heat and moisture transport toward Antarctica. We discuss the potential of this mechanism to help drive and amplify climate variability as observed in Antarctic ice-core records.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2023-08-01
    Description: Changes of the Atlantic meridional overturning circulation (AMOC) in the mid‐Holocene compared to the preindustrial state are explored in different coupled climate models. Using time‐slice integrations by a newly developed global finite‐element model ECHAM6‐FESOM with unstructured mesh and high resolution, our simulations show an enhanced mid‐Holocene AMOC, accompanied by an increase in the ocean salinity over regions of deep water formation. We identify two different processes affecting the AMOC: (1) a more positive phase of North Atlantic Oscillation (NAO) increased water density over the Labrador Sea through anomalous net evaporation and surface heat loss; (2) a decreased import of sea ice from the Arctic causes a freshwater reduction in the northern North Atlantic Ocean. Using the coupled model ECHAM6‐MPIOM in T63GR15 and T31GR30 grids, we find that the simulated AMOC has significant discrepancy with different model resolutions. In detail, stronger‐than‐present mid‐Holocene AMOC is revealed by simulations with the T63GR15 grid, which resembles the result of ECHAM6‐FESOM, while a decline of the mid‐Holocene AMOC is simulated by the low resolution model with the T31GR30 grid. Such discrepancy can be attributed to different changes in Labrador Sea density which is mainly affected by (1) NAO‐induced net precipitation and deep water convection, (2) freshwater transport from the Arctic Ocean, and (3) the strength of AMOC itself. Finally, we analyzed available coupled climate models showing a diversity of responses of AMOC to mid‐Holocene forcings, most of which reveal positive AMOC changes related to northern high latitudes salinification.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-05-04
    Description: The first full transarctic section of 228Ra in surface waters measured during GEOTRACES cruises PS94 and HLY1502 (2015) shows a consistent distribution with maximum activities in the Transpolar Drift. Activities in the central Arctic have increased from 2007 through 2011 to 2015. The increased 228Ra input is attributed to stronger wave action on shelves resulting from a longer ice‐free season. A concomitant decrease in the 228Th/228Ra ratio likely results from more rapid transit of surface waters depleted in 228Th by scavenging over the shelf. The 228Ra activities observed in intermediate waters (〈 1500m) in the Amundsen Basin are explained by ventilation with shelf water on a time scale of about 15‐18 years, in good agreement with estimates based on SF6 and 129I/236U. The 228Th excess below the mixed layer up to 1500m depth can complement 234Th and 210Po as tracers of export production, after correction for the inherent excess resulting from the similarity of 228Ra and 228Th decay times. We show with a Th/Ra profile model that the 228Th/228Ra ratio below 1500m is inappropriate for this purpose because it is a delicate balance between horizontal supply of 228Ra and vertical flux of particulate 228Th. The accumulation of 226Ra in the deep Makarov Basin is not associated with an accumulation of Ba and can therefore be attributed to supply from decay of 230Th in the bottom sediment. We estimate a ventilation time of 480 years for the deep Makarov‐Canada Basin, in good agreement with previous estimates using other tracers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2023-03-22
    Description: Unique marine sediment cores retrieved from the southwestern slope of the Iceland‐Faroe Ridge (IFR), close to the main axis of the Iceland‐Scotland Overflow Water (ISOW) revealed prominent sedimentary cycles reflecting near‐bottom current dynamics, sediment transport and deposition, coincident with Dansgaard‐Oeschger cycles and deglacial perturbations of the Atlantic Meridional Overturning Circulation (AMOC). The transition between Greenland Stadials (GSs) and Greenland Interstadials (GIs) follows a distinct, recurring sedimentation pattern. Basaltic (Ti‐rich) silts were transported from local volcanic sources by strong bottom currents and deposited during GIs comparable to modern ocean circulation. Finer‐grained felsic (K‐rich) sediments were deposited during GSs, when ISOW was weak. Possible felsic source areas include British‐Ireland and/or Fennoscandian shelf areas. A cyclic saw‐tooth pattern of bottom current strength is characterized by gradual intensification during GIs followed by a sharp decline towards GSs as is documented at core sites along the flank of Reykjanes Ridge. The cores north of Faroe Channel instead document the opposite pattern. This suggests that the near‐bottom currents along the Reykjanes Ridge are strongly controlled by the flow cascading over the IFR. Heinrich (like) Stadials (HSs) especially HS‐1 and HS‐2 are characterized by the deposition of very fine felsic sediments pointing to weakened bottom currents. Distinct coarse‐grained intervals of ice rafted debris (IRD) are absent from the sediment records, although pebble and gravel sized IRD is irregularly distributed throughout the fine sediment matrix. Near bottom currents are considered to have a major control on the lithogenic sediment deposition southwest of the Iceland‐Faroe Ridge and further down‐stream.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2023-03-22
    Description: In marine ecosystems, viruses are major disrupters of the direct flow of carbon and nutrients to higher trophic levels. Although the genetic diversity of several eukaryotic phytoplankton virus groups has been characterized, their infection dynamics are less understood, such that the physiological and ecological implications of their diversity remain unclear. We compared genomes and infection phenotypes of the two most closely related cultured phycodnaviruses infecting the widespread picoprasinophyte Ostreococcus lucimarinus under standard- (1.3 divisions per day) and limited-light (0.41 divisions per day) nutrient replete conditions. OlV7 infection caused early arrest of the host cell cycle, coinciding with a significantly higher proportion of infected cells than OlV1-amended treatments, regardless of host growth rate. OlV7 treatments showed a near-50-fold increase of progeny virions at the higher host growth rate, contrasting with OlV1's 16-fold increase. However, production of OlV7 virions was more sensitive than OlV1 production to reduced host growth rate, suggesting fitness trade-offs between infection efficiency and resilience to host physiology. Moreover, although organic matter released from OlV1- and OlV7-infected hosts had broadly similar chemical composition, some distinct molecular signatures were observed. Collectively, these results suggest that current views on viral relatedness through marker and core gene analyses underplay operational divergence and consequences for host ecology.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2023-01-31
    Description: We show how a barotropic shallow water model can be used to decompose the mean barotropic transport from a high-resolution ocean model based on the vertically-averaged momentum equations. We apply the method to a high resolution model of the North Atlantic for which the local vorticity budget is both noisy and dominated by small spatial scales. The shallow water model acts as an effective filter and clearly reveals the transport driven by each term. The potential energy (JEBAR) term is the most important for driving transport, including in the northwest corner, while mean flow advection is important for driving transport along f/H contours around the Labrador Sea continental slope. Both the eddy momentum flux and the mean flow advection terms drive significant transport along the pathway of the Gulf Stream and the North Atlantic Current.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2023-01-31
    Description: Invasions of freshwater habitats by marine and brackish species have become more frequent in recent years with many of those species originating from the Ponto-Caspian region. Populations of Ponto-Caspian species have successfully established in the North and Baltic Seas and their adjoining rivers, as well as in the Great Lakes-St. Lawrence River region. To determine if Ponto-Caspian taxa more readily acclimatize to and colonize diverse salinity habitats than taxa from other regions, we conducted laboratory experiments on 22 populations of eight gammarid species native to the Ponto-Caspian, Northern European and Great Lakes-St. Lawrence River regions. In addition, we conducted a literature search to survey salinity ranges of these species worldwide. Finally, to explore evolutionary relationships among examined species and their populations, we sequenced the mitochondrial cytochrome c oxidase subunit I gene (COI) from individuals used for our experiments. Our study revealed that all tested populations tolerate wide ranges of salinity, however, different patterns arose among species from different regions. Ponto-Caspian taxa showed lower mortality in fresh water, while Northern European taxa showed lower mortality in fully marine conditions. Genetic analyses showed evolutionary divergence among species from different regions. Due to the geological history of the two regions, as well as high tolerance of Ponto-Caspian species to fresh water, whereas Northern European species are more tolerant of fully marine conditions, we suggest that species originating from the Ponto-Caspian and Northern European regions may be adapted to freshwater and marine environments, respectively. Consequently, the perception that Ponto-Caspian species are more successful colonizers might be biased by the fact that areas with highest introduction frequency of NIS (i.e., shipping ports) are environmentally variable habitats which often include freshwater conditions that cannot be tolerated by euryhaline taxa of marine origin.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2023-01-23
    Description: Glacial/interglacial changes in Southern Ocean's air-sea gas exchange have been considered as important mechanisms contributing to the glacial/interglacial variability in atmospheric CO2. Hence, understanding past variability in Southern Ocean intermediate to deep water chemistry and circulation is fundamental to constrain the role of these processes on modulating glacial/interglacial changes in the global carbon cycle. Our study focused on the glacial/interglacial variability in the vertical extent of southwest Pacific Antarctic Intermediate Water (AAIW). We compared carbon and oxygen isotope records from epibenthic foraminifera of sediment cores bathed in modern AAIW and Upper Circumpolar Deep Water (UCDW; 943-2066 m water depth) to monitor changes in water mass circulation spanning the past 350,000 years. We propose that pronounced freshwater input by melting sea ice into the glacial AAIW significantly hampered the downward expansion of southwest Pacific AAIW, consistent with climate model results for the Last Glacial Maximum. This process led to a pronounced upward displacement of the AAIW-UCDW interface during colder climate conditions and therefore to an expansion of the glacial carbon pool.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2023-01-23
    Description: Key Points: • Little deep water circulation changes in the past 240,000 years in the central South Pacific • Reduced North Atlantic Deep Water admixture during glacials to the Southern Ocean • South Pacific lithogenic material mainly sourced from SE Australia and South New Zealand The South Pacific is a sensitive location for the variability of the global oceanic thermohaline circulation given that deep waters from the Atlantic Ocean, the Southern Ocean, and the Pacific basin are exchanged. Here we reconstruct the deep-water circulation of the central South Pacific for the last two glacial cycles (from 240,000 years ago to the Holocene) based on radiogenic neodymium (Nd) and lead (Pb) isotope records complemented by benthic stable carbon data obtained from two sediment cores located on the flanks of the East Pacific Rise. The records show small but consistent glacial/interglacial changes in all three isotopic systems with interglacial average values of -5.8 and 18.757 for εNd and 206Pb/204Pb, respectively, whereas glacial averages are -5.3 and 18.744. Comparison of this variability of Circumpolar Deep Water (CDW) to previously published records along the pathway of the global thermohaline circulation is consistent with reduced admixture of North Atlantic Deep Water (NADW) to CDW during cold stages. The absolute values and amplitudes of the benthic δ13C variations are essentially indistinguishable from other records of the Southern Hemisphere and confirm that the low central South Pacific sedimentation rates did not result in a significant reduction of the amplitude of any of the measured proxies. In addition, the combined detrital Nd and strontium (87Sr/86Sr) isotope signatures imply that Australian and New Zealand dust has remained the principal contributor of lithogenic material to the central South Pacific.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2023-01-04
    Description: This study explores simulations using the numerical Weather Research and Forecasting (WRF) model, with respect to the representation of the nocturnal low-level jet (LLJ) over the Sahel. Three sets of experiments are designed to investigate the sensitivity with respect to (i) the boundary-layer and surface-layer schemes including local and non-local closures, (ii) the horizontal grid spacing and the number of vertical levels within the lowest kilometre and (iii) the role of initial and boundary data. In total, 27 simulations are performed on one host domain and two nested domains for a representative LLJ case study on 9 November 2006. The ability of the individual simulations to represent the life cycle of the nocturnal LLJ is validated against observations carried out in the framework of the African Monsoon Multidisciplinary Analysis (AMMA) special observation periods: surface wind observations from Agoufou, Bamba and Banizoumbou, atmospheric wind profiles derived from Atmospheric Radiation Measurement Mobile Facility, wind radar measurements at Niamey and profiles from radiosondes launched at Niamey. All runs reproduce the general characteristics of the observed LLJs satisfactorily. In contrast to earlier studies, results are more sensitive to the choice of initial and boundary data (here GFS and ECMWF) than to the boundary-layer and surface schemes used or to model grid resolution. The sensitivity to the model grid resolution is surprisingly minor. Considerable differences between the individual stations suggest that local surface conditions such as roughness length, albedo or soil moisture may play an important role in the observed mismatch between model simulations and observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2023-01-03
    Description: A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Van Parijs, S. M., Corkeron, P. J., Hotchkin, C., Ball, K., Pelletier, L., Partan, J., Peters, D., Kemp, J., Pietro, J., Newhall, K., Stokes, A., Cole, T. V. N., Quintana, E., & Kraus, S. D. Persistent near real-time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation. Methods in Ecology and Evolution, 10(9), (2019): 1476-1489, doi: 10.1111/2041-210X.13244.
