ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,000)
  • Air Transportation and Safety  (1,000)
  • 2015-2019  (811)
  • 1995-1999  (189)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: A concept is presented for development and implementation of prototype Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to provide dynamical, weather dependent wake vortex separation criteria to ATC facilities with adequate stability and lead time for use in establishing arrival scheduling. This current paper discusses AVOSS development approach. The discussion includes: system model, AVOSS R&D effort scope, major development issues, concept system development process, AVOSS system testing, and concept demonstration.
    Keywords: Air Transportation and Safety
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 460-468; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The goal of this current research is to establish a database that validate/calibrate wake encounter analysis methods for fleet-wide application; and measure/document atmospheric effects on wake decay. Two kinds of experiments, wind tunnel experiments and flight experiments, are performed. This paper discusses the different types of tests and compares their wake velocity measurement.
    Keywords: Air Transportation and Safety
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 371-383; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The presentation includes discussions of primary wake vortex system requirements, evolution models, sensor evolution, site specific sensor tradeoffs, wake sensor functions, deployment considerations, the operational test bed system and additional sensor requirements.
    Keywords: Air Transportation and Safety
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 228-234; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Significant progress has been made in understanding vortex behavior but much remains to be done. The primary challenge is to bring "science" into operational use. Success will require cooperation from a diverse group of organizations.
    Keywords: Air Transportation and Safety
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 23-32; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: The AVOSS goal is to: (1) Support TAP goal of improving instrument operations capacity 12-15% while maintaining safety; (2) Provide dynamical aircraft wake vortex spacing criteria to ATC systems at capacity limited facilities with required lead time and stability for use in establishing aircraft arrival scheduling; and (3) System development and concept demonstration. The AVOSS system concept is to separate aircraft from encounters with wake vortices of an operationally unacceptable strength. In doing so, define protected corridor from outer marker to runway and predict time for vortex to clear ("Transport Time"), define operationally unacceptable wake strength and predict time to decay ("Decay Time"), combine and provide to ATC automation ("Residence Time"), and monitor safety and provide predictor feedback with wake vortex detection subsystem.
    Keywords: Air Transportation and Safety
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 11-22; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The objective of this current research is to determine an acceptable level of vortex roll disturbance for worst-case encounter geometries during normal, routine operations. This includes: determining the boundary & metric(s), and defining evaluation factors & procedures. The discussion includes: simulation hardware, research simulator software, and research approach & observations.
    Keywords: Air Transportation and Safety
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 351-370; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The goals of cost/benefit assessments are to provide quantitative and qualitative data to aid in the decision-making process. Benefits derived from increased throughput (or decreased delays) used to balance life-cycle costs. Packaging technologies together may provide greater gains (demonstrate higher return on investment).
    Keywords: Air Transportation and Safety
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 509-519; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-06-30
    Description: Advanced automation has been accompanied, particularly in aircraft, with a proliferation of modes, where modes define mutually exclusive sets of system behavior. The new mode-rich systems provide flexibility and enhanced capabilities, but they also increase the need for and difficulty of maintaining mode awareness. While automation has eliminated some types of operator mode-awareness errors, it has also created the potential for new types of mode-related problems.
    Keywords: Air Transportation and Safety
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-06-30
    Description: Dynamic spacing human factors deals with the following human factors issues: define controller limits to incorporating dynamic changes in separation standards; identify timing, planning, and coordination strategies; and consider consistency with current practices, policies, and regulations. The AVOSS technologies will make it possible to reduce separation standards in the terminal area under certain meteorological conditions. This paper contains the following sections: Dynamic space human factors overview, Preliminary tests, and current research status & plans.
    Keywords: Air Transportation and Safety
    Type: Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop; 500-508; NASA/CP-97-206235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: This talk address the market and technology for a corporate supersonic transport. It describes a candidate configuration. There seems to be a sufficient market for such an aircraft, even if restricted to supersonic operation over water. The candidate configuration's sonic boom overpressure may be small enough to allow overland operation as well.
    Keywords: Air Transportation and Safety
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 491-508; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-08-31
    Description: Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.
