ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (608)
  • Mice  (608)
  • 2015-2019  (493)
  • 1975-1979  (115)
  • Medicine  (608)
Collection
  • Articles  (608)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 27 (1979), S. 19-26 
    ISSN: 1432-0827
    Keywords: Bone diseases ; Familial hypophosphatemia ; Magnesium ; Mice ; Phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary A new genetic mutant in mice,Hyp, has been proposed as a model for the human disease X-linked hypophosphatemia (the most common form of vitamin D-resistant rickets). The gene is X-linked, dominant, and produces reduced renal tubular reabsorption of phosphate, hypophosphatemia, and dwarfism. Our goal was to evaluate the skeletal changes histologically and to measure chemically the prominant blood and bone minerals to judge the suitability of this mutant as a model for the human disease. Thirteen-week-old hemizygousHyp male mice were compared with their normal littermate controls. TheHyp mice were hypocalcemic, hypophosphatemic, hypermagnesemic, and had elevated plasma alkaline phosphatase. The femur ash weighed less than half the normal ash weight but had a normal Ca:P ratio. The ash composition was high in %Na and K but low in %Mg. The mandibular incisor ash was also low in %Mg. Histologically the femur showed wide osteoid borders and wide epiphyseal plate. Microradiography revealed reduced bone density and enlarged osteocyte lacunae. Skeletal muscle samples, although smaller in theHyp mice, showed no striking alternations in inorganic or total phosphate content, dry weight (as % wet weight), or extracellular fluid space. TheHyp gene in mice seems to produce a condition similar to that of X-linked hypophosphatemia in humans.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 28 (1979), S. 259-262 
    ISSN: 1432-0827
    Keywords: C-type virus particles ; Bone tissue ; Mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary The proximal tibial metaphysis of apparently healthy strain 101 mice, 3–4 weeks old, and (C3H×101)F1 hybrids, 3–48 weeks old, was studied by electron microscopy. Budding, immature, and mature C-type virus particles were found within trabecular bone tissue of 3 of 8 strain 101 and 4 of 12 (C3H×101)F1 mice. The particles were most common in lacunae of aging osteocytes and were only occasionally associated with osteoblasts. Although the morphology of budding and immature particles appeared to be identical with that of typical C-type viruses, most of the mature forms of particles showed atypical structure and size. The electron-dense core was very large and not clearly defined, measuring approximately 70–130 nm in diameter. This diffuse core sometimes completely filled the space within the envelope of the particles. The diameters of the pleomorphic mature C-type particles ranged from approximately 90 to 150 nm. The possible association between the production of pleomorphic C-type virus particles by bone cells and spontaneous osteomagenesis in 101 and (C3H × 101)F1 mice is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0878
    Keywords: Glucocorticoids ; Bone growth retardation ; Chondrocytes ; Rehabilitation ; Mice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Immature A/J mice were treated for up to 7 weeks with intermittent doses of triamcinolone hexacetonide and were thereafter allowed to recover for 7 weeks. Qualitative and quantitative morphological measurements were performed on the epiphyseal cartilage plate and diaphyseal bone of the humerus. By the third injection significant structural changes were noted in the cartilaginous tissue followed by a complete cessation of bone growth. The hormonal inhibitory effect on long bone growth lasted throughout the experimental period. However, at the end of the recovery period the length of the humerus was 96% of the normal. In contrast, the humeral width at midshaft and the width of its medullary cavity revealed slower recovery, achieving only 80% of the control values. Following rehabilitation, the growth of experimental epiphyseal plates exceeded that of nontreated animals as their width and the number of hypertrophic chondrocytes were 131% and 125% of their controls respectively. Thus, in A/J mice (a highly susceptible inbred strain of mice) intermittent (every four days) administration of a long-acting corticosteroid hormone arrested endochondral and periosteal bone formation; the former, however, underwent full recovery following the termination of the hormonal treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-22