    Description: 1. Managing interactions between human activities and marine mammals often relies on an understanding of the real‐time distribution or occurrence of animals. Visual surveys typically cannot provide persistent monitoring because of expense and weather limitations, and while passive acoustic recorders can monitor continuously, the data they collect are often not accessible until the recorder is recovered. 2. We have developed a moored passive acoustic monitoring system that provides near real‐time occurrence estimates for humpback, sei, fin and North Atlantic right whales from a single site for a year, and makes those occurrence estimates available via a publicly accessible website, email and text messages, a smartphone/tablet app and the U.S. Coast Guard's maritime domain awareness software. We evaluated this system using a buoy deployed off the coast of Massachusetts during 2015–2016 and redeployed again during 2016–2017. Near real‐time estimates of whale occurrence were compared to simultaneously collected archived audio as well as whale sightings collected near the buoy by aerial surveys. 3. False detection rates for right, humpback and sei whales were 0% and nearly 0% for fin whales, whereas missed detection rates at daily time scales were modest (12%–42%). Missed detections were significantly associated with low calling rates for all species. We observed strong associations between right whale visual sightings and near real‐time acoustic detections over a monitoring range 30–40 km and temporal scales of 24–48 hr, suggesting that silent animals were not especially problematic for estimating occurrence of right whales in the study area. There was no association between acoustic detections and visual sightings of humpback whales. 4. The moored buoy has been used to reduce the risk of ship strikes for right whales in a U.S. Coast Guard gunnery range, and can be applied to other mitigation applications.
    Description: We thank Annamaria Izzi, Danielle Cholewiak and Genevieve Davis of the NOAA NEFSC for assistance in developing the analyst protocol. We are grateful to the NOAA NEFSC aerial survey observers (Leah Crowe, Pete Duley, Jen Gatzke, Allison Henry, Christin Khan and Karen Vale) and the NEAq aerial survey observers (Angela Bostwick, Marianna Hagbloom and Paul Nagelkirk). Danielle Cholewiak and three anonymous reviewers provided constructive criticism on earlier drafts of the manuscript. Funding for this project was provided by the NOAA NEFSC, NOAA Advanced Sampling Technology Work Group, Environmental Security Technology Certification Program of the U.S. Department of Defense, the U.S. Navy's Living Marine Resources Program, Massachusetts Clean Energy Center and the Bureau of Ocean Energy Management. Funding from NOAA was facilitated by the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158.
    Keywords: Acoustics ; Autonomous ; Buoy ; Conservation ; Mitigation ; Real‐time ; Ship strikes ; Whale
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2022-09-23
    Description: Steel well casings in or near a hydrocarbon reservoir can be used as source electrodes in time-lapse monitoring using grounded line electromagnetic methods. A requisite component of carrying out such monitoring is the capability to numerically model the electromagnetic response of a set of source electrodes of finite length. We present a modelling algorithm using the finite-element method for calculating the electromagnetic response of a three-dimensional conductivity model excited using a vertical steel-cased borehole as a source. The method is based on a combination of the method of moments and the Coulomb-gauged primary–secondary potential formulation. Using the method of moments, we obtain the primary field in a half-space due to an energized vertical steel casing by dividing the casing into a set of segments, each assumed to carry a piecewise constant alternating current density. The primary field is then substituted into the primary–secondary potential finite-element formulation of the three-dimensional problem to obtain the secondary field. To validate the algorithm, we compare our numerical results with: (i) the analytical solution for an infinite length casing in a whole space, excited by a line source, and (ii) a three-layered Earth model without a casing. The agreement between the numerical and analytical solutions demonstrates the effectiveness of our algorithm. As an illustration, we also present the time-lapse electromagnetic response of a synthetic model representing a gas reservoir undergoing water flooding.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-08-12
    Description: Ice-rich permafrost coasts in the Arctic are highly sensitive to climate warming and erode at a pace that exceeds the global average. Permafrost coasts deliver vast amounts of organic carbon into the nearshore zone of the Arctic Ocean. Numbers on flux exist for particulate organic carbon (POC) and total or soil organic carbon (TOC, SOC). However, they do not exist for dissolved organic carbon (DOC), which is known to be highly bioavailable. This study aims to estimate DOC stocks in coastal permafrost as well as the annual flux into the ocean. DOC concentrations in ground ice were analyzed along the ice-rich Yukon coast (YC) in the western Canadian Arctic. The annual DOC flux was estimated using available numbers for coast length, cliff height, annual erosion rate, and volumetric ice content in different stratigraphic horizons. Our results showed that DOC concentrations in ground ice range between 0.3 and 347.0 mg L^-1 with an estimated stock of 13.6 ± 3.0 g m^-3 along the YC. An annual DOC flux of 54.9 ± 0.9 Mg yr^-1 was computed. These DOC fluxes are low compared to POC and SOC fluxes from coastal erosion or POC and DOC fluxes from Arctic rivers. We conclude that DOC fluxes from permafrost coasts play a secondary role in the Arctic carbon budget. However, this DOC is assumed to be highly bioavailable. We hypothesize that DOC from coastal erosion is important for ecosystems in the Arctic nearshore zones, particularly in summer when river discharge is low, and in areas where rivers are absent.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 124(4), pp. 920-937, ISSN: 0148-0227
    Publication Date: 2022-08-12
    Description: Thawing of subsea permafrost can impact offshore infrastructure, affect coastal erosion, and release permafrost organic matter. Thawing is usually modeled as the result of heat transfer, although salt diffusion may play an important role in marine settings. To better quantify nearshore subsea permafrost thawing, we applied the CryoGRID2 heat diffusion model and coupled it to a salt diffusion model. We simulated coastline retreat and subsea permafrost evolution as it develops through successive stages of a thawing sequence at the Bykovsky Peninsula, Siberia. Sensitivity analyses for seawater salinity were performed to compare the results for the Bykovsky Peninsula with those of typical Arctic seawater. For the Bykovsky Peninsula, the modeled ice‐bearing permafrost table (IBPT) for ice‐rich sand and an erosion rate of 0.25 m/year was 16.7 m below the seabed 350 m offshore. The model outputs were compared to the IBPT depth estimated from coastline retreat and electrical resistivity surveys perpendicular to and crossing the shoreline of the Bykovsky Peninsula. The interpreted geoelectric data suggest that the IBPT dipped to 15–20 m below the seabed at 350 m offshore. Both results suggest that cold saline water forms beneath grounded ice and floating sea ice in shallow water, causing cryotic benthic temperatures. The freezing point depression produced by salt diffusion can delay or prevent ice formation in the sediment and enhance the IBPT degradation rate. Therefore, salt diffusion may facilitate the release of greenhouse gasses to the atmosphere and considerably affect the design of offshore and coastal infrastructure in subsea permafrost areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Geophysical Research Letters, Wiley, 46, ISSN: 0094-8276
    Publication Date: 2022-08-12
    Description: Permafrost is thawing extensively due to climate warming. When permafrost thaws, previously frozen organic carbon (OC) is converted into carbon dioxide (CO2) or methane, leading to further warming. This process is included in models as gradual deepening of the seasonal non‐frozen layer. Yet, models neglect abrupt OC mobilization along rapidly eroding Arctic coastlines. We mimicked erosion in an experiment by incubating permafrost with seawater for an average Arctic open‐water season. We found that CO2 production from permafrost OC is as efficient in seawater as without. For each gram (dry weight) of eroding permafrost, up to 4.3 ± 1.0 mg CO2 will be released and 6.2 ± 1.2% of initial OC mineralized at 4 °C. Our results indicate that potentially large amounts of CO2 are produced along eroding permafrost coastlines, onshore and within nearshore waters. We conclude that coastal erosion could play an important role in carbon cycling and the climate system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Earth Surface, Wiley, 123(12), pp. 3190-3205, ISSN: 0148-0227
    Publication Date: 2022-06-16
    Description: Satellite‐derived surface soil moisture data are available for the Arctic, but detailed validation is still lacking. Previous studies have shown low correlations between in situ and modeled data. It is hypothesized that soil temperature variations after soil thaw impact MetOp ASCAT satellite‐derived surface soil moisture (SSM) measurements in wet tundra environments, as C band backscatter is sensitive to changes in dielectric properties. We compare in situ measurements of water content within the active layer at four sites across the Arctic in Alaska (Barrow, Sagwon, Toolik) and Siberia (Tiksi), taken in the spring after thawing and in autumn prior to freezing. In addition to the long‐term measurement fields, where sensors are installed deeper in the ground, we designed a monitoring setup for measuring moisture very close to the surface in the Lena River Delta, Siberia. The volumetric water content (VWC) and soil temperature sensors were placed in the moss organic layer in order to account for the limited penetration depth of the radar signal. ASCAT SSM variations are generally very small, in line with the low variability of in situ VWC. Short‐term changes after complete thawing of the upper organic layer, however, seem to be mostly influenced by soil temperature. Correlations between SSM and in situ VWC are generally very low, or even negative. Mean standard deviation matching results in a comparably high root‐mean‐square error (on average 11%) for predictions of VWC. Further investigations and measurement networks are needed to clarify factors causing temporal variation of C band backscatter in tundra regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2022-06-06
    Description: We present the results of geological and structural investigation documenting the interaction between hydrothermal fluids and host rock leading to a vein-type ore mineralization at shallow crustal depths (〈7 km) in the mining district of the eastern Island of Elba (Italy). Sulfide- and iron-rich veins and breccia in addition to minor massive iron-ore bodies form the mineralized system. Structural mapping and analysis of vein systems, fractures, faults and associated fault rocks as well as fracture opening modes show that the main factors controlling the formation and distribution of the mineralization are lithology, deformation style and deformation intensity. Their interplay led to a positive feedback between the evolution of pore pressure through time, strain localization and the resulting mineralization. Inversion of fault and vein data defines an E-W extensional stress field at the time of faulting, which favoured fluid ingress and pervasive flow within the porous host sandstone, interstitial sulfide precipitation and reduction of the primary bulk porosity. Subsequently, cyclic channelized fluid flow during repeated fluid ingresses caused extensive veining and numerous episodes of breccia formation.
    Description: Published
    Description: 210-230
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Hydrothermalism ; Upper crust ; Faulting ; Fluids Island of Elba ; Structural analysis ; Island of Elba ; Northern Apennines ; deformation and hydrothermal fluid circulation in upper crust
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in [citation], doi:[doi]. Johnson, W. M., Longnecker, K., Soule, M. C. K., Arnold, W. A., Bhatia, M. P., Hallam, S. J., Van Mooy, B. A. S., & Kujawinski, E. B. Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. Limnology and Oceanography, (2019), doi:10.1002/lno.11255.
    Description: Marine sinking particles transport carbon from the surface and bury it in deep‐sea sediments, where it can be sequestered on geologic time scales. The combination of the surface ocean food web that produces these particles and the particle‐associated microbial community that degrades them creates a complex set of variables that control organic matter cycling. We use targeted metabolomics to characterize a suite of small biomolecules, or metabolites, in sinking particles and compare their metabolite composition to that of the suspended particles in the euphotic zone from which they are likely derived. These samples were collected in the South Atlantic subtropical gyre, as well as in the equatorial Atlantic region and the Amazon River plume. The composition of targeted metabolites in the sinking particles was relatively similar throughout the transect, despite the distinct oceanic regions in which they were generated. Metabolites possibly derived from the degradation of nucleic acids and lipids, such as xanthine and glycine betaine, were an increased mole fraction of the targeted metabolites in the sinking particles relative to surface suspended particles, while algal‐derived metabolites like the osmolyte dimethylsulfoniopropionate were a smaller fraction of the observed metabolites on the sinking particles. These compositional changes are shaped both by the removal of metabolites associated with detritus delivered from the surface ocean and by production of metabolites by the sinking particle‐associated microbial communities. Furthermore, they provide a basis for examining the types and quantities of metabolites that may be delivered to the deep sea by sinking particles.