    Keywords: Air Transportation and Safety
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 461-489; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-08-31
    Description: The Very Large Subsonic Transport (VLST) is a multi-use commercial passenger, commercial cargo, and military airlifter roughly 50% larger than the current Lockheed C-5 and Boeing 747. Due to the large size and cost of the VLST, it is unlikely that the commercial market can support more than one aircraft production line, while declining defense budgets will not support a dedicated military VLST. A successful VLST must therefore meet airline requirements for more passenger and cargo capacity on congested routes into slot-limited airports and also provide a cost effective heavy airlift capacity to support the overseas deployment of US military forces. A successful VLST must satisfy three key missions: commercial passenger service with nominal seating capacity at a minimum of 650 passengers with a range capability of 7,000 to 10,000 miles; commercial air cargo service for containerized cargo to support global manufacturing of high value added products, 'just-in-time' parts delivery, and the general globalization of trade; and military airlift with adequate capacity to load current weapon systems, with minimal break-down, over global ranges (7,000 to 10,000 miles) required to reach the operational theater without need of overseas bases and midair refueling. The development of the VLST poses some technical issues specific to large aircraft, but also key technologies applicable to a wide range of subsonic transport aircraft. Key issues and technologies unique to the VLST include: large composite structures; dynamic control of a large, flexible structure; aircraft noise requirements for aircraft over 850,000 pounds; and increased aircraft separation due to increased wake vortex generation. Other issues, while not unique to the VLST, will critically impact the ability to build an efficient and affordable aircraft include: active control systems: Fly-By-Light/Power-By-Wire (FBL/PBW); high lift systems; flight deck associate systems; laminar flow; emergency egress; and modular design. The VLST will encounter severe restrictions on weight, ground flotation, span, length, and door height to operate at current airports/bases, gates, and cargo loading systems. One option under consideration is for a sea-based VLST, either a conventional seaplane or Wing-In-Ground effect (WIG) vehicle, which would allow greater operational flexibility, while introducing other design challenges such as water impact loads and salt-water corrosion. Lockheed Martin is currently developing a floatplane version of the C-130 Hercules which will provide experience with a modern sea-based aircraft. In addition to its own ongoing research activities, Lockheed Martin is also participating in the NASA Advanced Subsonic Technology, High Speed Research (HSR), and other programs which address some of the technologies needed for the VLST. The VLST will require NASA and US aerospace companies to work together to develop new capabilities and technologies for make the VLST a viable part of transportation beyond 2000.
    Keywords: Air Transportation and Safety
    Type: Transportation Beyond 2000: Technologies Needed for Engineering Design; 399-429; NASA-CP-10184-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-04-01
    Description: Introduction / Background; Current Landscape and Future Vision; UAS (Unmanned Aircraft System) Demand and Key Challenges; UAS Airspace Access Pillars and Enablers; Overarching UAS Community Strategy; Long Term Vision Considerations; Recommendations and Next Steps.
    Keywords: Air Transportation and Safety
    Type: DFRC-E-DAA-TN39927 , UAS in the NAS Group; 24 Mar. 2017; Edwards, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-07-15
    Description: We are discussing needs of current and future airspace users and identifying implications for architecture and services.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN43857 , The Way Forward for New and Current Airspace Users; 20 Jun. 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-05-07
    Description: This report is part of a series of reports that address flight deck design and evaluation, written as a response to loss of control accidents. In particular, this activity is directed at failures in airplane state awareness in which the pilot loses awareness of the airplane's energy state or attitude and enters an upset condition. In a report by the Commercial Aviation Safety Team, an analysis of accidents and incidents related to loss of airplane state awareness determined that hazard alerting was not effective in producing the appropriate pilot response to a hazard (CAST, 2014). In the current report, we take a detailed look at 28 airplane state awareness accidents and incidents to determine how well the hazard alerting worked. We describe a five-step integrated alerting-to-recovery sequence that prescribes how hazard alerting should lead to effective flight crew actions for managing the hazard. Then, for each hazard in each of the 28 events, we determine if that sequence failed and, if so, how it failed. The results show that there was an alerting failure in every one of the 28 safety events, and that the most frequent failure (20/28) was tied to the flight crew not orienting to (not being aware of) the hazard. The discussion section summarizes findings and identifies alerting issues that are being addressed and issues that are not currently being addressed. We identify a few recent upgrades that have addressed certain alerting failures. Two of these upgrades address alerting design, but one response to the safety events is to upgrade training for approach to stall and stall recovery. We also describe issues that are not being addressed adequately: better alert integration for flight path management types of hazards, airplanes in the fleet that do not meet the current alerting regulations, a lack of innovation for addressing cases of channelized attention, and existing vulnerabilities in managing data validity.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2019-220176 , ARC-E-DAA-TN64314
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-03-05
    Description: No abstract available
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN21732 , Transitioning to Autonomy: Changes in the Role of Humans in Air Transportation; 10-12 Mar. 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-01-27
    Description: Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN30358 , On-Demand Mobility and Follow Up Workshop; 8-9 Mar. 2016; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-10-18
    Description: Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN38460 , Aerophilia 2017; 27-28 Jan. 2017; Manglore; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-11-29
    Description: No abstract available
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN46065
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Under a NASA-Ames Space Act Agreement, Coryphaeus Software and Simauthor, Inc., developed an Aviation Performance Measuring System (APMS). This software, developed for the aerospace and airline industry, enables the replay of Digital Flight Data Recorder (DFDR) data in a flexible, user-configurable, real-time, high fidelity 3D (three dimensional) environment.