    Description: Piezo proteins are evolutionarily conserved and functionally diverse mechanosensitive cation channels. However, the overall structural architecture and gating mechanisms of Piezo channels have remained unknown. Here we determine the cryo-electron microscopy structure of the full-length (2,547 amino acids) mouse Piezo1 (Piezo1) at a resolution of 4.8 A. Piezo1 forms a trimeric propeller-like structure (about 900 kilodalton), with the extracellular domains resembling three distal blades and a central cap. The transmembrane region has 14 apparently resolved segments per subunit. These segments form three peripheral wings and a central pore module that encloses a potential ion-conducting pore. The rather flexible extracellular blade domains are connected to the central intracellular domain by three long beam-like structures. This trimeric architecture suggests that Piezo1 may use its peripheral regions as force sensors to gate the central ion-conducting pore.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Jingpeng -- Li, Wanqiu -- Zhao, Qiancheng -- Li, Ningning -- Chen, Maofei -- Zhi, Peng -- Li, Ruochong -- Gao, Ning -- Xiao, Bailong -- Yang, Maojun -- England -- Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences or Medicine, Tsinghua University, Beijing 100084, China. ; Ministry of Education, Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China. ; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26390154" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism ; *Cryoelectron Microscopy ; Electric Conductivity ; Ion Channel Gating ; Ion Channels/*chemistry/metabolism/*ultrastructure ; Mice ; Models, Molecular ; Pliability ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-10
    Description: Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5(+) crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5(+) ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720437/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720437/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lindemans, Caroline A -- Calafiore, Marco -- Mertelsmann, Anna M -- O'Connor, Margaret H -- Dudakov, Jarrod A -- Jenq, Robert R -- Velardi, Enrico -- Young, Lauren F -- Smith, Odette M -- Lawrence, Gillian -- Ivanov, Juliet A -- Fu, Ya-Yuan -- Takashima, Shuichiro -- Hua, Guoqiang -- Martin, Maria L -- O'Rourke, Kevin P -- Lo, Yuan-Hung -- Mokry, Michal -- Romera-Hernandez, Monica -- Cupedo, Tom -- Dow, Lukas E -- Nieuwenhuis, Edward E -- Shroyer, Noah F -- Liu, Chen -- Kolesnick, Richard -- van den Brink, Marcel R M -- Hanash, Alan M -- HHSN272200900059C/PHS HHS/ -- K08 HL115355/HL/NHLBI NIH HHS/ -- K08-HL115355/HL/NHLBI NIH HHS/ -- K99 CA176376/CA/NCI NIH HHS/ -- K99-CA176376/CA/NCI NIH HHS/ -- P01 CA023766/CA/NCI NIH HHS/ -- P01-CA023766/CA/NCI NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30-CA008748/CA/NCI NIH HHS/ -- R01 AI080455/AI/NIAID NIH HHS/ -- R01 AI100288/AI/NIAID NIH HHS/ -- R01 AI101406/AI/NIAID NIH HHS/ -- R01 HL069929/HL/NHLBI NIH HHS/ -- R01 HL125571/HL/NHLBI NIH HHS/ -- R01-AI080455/AI/NIAID NIH HHS/ -- R01-AI100288/AI/NIAID NIH HHS/ -- R01-AI101406/AI/NIAID NIH HHS/ -- R01-HL069929/HL/NHLBI NIH HHS/ -- R01-HL125571/HL/NHLBI NIH HHS/ -- U19 AI116497/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Dec 24;528(7583):560-4. doi: 10.1038/nature16460. Epub 2015 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pediatrics, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands. ; Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia. ; Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA. ; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Cancer Biology &Genetics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. ; Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26649819" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Epithelial Cells/*cytology/immunology/pathology ; Female ; Graft vs Host Disease/pathology ; Humans ; Immunity, Mucosal ; Interleukins/deficiency/*immunology ; Intestinal Mucosa/*cytology/immunology/pathology ; Intestine, Small/*cytology/immunology/pathology ; Mice ; Organoids/cytology/growth & development/immunology ; Paneth Cells/cytology ; Phosphorylation ; *Regeneration ; STAT3 Transcription Factor/metabolism ; Signal Transduction ; Stem Cell Niche ; Stem Cells/*cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-01-28