    Description: The authors would like to thank the captain and crew of the R/V Knorr and R/V Atlantic Explorer, as well as Justin Ossolinski, Catherine Carmichael, and Sean Sylva for helping to make this data set possible. Special thanks to Colleen Durkin for sharing her data and providing feedback on the manuscript. Funding for this work came from the National Science Foundation (NSF Grant OCE‐1154320 to EBK and KL) and a WHOI Ocean Ventures Fund award to WMJ. The instruments in the WHOI FT‐MS Facility were purchased with support from the Gordon & Betty Moore Foundation and NSF. Support for WMJ was provided by a National Defense Science and Engineering Fellowship. Sequencing was performed under the auspices of the US Department of Energy (DOE) JGI Community Science Program (CSP) project (CSP 1685) supported by the Office of Science of US DOE Contract DE‐AC02‐ 05CH11231. Additional work related to sample collection and processing was supported by the G. Unger Vetlesen and Ambrose Monell Foundations, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Institute for Advanced Study (CIFAR), and the Canada Foundation for Innovation through grants awarded to SJH. MPB was supported by a CIFAR Global Scholarship and NSERC postdoctoral fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Long, M. H., Sutherland, K., Wankel, S. D., Burdige, D. J., & Zimmerman, R. C. Ebullition of oxygen from seagrasses under supersaturated conditions. Limnology and Oceanography, (2019), doi:10.1002/lno.11299.
    Description: Gas ebullition from aquatic systems to the atmosphere represents a potentially important fraction of primary production that goes unquantified by measurements of dissolved gas concentrations. Although gas ebullition from photosynthetic surfaces has often been observed, it is rarely quantified. The resulting underestimation of photosynthetic activity may significantly bias the determination of ecosystem trophic status and estimated rates of biogeochemical cycling from in situ measures of dissolved oxygen. Here, we quantified gas ebullition rates in Zostera marina meadows in Virginia, U.S.A. using simple funnel traps and analyzed the oxygen concentration and isotopic composition of the captured gas. Maximum hourly rates of oxygen ebullition (3.0 mmol oxygen m−2 h−1) were observed during the coincidence of high irradiance and low tides, particularly in the afternoon when oxygen and temperature maxima occurred. The daily ebullition fluxes (up to 11 mmol oxygen m−2 d−1) were roughly equivalent to net primary production rates determined from dissolved oxygen measurements indicating that bubble ebullition can represent a major component of primary production that is not commonly included in ecosystem‐scale estimates. Oxygen content comprised 20–40% of the captured bubble gas volume and correlated negatively with its δ18O values, consistent with a predominance of mixing between the higher δ18O of atmospheric oxygen in equilibrium with seawater and the lower δ18O of oxygen derived from photosynthesis. Thus, future studies interested in the metabolism of highly productive, shallow water ecosystems, and particularly those measuring in situ oxygen flux, should not ignore the bubble formation and ebullition processes described here.
    Description: Two anonymous reviewers provided thoughtful contributions that improved this manuscript. We thank Miraflor Santos, Victoria Hill, David Ruble, Jeremy Bleakney, and Brian Collister for assistance in the field and the staff of the Anheuser‐Busch Coastal Research Center for logistical support. This work was supported by NSF OCE grants 1633951 (to MHL) and 1635403 (to RCZ and DJB), NASA Fellowship NESSF NNX15AR62H (to KS), and a fellowship from the Hansewissenschaftskolleg (Institute for Advanced Studies; to SDW).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Reid, E. C., DeCarlo, T. M., Cohen, A. L., Wong, G. T. F., Lentz, S. J., Safaie, A., Hall, A., & Davis, K. A. Internal waves influence the thermal and nutrient environment on a shallow coral reef. Limnology and Oceanography, 64(5), (2019): 1949-1965, doi:10.1002/lno.11162.
    Description: Internal waves can influence water properties in coastal ecosystems through the shoreward transport and mixing of subthermocline water into the nearshore region. In June 2014, a field experiment was conducted at Dongsha Atoll in the northern South China Sea to study the impact of internal waves on a coral reef. Instrumentation included a distributed temperature sensing system, which resolved spatially and temporally continuous temperature measurements over a 4‐km cross‐reef section from the lagoon to 50‐m depth on the fore reef. Our observations show that during summer, internal waves shoaling on the shallow atoll regularly transport cold, nutrient‐rich water shoreward, altering near‐surface water properties on the fore reef. This water is transported shoreward of the reef crest by tides, breaking surface waves and wind‐driven flow, where it significantly alters the water temperature and nutrient concentrations on the reef flat. We find that without internal wave forcing on the fore reef, temperatures on the reef flat could be up to 2.0°C ± 0.2°C warmer. Additionally, we estimate a change in degree heating weeks of 0.7°C‐weeks warmer without internal waves, which significantly increases the probability of a more severe bleaching event occurring at Dongsha Atoll. Furthermore, using nutrient samples collected on the fore reef during the study, we estimated that instantaneous onshore nitrate flux is about four‐fold higher with internal waves than without internal waves. This work highlights the importance of internal waves as a physical mechanism shaping the nearshore environment, and likely supporting resilience of the reef.
    Description: We are grateful for the support of the Dongsha Atoll Research Station and the Dongsha Atoll Marine National Park, whose efforts made this research possible. The authors would also like to thank G. Lohmann from Woods Hole Oceanographic Institution and L. Hou, F. Shiah, and K. Lee from Academia Sinica for providing logistical and field support. We thank S. Tyler, and J. Selker from the Center for Transformative Environmental Monitoring Programs, funded by the National Science Foundation (EAR awards 1440596 and 1440506), for timely and effective provision of experimental design support, logistical support, and equipment for the project. We thank R. Branch, University of Washington, and X. Pan, Ocean University of China, for their guidance and SST data that informed this study. Support to G. T. F. Wong is from the Ministry of Science and Technology, Taiwan, grant NSC98‐2611‐M‐001‐004‐MY3 and NSC100‐2611‐M‐001‐001 and from the Academia Sinica through grants titled “Atmospheric Forcing on Ocean Biogeochemistry (AFOBi)” and “Dongsha Ocean Acidification Study (DOcS)”. Support for S. Lentz is from National Science Foundation grant OCE‐1558343. Support for A. Cohen from NSF Grant No. 1220529, by the Academia Sinica (Taiwan) through a thematic project grant to G. Wong and A. Cohen. Support for E. Reid, A. Safaie, and K. A. Davis is from National Science Foundation grant OCE‐1753317, and support to E. Reid from the Environmental Engineering Henry Samueli Endowed Fellowship and the UCI Oceans Graduate Fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Johns, C. T., Grubb, A. R., Nissimov, J. I., Natale, F., Knapp, V., Mui, A., Fredricks, H. F., Van Mooy, B. A. S., & Bidle, K. D. The mutual interplay between calcification and coccolithovirus infection. Environmental Microbiology, 21(6), (2019): 1896-1915, doi:10.1111/1462-2920.14362.
    Description: Two prominent characteristics of marine coccolithophores are their secretion of coccoliths and their susceptibility to infection by coccolithoviruses (EhVs), both of which display variation among cells in culture and in natural populations. We examined the impact of calcification on infection by challenging a variety of Emiliania huxleyi strains at different calcification states with EhVs of different virulence. Reduced cellular calcification was associated with increased infection and EhV production, even though calcified cells and associated coccoliths had significantly higher adsorption coefficients than non‐calcified (naked) cells. Sialic acid glycosphingolipids, molecules thought to mediate EhV infection, were generally more abundant in calcified cells and enriched in purified, sorted coccoliths, suggesting a biochemical link between calcification and adsorption rates. In turn, viable EhVs impacted cellular calcification absent of lysis by inducing dramatic shifts in optical side scatter signals and a massive release of detached coccoliths in a subpopulation of cells, which could be triggered by resuspension of healthy, calcified host cells in an EhV‐free, ‘induced media’. Our findings show that calcification is a key component of the E. huxleyi‐EhV arms race and an aspect that is critical both to the modelling of these host–virus interactions in the ocean and interpreting their impact on the global carbon cycle.
    Description: We thank Liti Haramaty for her guidance and assistance in culturing and infection experiments. This research was funded by the Gordon and Betty Moore Foundation (GBMF3301 to BVM and KDB and GBMF3789 to KDB) and the National Science Foundation (OCE‐1537951 and OCE‐1559179 to KDB).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Staudinger, M. D., Mills, K. E., Stamieszkin, K., Record, N. R., Hudak, C. A., Allyn, A., Diamond, A., Friedland, K. D., Golet, W., Henderson, M. E., Hernandez, C. M., Huntington, T. G., Ji, R., Johnson, C. L., Johnson, D. S., Jordaan, A., Kocik, J., Li, Y., Liebman, M., Nichols, O. C., Pendleton, D., Richards, R. A., Robben, T., Thomas, A. C., Walsh, H. J., & Yakola, K. It's about time: a synthesis of changing phenology in the Gulf of Maine ecosystem. Fisheries Oceanography, 28(5), (2019): 532-566, doi: 10.1111/fog.12429.
    Description: The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological‐human systems; and (d) potential phenology‐focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events. The most common response was earlier timing, observed in spring onset, spring and winter hydrology, zooplankton abundance, occurrence of several larval fishes, and diadromous fish migrations. Later timing was documented for fall onset, reproduction and fledging in Atlantic puffins, spring and fall phytoplankton blooms, and occurrence of additional larval fishes. Changes in event duration generally increased and were detected in zooplankton peak abundance, early life history periods of macro‐invertebrates, and lobster fishery landings. Reduced duration was observed in winter–spring ice‐affected stream flows. Two studies projected phenological changes, both finding diapause duration would decrease in zooplankton under future climate scenarios. Phenological responses were species‐specific and varied depending on the environmental driver, spatial, and temporal scales evaluated. Overall, a wide range of baseline phenology and relevant modeling studies exist, yet surprisingly few document long‐term shifts. Results reveal a need for increased emphasis on phenological shifts in the Gulf of Maine and identify opportunities for future research and consideration of phenological changes in adaptation efforts.
    Description: This work was supported by the Department of the Interior Northeast Climate Adaptation Science Center (G14AC00441) for MDS, AJ, and KY; the National Science Foundation's Coastal SEES Program (OCE‐1325484) for KEM, ACT, MEH, and AA; the National Aeronautics and Space Administration (NNX16 AG59G) for ACT, KEM, NRR, and KSS; the USGS Climate Research and Development Program for TGH; National Science & Engineering Research Council of Canada, University of New Brunswick, Environment Canada, Sir James Dunn Wildlife Research Centre, and New Brunswick Wildlife Trust Fund for AD. We also thank the Regional Association for Research on the Gulf of Maine for support, and the Gulf of Maine Research Institute for hosting and providing in kind resources for a two day in‐person workshop in August 2016. We greatly appreciate contributions from K. Alexander, G. Calandrino, C. Feurt, I. Mlsna, N. Rebuck, J. Seavey, and J. Sun for helping shape the initial scope of the manuscript. We thank J. Weltzin and two anonymous reviewers for their constructive comments. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the views of the Northeast Climate Adaptation Science Center, U.S. Geological Survey, National Oceanographic and Atmospheric Administration, Fisheries and Oceans Canada or the US Environmental Protection Agency. This manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints for Governmental purposes. None of the authors have conflicts of interest to declare in association with the contents of this manuscript.
    Keywords: coastal ; fish ; Gulf of Maine ; life cycle ; marine ; marine invertebrates ; marine mammals ; migration ; phenology ; phytoplankton ; seabirds ; seasonal ; timing ; zooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schall, E., Di Iorio, L., Berchok, C., Filun, D., Bedrinana-Romano, L., Buchan, S. J., Van Opzeeland, I., Sears, R., & Hucke-Gaete, R. Visual and passive acoustic observations of blue whale trios from two distinct populations. Marine Mammal Science, (2019): 1-10, doi:10.1111/mms.12643.
