ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI  (56,387)
  • 2015-2019  (56,387)
  • 1955-1959
Collection
Language
Years
Year
  • 1
    Publication Date: 2021-02-08
    Description: An UPLC-qTOF-MS-based dereplication study led to the targeted isolation of seven bromoindole alkaloids from the sub-Arctic sponge Geodia barretti. This includes three new metabolites, namely geobarrettin A–C (1–3) and four known compounds, barettin (4), 8,9-dihydrobarettin (5), 6-bromoconicamin (6), and l-6-bromohypaphorine (7). The chemical structures of compounds 1–7 were elucidated by extensive analysis of the NMR and HRESIMS data. The absolute stereochemistry of geobarrettin A (1) was assigned by ECD analysis and Marfey’s method employing the new reagent l-Nα-(1-fluoro-2,4-dinitrophenyl)tryptophanamide (l-FDTA). The isolated compounds were screened for anti-inflammatory activity using human dendritic cells (DCs). Both 2 and 3 reduced DC secretion of IL-12p40, but 3 concomitantly increased IL-10 production. Maturing DCs treated with 2 or 3 before co-culturing with allogeneic CD4+ T cells decreased T cell secretion of IFN-γ, indicating a reduction in Th1 differentiation. Although barettin (4) reduced DC secretion of IL-12p40 and IL-10 (IC50 values 11.8 and 21.0 μM for IL-10 and IL-12p40, respectively), maturing DCs in the presence of 4 did not affect the ability of T cells to secrete IFN-γ or IL-17, but reduced their secretion of IL-10. These results indicate that 2 and 3 may be useful for the treatment of inflammation, mainly of the Th1 type.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Lake Urmia, the second largest saline Lake on earth and a highly endangered ecosystem, is on the brink of a serious environmental disaster similar to the catastrophic death of the Aral Sea. Progressive drying has been observed during the last decade, causing dramatic changes to Lake Urmia’s surface and its regional water supplies. The present study aims to improve monitoring of spatiotemporal changes of Lake Urmia in the period 1975–2015 using the multi-temporal satellite altimetry and Landsat (5-TM, 7-ETM+ and 8-OLI) images. In order to demonstrate the impacts of climate change and human pressure on the variations in surface extent and water level, Lake Sevan and Van Lake with different characteristics were studied along with the Urmia Lake. Normalized Difference Water Index-Principal Components Index (NDWI-PCs), Normalized Difference Water Index (NDWI), Modified NDWI (MNDWI), Normalized Difference Moisture Index (NDMI), Water Ratio Index (WRI), Normalized Difference Vegetation Index (NDVI), Automated Water Extraction Index (AWEI), and MultiLayer Perceptron Neural Networks (MLP NNs) classifier were investigated for the extraction of surface water from Landsat data. The presented results revealed that MLP NNs has a better performance in the cases where the other models generate poor accuracy. The results show that the area of Lake Sevan and Van Lake have increased while the area of Lake Urmia has decreased by ~65.23% in the past decades, far more than previously reported (~25% to 50%). Urmia Lake’s shoreline has been receding severely between 2010 and 2015 with no sign of recovery, which has been partly blamed on prolonged droughts, aggressive regional water resources development plans, intensive agricultural activities, and anthropogenic changes to the system. The results also indicated that (among the proposed factors) changes in inflows due to overuse of surface water resources and constructing dams (mostly during 1995–2005) are the main reasons for Urmia Lake’s shoreline receding. The model presented in this manuscript can be used by managers as a decision support system to find the effects of building new dams or other infrastructures
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-27
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Boss, E., Sherwood, C. R., Hill, P., & Milligan, T. Advantages and limitations to the use of optical measurements to study sediment properties. Applied Sciences-Basel, 8(12), (2018):2692, doi:10.3390/app8122692.
    Description: Measurements of optical properties have been used for decades to study particle distributions in the ocean. They are useful for estimating suspended mass concentration as well as particle-related properties such as size, composition, packing (particle porosity or density), and settling velocity. Measurements of optical properties are, however, biased, as certain particles, because of their size, composition, shape, or packing, contribute to a specific property more than others. Here, we study this issue both theoretically and practically, and we examine different optical properties collected simultaneously in a bottom boundary layer to highlight the utility of such measurements. We show that the biases we are likely to encounter using different optical properties can aid our studies of suspended sediment. In particular, we investigate inferences of settling velocity from vertical profiles of optical measurements, finding that the effects of aggregation dynamics can seldom be ignored.
    Description: This work was supported by the Office of Naval Research and the United States Geological Survey Coastal and Marine Geology Program. The unique instrument platform and data acquisition system was designed and built by technical staff lead by Marinna Martini at the United States Geological Survey Woods Hole Coastal and Marine Science Center. This team was also responsible for deployment and recovery of the instrumentation. We thank the Woods Hole Oceanographic Institution (WHOI) MVCO staff for support during this experiment, and we thank the captains and crews of the R/V Connecticut and the R/V Tioga. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the United States Government. This paper has benefited significantly from insightful comments from D. Stramski, A. Aretxabaleta and two anonymous reviewers.