    Description: Thirst is the basic instinct to drink water. Previously, it was shown that neurons in several circumventricular organs of the hypothalamus are activated by thirst-inducing conditions. Here we identify two distinct, genetically separable neural populations in the subfornical organ that trigger or suppress thirst. We show that optogenetic activation of subfornical organ excitatory neurons, marked by the expression of the transcription factor ETV-1, evokes intense drinking behaviour, and does so even in fully water-satiated animals. The light-induced response is highly specific for water, immediate and strictly locked to the laser stimulus. In contrast, activation of a second population of subfornical organ neurons, marked by expression of the vesicular GABA transporter VGAT, drastically suppresses drinking, even in water-craving thirsty animals. These results reveal an innate brain circuit that can turn an animal's water-drinking behaviour on and off, and probably functions as a centre for thirst control in the mammalian brain.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401619/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401619/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Oka, Yuki -- Ye, Mingyu -- Zuker, Charles S -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 16;520(7547):349-52. doi: 10.1038/nature14108. Epub 2015 Jan 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Molecular Biophysics, Columbia College of Physicians and Surgeons, Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA [2] Department of Neuroscience, Columbia College of Physicians and Surgeons, Howard Hughes Medical Institute, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25624099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism ; DNA-Binding Proteins/metabolism ; Dehydration/physiopathology ; Drinking ; Drinking Behavior/*physiology ; Drinking Water ; Lasers ; Mice ; Optogenetics ; Satiety Response ; Subfornical Organ/*cytology/*physiology ; Thirst/*physiology ; Transcription Factors/metabolism ; Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-21
    Description: The regulated release of anorexigenic alpha-melanocyte stimulating hormone (alpha-MSH) and orexigenic Agouti-related protein (AgRP) from discrete hypothalamic arcuate neurons onto common target sites in the central nervous system has a fundamental role in the regulation of energy homeostasis. Both peptides bind with high affinity to the melanocortin-4 receptor (MC4R); existing data show that alpha-MSH is an agonist that couples the receptor to the Galphas signalling pathway, while AgRP binds competitively to block alpha-MSH binding and blocks the constitutive activity mediated by the ligand-mimetic amino-terminal domain of the receptor. Here we show that, in mice, regulation of firing activity of neurons from the paraventricular nucleus of the hypothalamus (PVN) by alpha-MSH and AgRP can be mediated independently of Galphas signalling by ligand-induced coupling of MC4R to closure of inwardly rectifying potassium channel, Kir7.1. Furthermore, AgRP is a biased agonist that hyperpolarizes neurons by binding to MC4R and opening Kir7.1, independently of its inhibition of alpha-MSH binding. Consequently, Kir7.1 signalling appears to be central to melanocortin-mediated regulation of energy homeostasis within the PVN. Coupling of MC4R to Kir7.1 may explain unusual aspects of the control of energy homeostasis by melanocortin signalling, including the gene dosage effect of MC4R and the sustained effects of AgRP on food intake.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ghamari-Langroudi, Masoud -- Digby, Gregory J -- Sebag, Julien A -- Millhauser, Glenn L -- Palomino, Rafael -- Matthews, Robert -- Gillyard, Taneisha -- Panaro, Brandon L -- Tough, Iain R -- Cox, Helen M -- Denton, Jerod S -- Cone, Roger D -- 5R01 DK082884-03/DK/NIDDK NIH HHS/ -- DK020593/DK/NIDDK NIH HHS/ -- F31 DK102343/DK/NIDDK NIH HHS/ -- P30 DK020593/DK/NIDDK NIH HHS/ -- R01 DK064265/DK/NIDDK NIH HHS/ -- R01 DK070332/DK/NIDDK NIH HHS/ -- R01DK064265/DK/NIDDK NIH HHS/ -- R01DK070332/DK/NIDDK NIH HHS/ -- R25 GM059994/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Apr 2;520(7545):94-8. doi: 10.1038/nature14051. Epub 2015 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA. ; Department of Chemistry &Biochemistry, University of California, Santa Cruz, California 95064, USA. ; 1] Department of Molecular Physiology &Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pharmacology, Meharry Medical College, Nashville, Tennessee 37208, USA. ; King's College London, Wolfson Centre for Age-Related Diseases, Guy's Campus, London SE1 1UL, UK. ; 1] Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA [2] Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25600267" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Agouti-Related Protein/metabolism ; Animals ; Eating/genetics ; Energy Metabolism ; Female ; *GTP-Binding Protein alpha Subunits, Gs ; HEK293 Cells ; Homeostasis/genetics ; Humans ; Ligands ; Male ; Melanocortins/metabolism ; Mice ; Neurons/*metabolism ; Paraventricular Hypothalamic Nucleus/*cytology ; Potassium Channels, Inwardly Rectifying/*metabolism ; Receptor, Melanocortin, Type 4/genetics/*metabolism ; Signal Transduction/genetics ; alpha-MSH/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-20