    Description: Blue whale populations from both hemispheres are thought to undertake annual migrations between high latitude feeding grounds and low latitude breeding grounds (Mackintosh, 1966). For individuals of some populations these predetermined movements to and from wintering areas where calving occurs have been confirmed through photo‐identification, satellite‐tracking, and passive acoustic monitoring (Burtenshaw et al., 2004; Mate, Lagerquist, & Calambokidis, 1999; Sears & Perrin, 2002; Stafford, Nieukirk, & Fox, 1999a). However, for many blue whale populations no clear migratory behavior has been reported and locations of respective breeding grounds remain unclear (e.g., Hucke‐Gaete, Osman, Moreno, Findlay, & Ljungblad, 2004; Samaran et al., 2013; Stafford, Chapp, Bohnenstiel, & Tolstoy, 2011; Thomisch et al., 2016). On feeding grounds in the Gulf of St. Lawrence and along the coast of California, blue whales have been observed to form female–male pairs during summer, which can remain stable up to over several weeks, with the number of pairs increasing towards the end of summer (Sears & Perrin, 2002; Calambokidis, unpublished data;1 RS, unpublished data). These pairs are sometimes joined by a second male, forming a blue whale trio, which often is observed to engage in surface active behaviors lasting several minutes (Sears & Perrin, 2002; RS, unpublished data). The formation of blue whale trios is probably related to reproductive competition between male escorts and female choice (RS, unpublished data). Blue whale males produce population‐specific songs likely functioning as reproductive advertisement (Edds‐Walton, 1997; Oleson et al. 2007a; Stafford, Fox, & Clark, 1998). Several studies have reported song year‐round in low‐, mid‐, and high‐latitude waters, frequently with high song production rates during summer on the feeding grounds (e.g., Barlow et al., 2018; Buchan, Stafford, & Hucke‐Gaete, 2015; Samaran, Adam, & Guinett, 2010; Širović et al., 2004; Stafford, Nieukirk, & Fox, 1999b; Thomisch et al., 2016). Therefore, breeding activities in blue whales may be more opportunistic, i.e., not restricted to the breeding season or to a specific habitat.
    Description: ES thanks Prof. Dr. Per J. Palsbøll for the supervision of the initial Master research project, the Marco Polo fund, and the University Groningen for covering travel expenses. We thank the Melimoyu Ecosystem Research Institute, SNP Patagonia Sur, and the company Teledyne Reson for partially funding the acoustic data collection in southern Chile. RHG is thankful to WWF‐Germany/Chile for partially funding fieldwork through grants to Centro Ballena Azul. CLB thanks the team of the Mingan Island Cetacean Study for their logistical support of boats and lodging, access to the North Atlantic blue whale database, and field assistance; Yvon Bélanger for opening his home to her and RS's field crews; for financial support from the National Science Foundation (Graduate Fellowship), National Defense Industrial Association, American Museum of Natural History (Lerner Gray Fund for Marine Research Grant), Penn State Applied Research Laboratory, and private donors Jeff and Lynn Kraus; and graduate advisors at Penn State University David L. Bradley, Thomas B. Gabrielson, and Diana McCammon. LDI thanks the Croisières du Grand Héron and Center Mériscope for allowing and supporting fieldwork, the Animal Behavior Department of the University of Zurich (Switzerland), the Bioacoustics Research Program at Cornell University (USA) and Prof. M. Manser and C. W. Clark for supervising LDI's Ph.D. The work was supported by grants to LDI for her PhD from the Forschungskommission der Universität Zürich, Züricher Tierschutz, Basler Stiftung für Biologische Forschung, SCNAT, Zangger‐Weber‐Stiftung, SSVA. SJB thanks the Center for Oceanographic Research COPAS Sur‐Austral, CONICYT PIA PFB31, the Office of Naval Research Global (awards N62909‐16‐2214 and N00014‐17‐2606), and a grant to the Centro de Estudios Avanzados en Zonas Áridas from Programa Regional CONICYT R16A10003 for support during manuscript writing. We would like to thank the field crews (F. Viddi, J. Ruiz, A. Carpentier, M. Lessard, A. Liebschner, C. Ramp, S. Angel, K. Aucrenaz, T. Doniol‐Valcroze, J. LeBreus, B. Kot, and J. Puschock) for their immense commitment to blue whale research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. M., Coe, A., Gast, R. J., Plummer, S., Suffridge, C. P., Diaz, J. M., Bowman, J. S., Wankel, S. D., & Hansel, C. M. Extracellular superoxide production by key microbes in the global ocean. Limnology and Oceanography, (2019), doi:10.1002/lno.11247.
    Description: Bacteria and eukaryotes produce the reactive oxygen species superoxide both within and outside the cell. Although superoxide is typically associated with the detrimental and sometimes fatal effects of oxidative stress, it has also been shown to be involved in a range of essential biochemical processes, including cell signaling, growth, differentiation, and defense. Light‐independent extracellular superoxide production has been shown to be widespread among many marine heterotrophs and phytoplankton, but the extent to which this trait is relevant to marine microbial physiology and ecology throughout the global ocean is unknown. Here, we investigate the dark extracellular superoxide production of five groups of organisms that are geographically widespread and represent some of the most abundant organisms in the global ocean. These include Prochlorococcus, Synechococcus, Pelagibacter, Phaeocystis, and Geminigera. Cell‐normalized net extracellular superoxide production rates ranged seven orders of magnitude, from undetectable to 14,830 amol cell−1 h−1, with the cyanobacterium Prochlorococcus being the lowest producer and the cryptophyte Geminigera being the most prolific producer. Extracellular superoxide production exhibited a strong inverse relationship with cell number, pointing to a potential role in cell signaling. We demonstrate that rapid, cell‐number–dependent changes in the net superoxide production rate by Synechococcus and Pelagibacter arose primarily from changes in gross production of extracellular superoxide, not decay. These results expand the relevance of dark extracellular superoxide production to key marine microbes of the global ocean, suggesting that superoxide production in marine waters is regulated by a diverse suite of marine organisms in both dark and sunlit waters.
    Description: The authors would like to acknowledge their funding sources including NASA NESSF NNX15AR62H (K.M.S.), NASA Exobiology grant NNX15AM04G to S.D.W. and C.M.H., NSF‐OCE grant 1355720 to C.M.H., NSF‐OPP 1641019 (J.S.B), and Simons Foundation SCOPE Award ID 329108 (Sallie W. Chisholm). The authors would also like to thank the Harvey lab (Skidaway Institute of Oceanography) for use of their flow cytometer in this study. We thank Stephen Giovannoni and Sallie Chisholm for providing bacteria strains and laboratory facilities. Additional thanks to Marianne Acker, Rogier Braakman, and Aldo Arellano for assistance in lab and helpful conversations.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2022-03-28
    Description: The Central Yakutian permafrost landscape is rapidly being modified by land use and global warming, but small-scale thermokarst process variability and hydrological conditions are poorly understood. We analyze lake-area changes and thaw subsidence of young thermokarst lakes on ice-complex deposits (yedoma lakes) in comparison to residual lakes in alas basins during the last 70 years for a local study site and we record regional lake size and distribution on different ice-rich permafrost terraces using satellite and historical airborne imagery. Statistical analysis of climatic and ground-temperature data identified driving factors of yedoma- and alas-lake changes. Overall, lake area is larger today than in 1944 but alas-lake levels have oscillated greatly over 70 years, with a mean alas-lake-radius change rate of 1.663.0 m/yr. Anthropogenic disturbance and forest degradation initiated, and climate forced rapid, continuous yedoma-lake growth. The mean yedoma lake-radius change rate equals 1.261.0 m/yr over the whole observation period. Mean thaw subsidence below yedoma lakes is 6.261.4 cm/yr. Multiple regression analysis suggests that winter precipitation, winter temperature, and active-layer properties are primary controllers of area changes in both lake types; summer weather and permafrost conditions additionally influence yedoma-lake growth rates. The main controlling factors of alas-lake changes are unclear due to larger catchment areas and subsurface hydrological conditions. Increasing thermokarst activity is currently linked to older terraces with higher ground-ice contents, but thermokarst activity will likely stay high and wet conditions will persist within the near future in Central Yakutian alas basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-03-28
    Description: Submarine permafrost degradation has been invoked as a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. Sediment drilled 52 m down from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Methane concentrations in the overlying unfrozen sediment were low (mean 20 µM) but higher in the underlying ice-bonded submarine permafrost (mean 380 µM). In contrast, sulfate concentrations were substantially higher in the unfrozen sediment (mean 2.5 mM) than in the underlying submarine permafrost (mean 0.1 mM). Using deduced permafrost degradation rates, we calculate potential mean methane efflux from degrading permafrost of 120 mg m−2 yr−1 at this site. However, a drop of methane concentrations from 190 µM to 19 µM and a concomitant increase of methane δ13C from −63‰ to −35‰ directly above the ice-bonded permafrost suggest that methane is effectively oxidized within the overlying unfrozen sediment before it reaches the water column. High rates of methane ebullition into the water column observed elsewhere are thus unlikely to have ice-bonded permafrost as their source.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Wiley
    In:  Climate Extremes | Geophysical Monograph Series ; 226
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/bookPart
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Wiley
    In:  Reproducibility: Principles, Problems, Practices, and Prospects
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-03-14
    Description: We compare selected marine electromagnetic methods for sensitivity to the presence of relatively thin resistive targets (e.g., hydrocarbons, gas hydrates, fresh groundwater, etc.). The study includes the conventional controlled-source electromagnetic method, the recently introduced transient electromagnetic prospecting with vertical electric lines method, and the novel marine circular electric dipole method, which is still in the stage of theoretical development. The comparison is based on general physical considerations, analytical (mainly asymptotic) analysis, and rigorous one-dimensional and multidimensional forward modelling. It is shown that transient electromagnetic prospecting with vertical electric lines and marine circular electric dipole methods represent an alternative to the conventional controlled-source electromagnetic method at shallow sea, where the latter becomes less efficient due to the air-wave phenomenon. Since both former methods are essentially short-offset time-domain techniques, they exhibit a much better lateral resolution than the controlled-source electromagnetic method in both shallow sea and deep sea. The greatest shortcoming of the transient electromagnetic prospecting with vertical electric lines and marine circular electric dipole methods comes from the difficulties in accurately assembling the transmitter antenna within the marine environment. This makes these methods significantly less practical than the controlled-source electromagnetic method. Consequently, the controlled-source electromagnetic method remains the leading marine electromagnetic technique in the exploration of large resistive targets in deep sea. However, exploring laterally small targets in deep sea and both small and large targets in shallow sea might require the use of the less practical transient electromagnetic prospecting with vertical electric lines and/or marine circular electric dipole method as a desirable alternative to the controlled-source electromagnetic method.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-03-14
    Description: Mud volcanism is commonly observed in Azerbaijan and the surrounding South Caspian Basin. This natural phenomenon is very similar to magmatic volcanoes but differs in one considerable aspect: Magmatic volcanoes are generally the result of ascending molten rock within the Earth's crust, whereas mud volcanoes are characterised by expelling mixtures of water, mud, and gas. The majority of mud volcanoes have been observed on ocean floors or in deep sedimentary basins, such as those found in Azerbaijan. Furthermore, their occurrences in Azerbaijan are generally closely associated with hydrocarbon reservoirs and are therefore of immense economic and geological interest. The broadside long-offset transient electromagnetic method and the central-loop transient electromagnetic method were applied to study the inner structure of such mud volcanoes and to determine the depth of a resistive geological formation that is predicted to contain the majority of the hydrocarbon reservoirs in the survey area. One-dimensional joint inversion of central-loop and long-offset transient electromagnetic data was performed using the inversion schemes of Occam and Marquardt. By using the joint inversion models, a subsurface resistivity structure ranging from the surface to a depth of approximately 7 km was determined. Along a profile running perpendicular to the assumed strike direction, lateral resistivity variations could only be determined in the shallow depth range using the transient electromagnetic data. An attempt to resolve further two-dimensional/three-dimensional resistivity structures, representing possible mud migration paths at large depths using the long-offset transient electromagnetic data, failed. Moreover, the joint inversion models led to ambiguous results regarding the depth and resistivity of the hydrocarbon target formation due to poor resolution at great depths (〉5 km). Thus, 1D/2D modelling studies were subsequently performed to investigate the influence of the resistive terminating half-space on the measured long-offset transient electromagnetic data. The 1D joint inversion models were utilised as starting models for both the 1D and 2D modelling studies. The results tend to show that a resistive terminating half-space, implying the presence of the target formation, is the favourable geological setting. Furthermore, the 2D modelling study aimed to fit all measured long-offset transient electromagnetic Ex transients along the profile simultaneously. Consequently, 3125 2D forward calculations were necessary to determine the best-fit resistivity model. The results are consistent with the 1D inversion, indicating that the data are best described by a resistive terminating half-space, although the resistivity and depth cannot be determined clearly.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-03-10