    Keywords: Particle dynamics ; Optical properties ; Suspended sediment
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-06
    Description: In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-03-19
    Description: Drag force control via energy deposition in an oncoming flow is a wide area of interest in aerospace sciences. Recently, investigations on the effect of combining energy sources have been conducted. The possibility of coupling microwave (MW) discharges or MW and laser energy deposition is discussed. In the present work, the flow details accompanying the interaction of a combined energy release and an aerodynamic body in a supersonic flow are considered numerically on the base of the Euler equations. Comparison with non-combined energy deposition is analyzed. The effect of introducing the internal part to the energy release on the drag force reduction is examined. The flows for blunt cylinder, hemisphere-cylinder and pointed body are considered for a wide class of the combined energy source characteristics. Freestream Mach number is varied from 1.89 to 3.45. Complicated unsteady vortex structures caused by the Richtmyer–Meshkov instabilities are shown to be the reason for the reduction in drag. The unsteady double vortex mechanism of the frontal drag force reduction and mechanism of the constantly acting vortices at the steady flow are described. Suppression of shear layer instability and large scaled flow pulsations as the result of the combined energy release effect is established. Complex conservative difference schemes are used in the simulations.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-04-04
    Description: This paper presents an investigation into the gust response and wing structure load alleviation of a 200-seater aircraft by employing a passive twist wingtip (PTWT). The research was divided into three stages. The first stage was the design and analysis of the baseline aircraft, including aerodynamic analysis, structural design using the finite element (FE) method and flutter analysis to meet the design requirements. Dynamic response analysis of the aircraft to discrete (one-cosin) gust was also performed in a range of gust radiances specified in the airworthiness standards. In the second stage, a PTWT of a length of 1.13 m was designed with the key parameters determined based on design constraints and, in particular, the aeroelastic stability and gust response. Subsequent gust response analysis was performed to evaluate the effectiveness of the PTWT for gust alleviation. The results show that the PTWT produced a significant reduction of gust-induced wingtip deflection by 21% and the bending moment at the wing root by 14% in the most critical flight case. In the third stage, effort was made to study the interaction and influence of the PTWT on the symmetric and unsymmetrical manoeuvring of the aircraft when ailerons were in operation. The results show the that PTWT influence with a reduction of the aircraft normal velocity and heave motion by 1.7% and 3%, respectively, is negligible. However, the PTWT influence on the aircraft roll moment with a 20.5% reduction is significant. A locking system is therefore required in such a manoeuvring condition. The investigation has shown that the PTWT is an effective means for gust alleviation and, therefore, has potential for large aircraft application.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-22
    Description: This paper presents a semi-analytical trajectory planning method for quadrotor UAVs. These trajectories are analytically defined, are constant in speed and sub-optimal with respect to a weighted quadratic cost function of the translational and angular velocities. A technique for concatenating the trajectories into multi-segment paths is demonstrated. These paths are smooth to the first derivative of the translational position and pass through defined waypoints. A method for detecting potential collisions by discretizing the path into a coarse mesh before using a numerical optimiser to determine the point of the path closest to the obstacle is presented. This hybrid method reduces the computation time when compared to discretizing the trajectory into a fine mesh and calculating the minimum distance. A tracking controller is defined and used to show that the paths are dynamically feasible and the typical magnitudes of the controller inputs required to fly them.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-05
    Description: Air traffic is growing at a steady rate of 3% to 5% per year in most regions of the world, implying a doubling every 15–25 years. This requires major advances in aircraft noise reduction at airports, just not to increase the noise exposure due to the larger number of aircraft movements. In fact it can be expected, as a consequence of increased opposition to noise by near airport residents, that the overall noise exposure will have to be reduced, by bans, curfews, fines, and other means and limitations, unless significantly quieter aircraft operations are achieved. The ultimate solution is aircraft operations inaudible outside the airport perimeter, or noise levels below road traffic and other existing local noise sources. These substantial noise reductions cannot come at the expense of a degradation of cruise efficiency, that would affect not just economics and travel time, but would increase fuel consumption and emission of pollutants on a global scale. The paper reviews the: (i) current knowledge of the aircraft noise sources; (ii) the sound propagation in the atmosphere and ground effects that determine the noise annoyance of near-airport residents; (iii) the noise mitigation measures that can be applied to current and future aircraft; (iv) the prospects of evolutionary and novel aircraft designs towards quieter aircraft in the near term and eventually to operations inaudible outside the airport perimeter. The 20 figures and 1 diagram with their legends provide a visual summary of the review.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-04-28
    Description: This study addresses the flight-path planning problem for multirotor aerial vehicles (AVs). We consider the specific features and requirements of real-time flight-path planning and develop a rapidly-exploring random tree (RRT) algorithm to determine a preliminary flight path in three-dimensional space. Since the path obtained by the RRT may not be optimal due to the existence of redundant waypoints. To reduce the cost of energy during AV’s flight, the excessive waypoints need to be refined. We revise the A-star algorithm by adopting the heading of the AV as the key indices while calculating the cost. Bezier curves are finally proposed to smooth the flight path, making it applicable for real-world flight.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-04-28
    Description: The aerospace community is planning for growth in Unmanned Aerial Systems (UAS) funding and research opportunities. The premise that UAS will revolutionize aerospace appears to be unfolding based on current trends. There is also an anticipation of an increasing number of new platforms and research investment, which is likely but must be analysed carefully to determine where the opportunities lie. This paper draws on the state of technology, history and systems engineering. We explore what aspects of UAS will be the result of aerospace science advances and what aspects will be incremental engineering and systems integration. It becomes apparent that, for academia, the largest opportunities may exist in small and micro UAS domain due to the novelty of aerospace engineering on a small scale.
    Electronic ISSN: 2226-4310
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...