    Description: Alzheimer's disease (AD) is a severe age-related neurodegenerative disorder characterized by accumulation of amyloid-beta plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune-cell-specific enhancer signatures as well as immune cell expression quantitative trait loci, while decreasing-level enhancer orthologues show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologues, implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants, and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530583/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530583/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gjoneska, Elizabeta -- Pfenning, Andreas R -- Mathys, Hansruedi -- Quon, Gerald -- Kundaje, Anshul -- Tsai, Li-Huei -- Kellis, Manolis -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 NS078839/NS/NINDS NIH HHS/ -- R01HG004037-07/HG/NHGRI NIH HHS/ -- R01NS078839/NS/NINDS NIH HHS/ -- RC1 HG005334/HG/NHGRI NIH HHS/ -- RC1HG005334/HG/NHGRI NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):365-9. doi: 10.1038/nature14252.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; 1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. ; 1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693568" target="_blank"〉PubMed〈/a〉
    Keywords: Alzheimer Disease/*genetics/*immunology/physiopathology ; Animals ; Chromatin/genetics/metabolism ; Conserved Sequence ; Disease Models, Animal ; Down-Regulation/genetics ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/*genetics ; Epigenomics ; Female ; Genetic Predisposition to Disease/genetics ; Genome-Wide Association Study ; Hippocampus/metabolism ; Humans ; Immunity/genetics ; Memory/physiology ; Mice ; *Models, Biological ; Neuronal Plasticity/genetics ; Polymorphism, Single Nucleotide/genetics ; Proto-Oncogene Proteins/metabolism ; Trans-Activators/metabolism ; Transcription, Genetic/genetics ; Up-Regulation/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-01
    Description: Intracellular energy distribution has attracted much interest and has been proposed to occur in skeletal muscle via metabolite-facilitated diffusion; however, genetic evidence suggests that facilitated diffusion is not critical for normal function. We hypothesized that mitochondrial structure minimizes metabolite diffusion distances in skeletal muscle. Here we demonstrate a mitochondrial reticulum providing a conductive pathway for energy distribution, in the form of the proton-motive force, throughout the mouse skeletal muscle cell. Within this reticulum, we find proteins associated with mitochondrial proton-motive force production preferentially in the cell periphery and proteins that use the proton-motive force for ATP production in the cell interior near contractile and transport ATPases. Furthermore, we show a rapid, coordinated depolarization of the membrane potential component of the proton-motive force throughout the cell in response to spatially controlled uncoupling of the cell interior. We propose that membrane potential conduction via the mitochondrial reticulum is the dominant pathway for skeletal muscle energy distribution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glancy, Brian -- Hartnell, Lisa M -- Malide, Daniela -- Yu, Zu-Xi -- Combs, Christian A -- Connelly, Patricia S -- Subramaniam, Sriram -- Balaban, Robert S -- Intramural NIH HHS/ -- England -- Nature. 2015 Jul 30;523(7562):617-20. doi: 10.1038/nature14614.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. ; National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26223627" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/metabolism ; Adenosine Triphosphate/biosynthesis/metabolism ; Animals ; Diffusion ; *Energy Metabolism ; Male ; Membrane Potential, Mitochondrial ; Mice ; Mice, Inbred C57BL ; Mitochondria, Muscle/*metabolism ; Mitochondrial Proteins/metabolism ; Muscle, Skeletal/*cytology/*metabolism ; Proton-Motive Force
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-11-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Delude, Cathryn M -- England -- Nature. 2015 Nov 5;527(7576):S14-5. doi: 10.1038/527S14a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536218" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/genetics ; Cell Line ; Datasets as Topic ; Diabetes Mellitus/genetics ; Disease/*genetics ; Disease Models, Animal ; Genetics, Medical/*trends ; Genomics/trends ; Humans ; Mice ; Mice, Knockout ; Multifactorial Inheritance/genetics ; *Phenotype ; Precision Medicine/trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...