    Description: Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used Magnetic Resonance Imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D Finite Element Method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2022-03-09
    Description: During expedition MARIA S. MERIAN MSM57/2 to the Svalbard margin offshore Prins Karls Forland, the seafloor drill rig MARUM-MeBo70 was used to assess the landward termination of the gas hydrate system in water depths between 340 and 446 m. The study region shows abundant seafloor gas vents, clustered at a water depth of ~400 m. The sedimentary environment within the upper 100 meters below seafloor (mbsf) is dominated by ice-berg scours and glacial unconformities. Sediments cored included glacial diamictons and sheet-sands interbedded with mud. Seismic data show a bottom simulating reflector terminating ~30 km seaward in ~760 m water depth before it reaches the theoretical limit of the gas hydrate stability zone (GHSZ) at the drilling transect. We present results of the first in situ temperature measurements conducted with MeBo70 down to 28 mbsf. The data yield temperature gradients between ~38°C km-1 at the deepest site (446 m) and ~41°C km-1 at a shallower drill site (390 m). These data constrain combined with in situ pore-fluid data, sediment porosities, and thermal conductivities the dynamic evolution of the GHSZ during the past 70 years for which bottom water temperature records exist. Gas hydrate is not stable in the sediments at sites shallower than 390 m water depth at the time of acquisition (August 2016). Only at the drill site in 446 m water depth, favorable gas hydrate stability conditions are met (maximum vertical extent of ~60 mbsf); however, coring did not encounter any gas hydrates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-03-09
    Description: The free‐air gravity in the Marmara Sea reveals that the low density of sedimentary basins is partly compensated in the lower crust. We compiled geophysical upper crust studies to determine the sediment basin geometries in and around the Marmara Sea and corrected the gravity signal from this upper crust geology with the Parker method. Then, assuming long wavelength anomalies in the residual gravity signal is caused by variations in the Moho topography, we inverted the residual to build the Moho topography. The result shows that the Moho is uplifted on an area greater than the Marmara Sea with a maximum crust thinning beneath the basins where the Moho is at about 25 km, 5 km above the reference depth. We then evaluated the Neogene extension by comparing the surface covered by our 3‐D thinned model with the surface covered by an unthinned model with same crustal volume. Comparing this surface with areal extension rate from GPS data, we found a good compatibility indicating that the extension rate averaged over the Sea of Marmara area probably remained close to its present‐day value during major changes of tectonic regime, as the incursion of the North Anatolian Fault system during the Pliocene leads to the establishment of the dominantly strike‐slip present‐day system. We also show that crustal extension is distributed over a wider domain in the lower crust than in the upper crust, and that this may be accounted for by a relatively minor component of lower crustal ductile flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-03-09
    Description: Large solitary meanders are arguably the dominant mode of variability in the Agulhas Current. Observational studies have shown that these large meanders are associated with strong upwelling velocities and affect the shelf circulation for over 100 days per year. Here 10-year time series from two ocean general circulation models are used to create a composite picture of the Agulhas Current and its interactions with the shelf circulation in meandering and nonmeandering modes. Both models show good agreement with the size, propagation speed, and frequency of observed meanders. These composite meanders are then used to examine the response of shelf waters to the onset of large meanders, with the use of model output enabling the dynamics at depth to be explored. Results show a composite mean warming of up to 3°C of depth-averaged temperature along the shelf edge associated with an intrusion of the current jet onto the shelf driven by an intensification of the flow along the leading edge of large meanders. However, this intensification of flow results in cooling of bottom waters, driving cold events at the shelf break of 〈10°C at 100 m. Thus, the intensification of the current jet associated with large meander events appears to drive strong up and downwelling events across the inshore front of the Agulhas Current, facilitating shelf-slope exchange.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2022-03-09
    Description: Monowai is a submarine volcanic center in the Kermadec Arc, Southwest Pacific Ocean. In the past, activity at the volcano had been intermittently observed in the form of fallout at the sea surface, discolored water, changes in seafloor topography, and T phase seismicity, but there is no continuous record for more recent years. In this study, we investigated 3.5 years of recordings at a hydrophone array of the International Monitoring System (IMS), located near Juan Fernández Islands for long‐range underwater sound waves from Monowai. Results from direction‐of‐arrival calculations and density‐based spatial clustering indicate that 82 discrete episodes of activity occurred between July 2003 and March 2004, and from April 2014 to January 2017. Volcanic episodes are typically spaced days to weeks apart, range from hours to days in length, and amount to a cumulative sum of 137 days of arrivals in total, making Monowai one of the most active submarine arc volcanoes on Earth. The resolution of the hydrophone recordings surpasses broadband network data by at least one order of magnitude, identifying seismic events as low as 2.2 mb in the Kermadec Arc region. Further observations suggest volcanic activity at a location approximately 400 km north of Monowai in the Tonga Arc, and at Healy or Brothers volcano in the southern Kermadec Arc. Our findings are consistent with previous studies and highlight the exceptional capabilities of the IMS network for the scientific study of active volcanism in the global ocean. Supporting Information
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2022-03-09
    Description: Long‐term observations from a 17 year long mooring array at the exit of the Labrador Sea at 53°N are compared to the output of a high‐resolution model (VIKING20). Both are analyzed to define robust integral properties on basin and regional scale, which can be determined and evaluated equally well. While both, the observations and the model, show a narrow DWBC cyclonically engulfing the Labrador Sea, the model's boundary current system is more barotropic than in the observations and spectral analysis indicates stronger monthly to interannual transport variability. Compared to the model, the observations show a stronger density gradient, hence a stronger baroclinicity, from center to boundary. Despite this, the observed temporal evolution of the temperature in the central Labrador Sea is reproduced. The model results yield a mean export of North Atlantic Deep Water (NADW) (33.0 +/‐ 5.7 Sv), which is comparable to the observed transport (31.2 +/‐ 5.5 Sv) at 53°N. The results also include a comparable spatial pattern and March mixed layer depth in the central Labrador Sea (maximum depth ∼ 2000 m). During periods containing enhanced deep convection (1990's) our analyses show increased correlation between LSW and LNADW model transport at 53°N. Our results indicate that the transport variability in LSW and LNADW at 53°N is a result of a complex modulation of wind stress and buoyancy forcing on regional and basin wide scale.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2022-03-09
    Description: The continental slope of India is exposed to an intense perennial oxygen minimum zone (OMZ) supporting pelagic denitrification. Sediments that are presently in contact with the lower boundary of the denitrification zone indicate marked changes in the intermediate and bottom waters ventilation of OMZ during the past 9,500 years. The δ15N of sediment suggests that the OMZ waters were less ventilated during the early Holocene (between 9.5 and 8.5 ka BP) resulting in intensified denitrifying conditions with an average δ15N value of 7.8‰, while at the same time stable Mo isotope composition (average δ98Mo of -0.02‰) indicates that the bottom waters that were in contact with the sediments were better oxygenated. By the mid-Holocene OMZ became more oxygenated suppressing denitrification (average δ15N of 6.2‰), while bottom waters gradually became less oxygenated (average δ98Mo of 1.7‰). The mid-Holocene reduction in denitrification coincided with a global decrease in atmospheric N2O as inferred from ice core records, which is consistent with a decreased contribution from the Arabian Sea. Since ~5.5 ka BP OMZ waters have again been undergoing progressive deoxygenation accompanied by increasing denitrification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2022-03-09
    Description: All types of applications of stable water isotopes, for example, for the reconstruction of paleotemperatures or for climate model validation, rely on a proper understanding of the mechanisms determining the isotopic composition of water vapor and precipitation. In this study, we use the isotope‐enabled limited‐area model COSMOiso to characterize the impacts of continental evapotranspiration, rainout, and subcloud processes on δD of European water vapor and precipitation. To this end, we first confirm a reliable implementation of the most important isotope fractionation processes in COSMOiso by comparing 5 years of modeled δD values with multiplatform δD observations from Europe (remote sensing observations of the δD of water vapor around 2.6 km above ground level, in situ δD measurements in near‐surface water vapor, and δD precipitation data from the Global Network of Isotopes in Precipitation). Based on six 15 year sensitivity simulations, we then quantify the climatological impacts of the different fractionation processes on the δD values. We find δD of European water vapor and precipitation to be most strongly controlled by rainout. Superimposed to this are the effect of subcloud processes, which especially affects δD in precipitation under warm conditions, and the effect of continental evapotranspiration, which exerts an important control over the δD of near‐surface water vapor. In future studies, the validated COSMOiso model can be employed in a similar way for a comprehensive interpretation of European isotope records from climatologically different time periods.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-03-09
    Description: Direct dimethyl sulfide (DMS) flux measurements using eddy covariance have shown a suppression of gas transfer at medium to high wind speed. However, not all eddy covariance measurements show evidence of this suppression. Processes, such as wave-wind interaction and surfactants, have been postulated to cause this suppression. We measured DMS and carbon dioxide eddy covariance fluxes during the Asian summer monsoon in the western tropical Indian Ocean (July and August 2014). Both fluxes and their respective gas transfer velocities show signs of a gas transfer suppression above 10 m/s. Using a wind-wave interaction, we describe a flow separation process that could be responsible for a suppression of gas transfer. As a result we provide a Reynolds number-based parameterization, which states the likelihood of a gas transfer suppression for this cruise and previously published gas transfer data. Additionally, we compute the difference in the gas transfer velocities of DMS and CO2 to estimate the bubble-mediated gas transfer using a hybrid model with three whitecap parameterizations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2022-03-09
    Description: Mapped unconsolidated sediments cover half of the global land surface. They are of considerable importance for many Earth surface processes like weathering, hydrological fluxes or biogeochemical cycles. Ignoring their characteristics or spatial extent may lead to misinterpretations in Earth System studies. Therefore, a new Global Unconsolidated Sediments Map database (GUM) was compiled, using regional maps specifically representing unconsolidated and quaternary sediments. The new GUM database provides insights into the regional distribution of unconsolidated sediments and their properties. The GUM comprises 911,551 polygons and describes not only sediment types and subtypes, but also parameters like grain size, mineralogy, age and thickness where available. Previous global lithological maps or databases lacked detail for reported unconsolidated sediment areas or missed large areas, and reported a global coverage of 25 to 30%, considering the ice‐free land area. Here, alluvial sediments cover about 23% of the mapped total ice‐free area, followed by aeolian sediments (∼21%), glacial sediments (∼20%), and colluvial sediments (∼16%). A specific focus during the creation of the database was on the distribution of loess deposits, since loess is highly reactive and relevant to understand geochemical cycles related to dust deposition and weathering processes. An additional layer compiling pyroclastic sediment is added, which merges consolidated and unconsolidated pyroclastic sediments. The compilation shows latitudinal abundances of sediment types related to climate of the past. The GUM database is available at the PANGAEA database (https://doi.org/10.1594/PANGAEA.884822).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2022-03-09
    Description: Understanding the enigmatic intraplate volcanism in the Tristan da Cunha region requires knowledge of the temperature of the lithosphere and asthenosphere beneath it. We measured phase-velocity curves of Rayleigh waves using cross-correlation of teleseismic seismograms from an array of ocean-bottom seismometers around Tristan, constrained a region-average, shear-velocity structure, and inferred the temperature of the lithosphere and asthenosphere beneath the hotspot. The ocean-bottom data set presented some challenges, which required data-processing and measurement approaches different from those tuned for land-based arrays of stations. Having derived a robust, phase-velocity curve for the Tristan area, we inverted it for a shear wave velocity profile using a probabilistic (Markov chain Monte Carlo) approach. The model shows a pronounced low-velocity anomaly from 70 to at least 120 km depth. VS in the low velocity zone is 4.1-4.2 km/s, not as low as reported for Hawaii (∼4.0 km/s), which probably indicates a less pronounced thermal anomaly and, possibly, less partial melting. Petrological modeling shows that the seismic and bathymetry data are consistent with a moderately hot mantle (mantle potential temperature of 1,410-1,430°C, an excess of about 50-120°C compared to the global average) and a melt fraction smaller than 1%. Both purely seismic inversions and petrological modeling indicate a lithospheric thickness of 65-70 km, consistent with recent estimates from receiver functions. The presence of warmer-than-average asthenosphere beneath Tristan is consistent with a hot upwelling (plume) from the deep mantle. However, the excess temperature we determine is smaller than that reported for some other major hotspots, in particular Hawaii.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2022-03-09
    Description: Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1–3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation. Key Points: • Nitrite addition stimulated nitrite oxidation in both oxic and anoxic waters • Natural assemblages of marine nitrite-oxidizing bacteria have high affinity for nitrite • Addition of oxygen at μM-level inhibited nitrite oxidation in oxygen depleted waters
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2022-03-09
    Description: Lusi is a sediment-hosted hydrothermal system featuring clastic-dominated geyser-like eruption behavior in East Java, Indonesia. We use 10 months of ambient seismic noise cross correlations from 30 temporary seismic stations to obtain a 3-D model of shear wave velocity anomalies beneath Lusi, the neighboring Arjuno-Welirang volcanic complex, and the Watukosek fault system connecting the two. Our work reveals a hydrothermal plume, rooted at a minimum 6 km depth that reaches the surface at the Lusi site. Furthermore, the inversion shows that this vertical anomaly is connected to the adjacent volcanic complex through a narrow (~3 km wide) low velocity corridor slicing the survey area at a depth of ~4–6 km. The NE-SW direction of this elongated zone matches the strike of the Watukosek fault system. Distinct magmatic chambers are also inferred below the active volcanoes. The large-scale tomography features an exceptional example of a subsurface connection between a volcanic complex and a solitary erupting hydrothermal system hosted in a hydrocarbon-rich back-arc sedimentary basin. These results are consistent with a scenario where deep-seated fluids (e.g., magmas and released hydrothermal fluids) flow along a region of enhanced transmissivity (i.e., the Watukosek fault system damage zone) from the volcanic arc toward the back arc basin where Lusi resides. The triggered metamorphic reactions occurring at depth in the organic-rich sediments generated significant overpressure and fluid upwelling that is today released at the spectacular Lusi eruption site.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2022-03-09
    Description: Spreading processes at the axes of fast spreading ridges are mainly controlled by magmatic activity, whereas tectonic activity dominates further away from the axis. High-resolution near-bottom bathymetry data, photographs, videos, and human observations from submersible surveys are used to develop a detailed tectonic analysis of the 16°N segment of the East Pacific Rise (EPR). These data are used to evaluate how a highly magmatic segment, close to a hot spot, affects the nucleation and evolution of faulting patterns and impacts the evaluation of tectonic strain within 2 km of the spreading axis. Our study shows that (1) the growth of tectonic features differs in response to dike intrusion and tectonic extension, (2) the initiation of brittle extension is strongly controlled by the location of the axial magma lens and the development of layer 2A, and (3) the high magmatic budget and the off-axis magma lens in the west part of the plateau do not significantly impact the initiation of brittle extension along the central portion of the 16°N segment. Within the axial summit region, more than 2% of plate separation at 16°N on the EPR is accommodated by brittle extension, as is observed at other EPR segments. The interaction of the Mathematician hot spot with this EPR segment has no significant influence on the initiation of the tectonic deformation, but it does reduce the development of the brittle deformation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2022-03-09
    Description: Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property ranges for a classification of major water masses. The central Laptev Sea is dominated by predominantly marine waters, locally formed polynya waters and riverine summer surface waters. Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt. We use a principal component analysis (PCA) in order to assess the distribution and importance of water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer datasets from the Laptev Sea from five years and allows to define water types based on objective and statistically significant criteria. We argue that the PCA derived water types are consistent with the Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed water in the same order as imported nutrients.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2022-03-09
    Description: Long‐term warming of the continental shelf of the Canadian Beaufort Sea caused by the transgression associated with the last deglaciation may be causing decomposition of relict offshore subsea permafrost and gas hydrates. To evaluate this possibility, pore waters from 118 sediment cores up to 7.3‐m long were taken on the shelf and slope and analyzed for chloride concentrations and δ180 and δD composition. We observed downcore decreases in pore waters Cl− concentration in sediments from all sites from the inner shelf (〈20‐m water depth), from the shelf edge, from the outer slope (down to 1,000‐m water depths), and from localized shelf features such as midshelf pingo‐like features and inner shelf pockmarks. In contrast, pore water freshening is absent from all investigated cores of the Mackenzie Trough. Downcore pore waters Cl− concentration decreases indicate regional widespread freshwater seepage. Extrapolations to zero Cl− of pore water Cl− versus δ180 regression lines indicate that freshwaters in these environments carry different isotope signatures and thus are sourced from different reservoirs. These isotopic signatures indicate that freshening of shelf sediments pore waters is a result of downward infiltration of Mackenzie River water, freshening of shelf edge sediments is due to relict submarine permafrost degradation or gas hydrate decomposition under the shelf, and freshening of slope sediments is consistent with regional groundwater flow and submarine groundwater discharge as far as 150 km from shore. These results confirm ongoing decomposition of offshore permafrost and suggest extensive current groundwater discharge far from the coast.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2022-03-09
    Description: In the Ionian Sea (central Mediterranean) the slow convergence between Africa and Eurasia results in the formation of a narrow subduction zone. The nature of the crust of the subducting plate remains debated and could represent the last remnants of the Neo‐Tethys ocean. The origin of the Ionian basin is also under discussion, especially concerning the rifting mechanisms as the Malta Escarpment could represent a remnant of this opening. This subduction retreats toward the south‐east (motion occurring since the last 35 Ma) but is confined to the narrow Ionian basin. A major lateral slab tear fault is required to accommodate the slab roll‐back. This fault is thought to propagate along the eastern Sicily margin but its precise location remains controversial. This study focuses on the deep crustal structure of the eastern Sicily margin and the Malta Escarpment. We present two two‐dimensional P wave velocity models obtained from forward modeling of wide‐angle seismic data acquired onboard the R/V Meteor during the DIONYSUS cruise in 2014. The results image an oceanic crust within the Ionian basin as well as the deep structure of the Malta Escarpment, which presents characteristics of a transform margin. A deep and asymmetrical sedimentary basin is imaged south of the Messina strait and seems to have opened between the Calabrian and Peloritan continental terranes. The interpretation of the velocity models suggests that the tear fault is located east of the Malta Escarpment, along the Alfeo fault system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2022-03-09
    Description: The North Sea hosts a wide variety of seafloor seeps that may be important for transfer of chemical species, such as methane, from the Earth's interior to its exterior. Here we provide geochemical and geophysical evidence for fluid flow within shallow sediments at the recently discovered, 3-km long Hugin Fracture in the Central North Sea. Although venting of gas bubbles was not observed, concentrations of dissolved methane were significantly elevated (up to six-times background values) in the water column at various locations above the fracture, and microbial mats that form in the presence of methane were observed at the seafloor. Seismic amplitude anomalies revealed a bright spot at a fault bend that may be the source of the water column methane. Sediment porewaters recovered in close proximity to the Hugin Fracture indicate the presence of fluids from two different shallow (〈500m) sources: (i) a reduced fluid characterized by elevated methane concentrations and/or high levels of dissolved sulfide (up to 6 mmol L−1), and (ii) a low-chlorinity fluid (Cl ∼305 mmol L−1) that has low levels of dissolved methane and/or sulfide. The area of the seafloor affected by the presence of methane-enriched fluids is similar to the footprint of seepage from other morphological features in the North Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2022-03-09
    Description: The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate system through its transport of heat and freshwater. The subpolar North Atlantic (SPNA) is a region where the AMOC is actively developed and shaped though mixing and water mass transformation and where large amounts of heat are released to the atmosphere. Two hydrographic transbasin sections in the summers of 2014 and 2016 provide highly spatially resolved views of the SPNA velocity and property fields on a line from Canada to Greenland to Scotland. Estimates of the AMOC, isopycnal (gyre-scale) transport, and heat and freshwater transport are derived from the observations. The overturning circulation, the maximum in northward transport integrated from the surface to seafloor and computed in density space, has a high range, with 20.6 ± 4.7 Sv in June-July 2014 and 10.6 ± 4.3 Sv in May-August 2016. In contrast, the isopycnal (gyre-scale) circulation was lowest in summer 2014: 41.3 ± 8.2 Sv compared to 58.6 ± 7.4 Sv in 2016. The heat transport (0.39 ± 0.08 PW in summer 2014, positive is northward) was highest for the section with the highest AMOC, and the freshwater transport was largest in summer 2016 when the isopycnal circulation was high (-0.25 ± 0.08 Sv). Up to 65% of the heat and freshwater transport was carried by the isopycnal circulation, with isopycnal property transport highest in the western Labrador Sea and the eastern basins (Iceland Basin to Scotland).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2022-03-09
    Description: The spectrum of slip modes occurring along shallow portions of the plate boundary décollement in subduction zones includes aseismic slip, slow slip, and seismogenic slip. The factors that control slip modes directly influence the hazard potential of subduction zones for generating large magnitude earthquakes and tsunamis. We conducted an experimental study of the frictional behaviour of subduction input sediments, recovered from two IODP expeditions to the erosive subduction margin offshore Costa Rica (Exp. 334, 344),employing rotary shear under hydrothermal conditions. The velocity dependence of friction was explored, using simulated gouges prepared from all major lithologies, covering a wide range of conditions representative for the initial stages of subduction. Temperature, effective normal stress, and pore fluid pressure were varied systematically up to 140 °C, 110 MPa and 120 MPa respectively. Sliding velocities up to 100 μm/s, relevant for earthquake rupture nucleation and slow slip, were investigated. The only sediment type that produced frictional instabilities (i.e. laboratory earthquakes) was the calcareous ooze carried by the incoming Cocos Plate, which by virtue of its slip weakening behaviour is also a likely candidate for triggering slow slip events. We evaluate this mechanism of producing unstable slip and consider alternatives. Therefore, locking and unlocking of plate boundary megathrusts are not only related to variations in pore fluid pressure, but may also depend on the presence of pelagic carbonate‐rich lithologies. Subduction systems containing such input are likely low‐latitude, where extensive deposition of carbonates takes place above the CCD.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-03-09
    Description: The seasonal and interannual variability of chlorophyll in the Gulf of Mexico open waters is studied using a three‐dimensional coupled physical‐biogeochemical model. A 5 years hindcast driven by realistic open‐boundary conditions, atmospheric forcings, and freshwater discharges from rivers is performed. The use of recent in situ observations allowed an in‐depth evaluation of the model nutrient and chlorophyll seasonal distributions, including the chlorophyll vertical structure. We find that different chlorophyll patterns of temporal variability coexist in the deep basin which thereby cannot be considered as a homogeneous region with respect to chlorophyll dynamics. A partitioning of the Gulf of Mexico open waters based on the winter chlorophyll concentration increase is then proposed. This partition is basically explained by the amount of nutrients injected into the euphotic layer which is highly constrained by the dynamic of the winter mixed layer. The seasonal and interannual variability appears to be affected by the variability of atmospheric fluxes and mesoscale dynamics (Loop Current eddies in particular). Finally, estimates of primary production in the deep basin are provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-03-09
    Description: Horizontal transport at the boundaries of the subtropical gyres plays a crucial role in providing the nutrients that fuel gyre primary productivity, the heat that helps restratify the surface mixed layer, and the dissolved inorganic carbon (DIC) that influences air‐sea carbon exchange. Mesoscale eddies may be an important component of these horizontal transports; however, previous studies have not quantified the horizontal tracer transport due to eddies across the subtropical gyre boundaries. Here we assess the physical mechanisms that control the horizontal transport of mass, heat, nutrients and carbon across the North Pacific and North Atlantic subtropical gyre boundaries using the eddy‐rich ocean component of a climate model (GFDL's CM2.6) coupled to a simple biogeochemical model (mini‐BLING). Our results suggest that horizontal transport across the gyre boundaries supplies a substantial amount of mass and tracers to the ventilated layer of both Northern Hemisphere subtropical gyres, with the Kuroshio and Gulf Stream acting as main exchange gateways. Mass, heat, and DIC supply is principally driven by the time‐mean circulation, whereas nutrient transport differs markedly from the other tracers, as nutrients are mainly supplied to both subtropical gyres by down‐gradient eddy mixing across gyre boundaries. A budget analysis further reveals that the horizontal nutrient transport, combining the roles of both mean and eddy components, is responsible for more than three quarters of the total nutrient supply into the subtropical gyres, surpassing a recent estimate based on a coarse resolution model and thus further highlighting the importance of horizontal nutrient transport.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-03-09
    Description: Crustal structure provides the key to understand the interplay of magmatism and tectonism while oceanic crust is constructed at Mid Ocean Ridges (MOR). At slow spreading rates, magmatic processes dominate central areas of MOR segments, whereas segment ends are highly tectonised. The TAMMAR segment at the Mid-Atlantic Ridge (MAR) between 21°25' N and 22° N is a magmatically active segment. At ~4.5 Ma this segment started to propagate south, causing the termination of the transform fault at 21°40' N. This stopped long-lived detachment faulting and caused the migration of the ridge offset to the south. Here, a segment centre with a high magmatic budget has replaced a transform fault region with limited magma supply. We present results from seismic refraction profiles that mapped the crustal structure across the ridge crest of the TAMMAR segment. Seismic data yield crustal structure changes at the segment centre as a function of melt supply. Seismic Layer 3 underwent profound changes in thickness and became rapidly thicker ~5 Ma. This correlates with the observed “Bull's eye” gravimetric anomaly in that region. Our observations support a temporal change from thick lithosphere with oceanic core complex formation and transform faulting to thin lithosphere with focused mantle upwelling and segment growth. Temporal changes in crustal construction are connected to variations in the underlying mantle. We propose there is a link between the neighbouring segments at a larger scale within the asthenosphere, to form a long, highly magmatically active macro segment, here called the TAMMAR-Kane MacroSegment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-03-08
    Description: We present a simulation of Antarctic iceberg drift and melting that includes small, medium‐sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. The study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. We simulate drift and lateral melt using iceberg‐draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. Climatology estimates of Antarctic iceberg melting based on simulations of small (≤2.2 km), “small‐to‐medium‐sized" (≤10 km), and small‐to‐giant icebergs (including icebergs 〉10 km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58°S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2022-03-08
    Description: Lithospheric plates move over the low‐viscosity asthenosphere balancing several forces, which generate plate motions. We use a global 3‐D lithosphere‐asthenosphere model (SLIM3D) with visco‐elasto‐plastic rheology coupled to a spectral model of mantle flow at 300 km depth to quantify the influence of intra‐plate friction and asthenospheric viscosity on plate velocities. We account for the brittle‐ductile deformation at plate boundaries (yield stress) using a plate boundary friction coefficient to predict the present‐day plate motion and net rotation of the lithospheric plates. Previous modeling studies have suggested that small friction coefficients ( urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0001, yield stress urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0002 MPa) can lead to plate tectonics in models of mantle convection. Here we show that in order to match the observed present‐day plate motion and net rotation, the frictional parameter must be less than 0.05. We obtain a good fit with the magnitude and orientation of the observed plate velocities (NUVEL‐1A) in a no‐net‐rotation (NNR) reference frame with urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0003 and a minimum asthenosphere viscosity of urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0004 Pas to 1020 Pas. Our estimates of net rotation (NR) of the lithosphere suggest that amplitudes urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0005 ( urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0006/Ma), similar to most observation‐based estimates, can be obtained with asthenosphere viscosity cutoff values of urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0007 Pas to urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0008 Pas and friction coefficients urn:x-wiley:15252027:media:ggge21498:ggge21498-math-0009.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-03-08
    Description: The Nootka fault zone is a ridge‐trench‐trench transform fault that was initiated ~4 Ma when the Explorer ridge became independent of the Juan de Fuca ridge. Multibeam data around the fault zone and a compilation of several seismic reflection surveys provide insight into initiation of strike‐slip faults. Previous interpretations assumed that the two faults seen cutting the seafloor are subparallel to shear between the Explorer and Juan de Fuca plates and formed instantaneously at 4 Ma. Increased data density shows that these faults are subparallel to seafloor magnetic anomalies and appear to have utilized extensional faults formed at the ridge. They are surrounded by numerous buried steeply dipping, small‐offset growth faults; at least some of which are likely still active. Our observations corroborate analogue models of strike‐slip fault initiation that predict formation of Riedel‐like shears within a zone of faulting and that displacement localizes over time. The existence of several long subparallel faults and a very wide zone of faulting has been predicted by models of distributed shear at depth. Along the Nootka fault zone basement has risen by several hundred meters and bright reversed‐polarity reflectors some of which are interpreted to be methane hydrate reflectors are common. Hydration, likely as serpentinization, of the upper mantle could explain both sets of observations: Serpentinization can result in a 30–50% volume expansion and methane is observed in vents driven by this process. Biogenic sources of methane are likely to be present and concentrated by currently active fluid flow in the faulted sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2022-03-08
    Description: Key Points: - New analysis of wide-angle seismic data from the southern Porcupine Basin. - Evidence for presence of oceanic crust in the southern Porcupine Basin. - Jurassic rifting propagated from south to north, resulting in non-uniform strain when rifting stopped. The deep structure and sedimentary record of rift basins provide an important insight into understanding the geological processes involved in lithospheric extension. We investigate the crustal structure and large‐scale sedimentary architecture of the southern Porcupine Basin, offshore Ireland along three wide‐angle seismic profiles, supplemented by thirteen selected seismic reflection profiles. The seismic velocity and crustal geometry models obtained by joint refraction and reflection travel‐time inversion clearly image the deep structure of the basin. Our results suggest the presence of three distinct crustal domains along the rifting axis: (a) continental crust becoming progressively hyperextended from north to south through the basin, (b) a transitional zone of uncertain nature and (c) a 7‐8 km thick zone of oceanic crust. The latter is overlain by a ~ 8 km compacted Upper Paleozoic‐Mesozoic succession and ~ 2 km of Cenozoic strata. Due to the lack of clear magnetic anomalies and in the absence of well control, the precise age of interpreted oceanic crust is unknown. However, we can determine an age range of Late Jurassic to Late Cretaceous from the regional context. We propose a northward‐propagating rifting process in the Porcupine Basin, resulting in variations in strain along the rift axis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2022-03-08
    Description: Precise knowledge of wintertime sea ice production in Arctic polynyas is not only required to enhance our understanding of atmosphere‐sea ice‐ocean interactions but also to verify frequently utilized climate and ocean models. Here, a high‐resolution (2‐km) Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared satellite data set featuring spatial and temporal characteristics of 17 Arctic polynya regions for the winter seasons 2002/2003 to 2017/2018 is directly compared to an akin low‐resolution Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E) passive microwave data set for 2002/2003 to 2010/2011. The MODIS data set is purely based on a 1‐D energy‐balance model, where thin‐ice thicknesses (≤ 20 cm) are directly derived from ice‐surface temperature swath data and European Centre for Medium‐Range Weather Forecasts Re‐Analysis‐Interim atmospheric reanalysis data on a quasi‐daily basis. Thin‐ice thicknesses in the AMSR‐E data set are derived empirically. Important polynya properties such as areal extent and potential thermodynamic ice production can be estimated from both pan‐Arctic data sets. Although independently derived, our results show that both data sets feature quite similar spatial and temporal variations of polynya area (POLA) and ice production (IP), which suggests a high reliability. The average POLA (average accumulated IP) for all Arctic polynyas combined derived from both MODIS and AMSR‐E are 1.99×105 km2 (1.34×103 km3) and 2.29×105 km2 (1.31×103 km3), respectively. Narrow polynyas in areas such as the Canadian Arctic Archipelago are notably better resolved by MODIS. Analysis of 16 winter seasons provides an evaluation of long‐term trends in POLA and IP, revealing the significant increase of ice formation in polynyas along the Siberian coast.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2022-03-08
    Description: Glider measurements acquired along four transects between Cap-Vert Peninsula and the Cape Verde archipelago in the eastern tropical North Atlantic during March–April 2014 were used to investigate fine-scale stirring in an anticyclonic eddy. The anticyclone was formed near 12°N off the continental shelf and propagated northwest toward the Cape Verde islands. At depth, between 100 and –400 m, the isolated anticyclone core contained relatively oxygenated, low-salinity South Atlantic Central Water, while the surrounding water masses were saltier and poorly oxygenated. The dynamical and thermohaline subsurface environment favored the generation of fine-scale horizontal and vertical temperature and salinity structures in and around the core of the anticyclone. These features exhibited horizontal scales of O(10–30 km) relatively small with respect to the eddy radius of O(150 km). The vertical scales of O(5–100 m) were associated to density-compensated gradient. Spectra of salinity and oxygen along isopycnals revealed a slope of around k−2 in the 10- to 100-km horizontal scale range. Further analyses suggest that the fine-scale structures are likely related to tracer stirring processes. Such mesoscale anticyclonic eddies and the embedded fine-scale tracers in and around them could play a major role in the transport of South Atlantic Central Water masses and ventilation of the North Atlantic Oxygen Minimum Zone.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2022-03-08
    Description: We studied the tephra inventory of fourteen deep sea drill sites of three DSDP and ODP legs drilled offshore Guatemala and El Salvador (Legs 67, 84, 138), and one leg offshore Mexico (Leg 66). Marine tephra layers reach back from the Miocene to the Holocene. We identified 223 primary ash beds and correlated these between the drill sites, with regions along the volcanic arcs, and to specific eruptions known from land. In total, 24 correlations were established between marine tephra layers and to well‐known Quaternary eruptions from El Salvador and Guatemala. Additional 25 tephra layers were correlated between marine sites. Another 108 single ash layers have been assigned to source areas on land resulting in a total of 157 single eruptive events. Tephra layer correlations to independently dated terrestrial deposits provide new time markers and help to improve or confirm age models of the respective drill sites. Applying the respective sedimentation rates derived from the age models, we calculated ages for all marine ash beds. Hence, we also obtained new age estimates for eight known, but so far undated large terrestrial eruptions. Furthermore, this enables us to study the temporal evolution of explosive eruptions along the arc and we discovered five pulses of increased activity: 1) a pulse during the Quaternary, 2) a Pliocene pulse between 6 and 3 Ma, 3) a Late Miocene pulse between 10 and 7 Ma, 4) a Middle Miocene pulse between 17–11 Ma, and 5) an Early Miocene pulse (~〉21 Ma).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2022-02-18
    Description: Southern Ocean (SO) physical and biological processes are known to have a large impact on global biogeochemistry. However, the role that SO biology plays in determining ocean oxygen concentrations is not completely understood. These dynamics are investigated here by shutting off SO biology in two marine biogeochemical models. The results suggest that SO biological processes reduce the ocean's oxygen content, mainly in the deep ocean, by 14 to 19%. However, since these processes also trap nutrients that would otherwise be transported northward to fuel productivity and subsequent organic matter export, consumption, and the accompanying oxygen consumption in midlatitude to low-latitude waters, SO biology helps to maintain higher oxygen concentrations in these subsurface waters. Thereby, SO biology can influence the size of the tropical oxygen minimum zones. As a result of ocean circulation the link between SO biological processes and remote oxygen changes operates on decadal to centennial time scales.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2022-02-18
    Description: The Atlantic Subtropical Cells (STCs) are shallow wind‐driven overturning circulations connecting the tropical upwelling areas to the subtropical subduction regions. In both hemispheres they are characterized by equatorward transport at thermocline level, upwelling at the equator and poleward Ekman transport in the surface layer. This study uses recent data from Argo oats complemented by ship sections at the western boundary as well as reanalysis products to estimate the meridional water mass transports and to investigate the vertical and horizontal structure of the STCs from an observational perspective. The seasonally varying depth of meridional velocity reversal is used as the interface between the surface poleward ow and the thermocline equatorward ow. The latter is bounded by the 26.0 kg m‐3 isopycnal at depth. We find that the thermocline layer convergence is dominated by the southern hemisphere water mass transport (9.0 ±1.1 Sv from the southern hemisphere compared to 2.9 ±1.3 Sv from the northern hemisphere) and that this transport is mostly confined to the western boundary. Compared to the asymmetric convergence at thermocline level, the wind‐driven Ekman divergence in the surface layer is more symmetric, being 20.4 ±3.1 Sv between 10°N and 10°S. The net poleward transports (Ekman minus geostrophy) in the surface layer concur with values derived from reanalysis data (5.5 ±0.8 Sv at 10°S and 6.4 ±1.4 Sv at 10°N). A diapycnal transport of about 4 Sv across the 26.0 kg m‐3 isopycnal is required in order to maintain the mass balance in the STC circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geochemistry, Geophysics, Geosystems, 20 (6). pp. 2955-2984.
    Publication Date: 2022-02-02
    Description: Magma emplacement in organic‐rich sedimentary basins is a main driver of past environmental crises. Using a 2D numerical model, we investigate the process of thermal cracking in contact aureoles of cooling sills and subsequent transport and emission of thermogenic methane by hydrothermal fluids. Our model includes a Mohr‐Coulomb failure criterion to initiate hydrofracturing and a dynamic porosity/permeability. We investigate the Karoo Basin, taking into account host‐rock material properties from borehole data, realistic total organic carbon content, and different sill geometries. Consistent with geological observations, we find that thermal plumes quickly rise at the edges of saucer‐shaped sills, guided along vertically fractured high permeability pathways. Contrastingly, less focused and slower plumes rise from the edges and the central part of flat‐lying sills. Using a novel upscaling method based on sill‐to‐sediment ratio we find that degassing of the Karoo Basin occurred in two distinct phases during magma invasion. Rapid degassing triggered by sills emplaced within the top 1.5 km emitted ~1.6·103 Gt of thermogenic methane, while thermal plumes originating from deeper sills, carrying a 12‐times greater mass of methane, may not reach the surface. We suggest that these large quantities of methane could be re‐mobilized by the heat provided by neighboring sills. We conclude that the Karoo LIP may have emitted as much as ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activity, with emissions up to 3 Gt/year. This quantity of methane and the emission rates can explain the negative δ13C excursion of the Toarcian environmental crisis. Key Points Sill geometry and emplacement depth as well as intruded host rock type are the main factors controlling methane mobilization and degassing Dehydration‐related porosity increase and pore‐pressure‐induced hydrofracturing are important mechanisms for a quick transport of methane from sill to the surface The Karoo Basin may have degassed ~22.3·103 Gt of thermogenic methane in the half million years of magmatic activity
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 46 (1). pp. 365-373.
    Publication Date: 2022-01-31
    Description: We investigate the role of the tropics, the stratosphere, and atmosphere‐ocean coupling for seasonal forecasts of strong, potentially damaging, Northern Hemisphere extratropical winter wind storm frequencies. This is done by means of relaxation experiments with the European Centre for Medium‐Range Weather Forecasts model, which allow us to prescribe perfect forecasts for specific parts of the coupled atmosphere‐ocean system. We find that perfect predictions of the Northern Hemisphere stratosphere significantly enhance winter storm predictive skill between eastern Greenland and Northern Europe. Correct seasonal predictions of the occurrence of stratospheric sudden warmings play a decisive role. The importance of correctly predicting the tropics and of two‐way atmosphere‐ocean coupling, both for forecasting stratospheric sudden warming risk and, correspondingly, severe winter storm frequency, is noted.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-01-31
    Description: The northern part of the South China Sea is characterized by widespread occurrence of bottom simulating reflectors (BSR) indicating the presence of marine gas hydrate. Because the area covers both a tectonically inactive passive margin and the termination of a subduction zone, the influence of tectonism on the dynamics of gas hydrate systems can be studied in this region. Geophysical data show that there are multiple thrust faults on the active margin while much fewer and smaller faults exist in the passive margin. This tectonic difference matches with a difference in the geophysical characteristics of the gas hydrate systems. High hydrate saturation derived from ocean bottom seismometer data and controlled source electromagnetic data and conspicuous high‐amplitude reflections in P‐Cable 3D seismic data above the BSR are found in the anticlinal ridges of the active margin. In contrast all geophysical evidence for the passive margin points to normal to low hydrate saturations. Geochemical analyses of gas samples collected at seep sites on the active margin show methane with heavy δ13C isotope composition, while gas collected at the passive margin shows light carbon isotope composition. Thus, we interpret the passive margin as a typical gas hydrate province fuelled by biogenic production of methane and the active margin gas hydrate system as a system that is fuelled not only by biogenic gas production but also by additional advection of thermogenic methane from the subduction system.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 46 (5). pp. 2715-2725.
    Publication Date: 2022-01-31
    Description: The mechanisms controlling the variability of oxygen levels in the ocean are poorly quantified. We focus here on the impact of wind synoptic variability associated with tropical convective regions and extra‐tropical storms. Removing the wind higher frequencies of variability (2 days – 1 month) in an atmosphere reanalysis used to force an ocean model decreases wind stress by up to 20% in the tropics and 50% in the mid‐latitudes, weakening wind‐driven ocean circulation by 20%. Oxygen levels decrease by up to 10 mmol.m‐3 in tropical oceans and 30 mmol.m‐3 in subtropical gyres mainly due to changes in advective processes. While a large part of the tropical oxygen anomaly has local origins, changes in oxygen levels in the subtropical gyres modulate tropical oxygen distribution. Our study suggests that the “storminess” of the ocean is an important parameter that could determine the future evolution of poorly oxygenated regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 46 (6). pp. 3317-3326.
    Publication Date: 2022-01-31
    Description: The Benguela Upwelling system (BUS) is the most productive of all eastern boundary upwelling ecosystems and it hosts a well‐developed oxygen minimum zone. As such, the BUS is a potential hotspot for production of N2O, a potent greenhouse gas derived from microbially‐driven decay of sinking organic matter. Yet, the extent at which near‐surface waters emit N2O to the atmosphere in the BUS is highly uncertain. Here we present the first high‐resolution surface measurements of N2O across the northern part of the BUS (nBUS). We found strong gradients with a three‐fold increase in N2O concentrations near the coast as compared with open ocean waters. Our observations show enhanced sea‐to‐air fluxes of N2O (up to 1.67 nmol m−2 s−1) in association with local upwelling cells. Based on our data we suggest that the nBUS can account for 13% of the total coastal upwelling source of N2O to the atmosphere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 46 (4). pp. 2158-2166.
    Publication Date: 2022-01-31
    Description: Hydroxylamine (NH 2 OH), a short-lived intermediate in the nitrogen cycle, is a potential precursor of nitrous oxide (N 2 O) in the ocean. However, measurements of NH 2 OH in the ocean are sparse. Here we present a data set of depth profiles of NH 2 OH from the equatorial Atlantic Ocean and the eastern tropical South Pacific and compare it to N 2 O, nitrate, and nitrite profiles under varying oxygen conditions. The presence of NH 2 OH in surface waters points toward surface nitrification in the upper 100 m. Overall, we found a ratio of 1:3 between NH 2 OH and N 2 O in open ocean areas when oxygen concentrations were 〉50 μmol/L. In the equatorial Atlantic Ocean and the open ocean eastern tropical South Pacific, where nitrification is the dominant N 2 O production pathway, stepwise multiple regressions demonstrated that N 2 O, NH 2 OH, and nitrate concentrations were highly correlated, suggesting that NH 2 OH is a potential indicator for nitrification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-01-31
    Description: Radiative forcing from volcanic aerosol impacts surface temperatures; however, the background climate state also affects the response. A key question thus concerns whether constraining forcing estimates is more important than constraining initial conditions for accurate simulation and attribution of posteruption climate anomalies. Here we test whether different realistic volcanic forcing magnitudes for the 1815 Tambora eruption yield distinguishable ensemble surface temperature responses. We perform a cluster analysis on a superensemble of climate simulations including three 30-member ensembles using the same set of initial conditions but different volcanic forcings based on uncertainty estimates. Results clarify how forcing uncertainties can overwhelm initial-condition spread in boreal summer due to strong direct radiative impact, while the effect of initial conditions predominate in winter, when dynamics contribute to large ensemble spread. In our setup, current uncertainties affecting reconstruction-simulation comparisons prevent conclusions about the magnitude of the Tambora eruption and its relation to the “year without summer.”
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-01-31
    Description: Increasing global energy demands have led to the ongoing intensification of hydrocarbon extraction from marine areas. Hydrocarbon extractive activities pose threats to native marine biodiversity, such as noise, light, and chemical pollution, physical changes to the sea floor, invasive species, and greenhouse gas emissions. Here, we assessed at a global scale the spatial overlap between offshore hydrocarbon activities and marine biodiversity (〉25,000 species, nine major ecosystems, and marine protected areas), and quantify the changes over time. We discovered that two-thirds of global offshore hydrocarbon activities occur in areas within the top 10% for species richness, range rarity, and proportional range rarity values globally. Thus, while hydrocarbon activities are undertaken in less than one percent of the ocean's area, they overlap with approximately 85% of all assessed species. Of conservation concern, 4% of species with the largest proportion of their range overlapping hydrocarbon activities are range restricted, potentially increasing their vulnerability to localized threats such as oil spills. While hydrocarbon activities have extended to greater depths since the mid-1990s, we found that the largest overlap is with coastal ecosystems, particularly estuaries, saltmarshes and mangroves. Furthermore, in most countries where offshore hydrocarbon exploration licensing blocks have been delineated, they do not overlap with marine protected areas (MPAs). Although this is positive in principle, many countries have far more licensing block areas than protected areas, and in some instances, MPA coverage is minimal. These findings suggest the need for marine spatial prioritization to help limit future spatial overlap between marine conservation priorities and hydrocarbon activities. Such prioritization can be informed by the spatial and quantitative baseline information provided here. In increasingly shared seascapes, prioritizing management actions that set both conservation and development targets could help minimize further declines of biodiversity and environmental changes at a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-01-31
    Description: Genetic data have great potential for improving fisheries management by identifying the fundamental management units—that is, the biological populations—and their mixing. However, so far, the number of practical cases of marine fisheries management using genetics has been limited. Here, we used Atlantic cod in the Baltic Sea to demonstrate the applicability of genetics to a complex management scenario involving mixing of two genetically divergent populations. Specifically, we addressed several assumptions used in the current assessment of the two populations. Through analysis of 483 single nucleotide polymorphisms (SNPs) distributed across the Atlantic cod genome, we confirmed that a model of mechanical mixing, rather than hybridization and introgression, best explained the pattern of genetic differentiation. Thus, the fishery is best monitored as a mixed-stock fishery. Next, we developed a targeted panel of 39 SNPs with high statistical power for identifying population of origin and analyzed more than 2,000 tissue samples collected between 2011 and 2015 as well as 260 otoliths collected in 2003/2004. These data provided high spatial resolution and allowed us to investigate geographical trends in mixing, to compare patterns for different life stages and to investigate temporal trends in mixing. We found similar geographical trends for the two time points represented by tissue and otolith samples and that a recently implemented geographical management separation of the two populations provided a relatively close match to their distributions. In contrast to the current assumption, we found that patterns of mixing differed between juveniles and adults, a signal likely linked to the different reproductive dynamics of the two populations. Collectively, our data confirm that genetics is an operational tool for complex fisheries management applications. We recommend focussing on developing population assessment models and fisheries management frameworks to capitalize fully on the additional information offered by genetically assisted fisheries monitoring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-01-31
    Description: Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) is a multinational program initiated in 1997 in the tropical Atlantic to improve our understanding and ability to predict ocean-atmosphere variability. PIRATA consists of a network of moored buoys providing meteorological and oceanographic data transmitted in real time to address fundamental scientific questions as well as societal needs. The network is maintained through dedicated yearly cruises, which allow for extensive complementary shipboard measurements and provide platforms for deployment of other components of the Tropical Atlantic Observing System. This paper describes network enhancements, scientific accomplishments and successes obtained from the last 10 years of observations, and additional results enabled by cooperation with other national and international programs. Capacity building activities and the role of PIRATA in a future Tropical Atlantic Observing System that is presently being optimized are also described.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-01-31
    Description: Parasites are one of the strongest selective agents in nature. They select for hosts that evolve counter‐adaptive strategies to cope with infection. Helminth parasites are special because they can modulate their hosts’ immune responses. This phenomenon is important in epidemiological contexts, where coinfections may be affected. How different types of hosts and helminths interact with each other is insufficiently investigated. We used the three‐spined stickleback (Gasterosteus aculeatus) – Schistocephalus solidus model to study mechanisms and temporal components of helminth immune modulation. Sticklebacks from two contrasting populations with either high resistance (HR) or low resistance (LR) against S. solidus, were individually exposed to S. solidus strains with characteristically high growth (HG) or low growth (LG) in G. aculeatus. We determined the susceptibility to another parasite, the eye fluke Diplostomum pseudospathaceum, and the expression of 23 key immune genes at three time points after S. solidus infection. D. pseudospathaceum infection rates and the gene expression responses depended on host and S. solidus type and changed over time. Whereas the effect of S. solidus type was not significant after three weeks, T regulatory responses and complement components were upregulated at later time points if hosts were infected with HG S. solidus. HR hosts showed a well orchestrated immune response, which was absent in LR hosts. Our results emphasize the role of regulatory T cells and the timing of specific immune responses during helminth infections. This study elucidates the importance to consider different coevolutionary trajectories and ecologies when studying host‐parasite interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...