    Keywords: Air Transportation and Safety
    Type: Spinoff 1998; 62; NASA/NP-1998-09-241-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: SpaceAge Control, Inc., was established in 1968 to design, develop and manufacture pilot protection devices in support of space-based and high-performance test aircraft programs. In 1970, the company was awarded a NASA contract to produce precision, small-format position transducers for aircraft flight control testing. The successful completion of this contract led to the development and production of a complete line of position transducers. Today the company has over 600 customers in 20 industries and over 30 countries.
    Keywords: Air Transportation and Safety
    Type: Spinoff 1998; 58; NASA/NP-1998-09-241-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: The Lifeshear cutter, a rescue tool for freeing accident victims from wreckage, was developed under the Clinton Administration's Technology Reinvestment Program. Prior cutting equipment was cumbersome and expensive; the new cutter is 50 percent lighter and 70 percent cheaper. The cutter is pyrotechnically-actuated, using a miniature version of the power cartridges used for separation devices on the Space Shuttle and other NASA spacecraft. Hi-Shear Technology Corporation developed the cutter with the Jet Propulsion Laboratory and input from the City of Torrance (California) Fire Department.
    Keywords: Air Transportation and Safety
    Type: Spinoff 1995; 62-63; NASA-NP-217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-28
    Description: This report presents the results of w-band complex permittivity measurements performed in NASA Langley's Electromagnetics Research Branch. The test articles included in the permittivity study were flat panels of materials which are under consideration for use in a radome for the Passive Millimeter Wave Camera (PMMWC) flight experiment. This experiment is scheduled to fly on the Air Force's 'Speckled Trout' aircraft in late 1997. The radome design is very important because the PMMWC can tolerate only a small amount of electromagnetic loss through the radome. A free space measurement system was used to obtain complex reflection and transmission coefficients of the samples. The frequency of interest was 89 GHz, so measurements were performed over a range of 79 to 99 GHz. The transmission and reflection coefficients were used, along with the measured sample thickness, to calculate complex permittivity over the frequency range. The material samples measured in this study can be divided into four categories: skin materials, core materials, coating materials, and layered samples.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110344 , NAS 1.15:110344
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-06-28
    Description: The purpose of this report is to release the data from the NASA Langley/Lewis 14 by 22 foot wind tunnel test that examined icing effects on a 1/8 scale twin-engine short-haul jet transport model. Presented in this document are summary data from the major configurations tested. The entire test database in addition to ice shape and model measurements is available as a data supplement in CD-ROM form. Data measured and presented are: wing pressure distributions, model force and moment, and wing surface flow visualization.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-107419 , NAS 1.15:107419 , E-10659
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-06-28
    Description: Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-201690 , NAS 1.26:201690
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: This document discusses the development and evaluation of an airborne collision alerting logic for aircraft on closely-spaced approaches to parallel runways. A novel methodology is used when links alerts to collision probabilities: alerting thresholds are set such that when the probability of a collision exceeds an acceptable hazard level an alert is issued. The logic was designed to limit the hazard level to that estimated for the Precision Runway Monitoring system: one accident in every one thousand blunders which trigger alerts. When the aircraft were constrained to be coaltitude, evaluations of a two-dimensional version of the alerting logic show that the achieved hazard level is approximately one accident in every 250 blunders. Problematic scenarios have been identified and corrections to the logic can be made. The evaluations also show that over eighty percent of all unnecessary alerts were issued during scenarios in which the miss distance would have been less than 1000 ft, indicating that the alerts may have been justified. Also, no unnecessary alerts were generated during normal approaches.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-201685 , NAS 1.26:201685
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: The safety and efficiency of free flight will benefit from automated conflict prediction and resolution advisories. Conflict prediction is based on trajectory prediction and is less certain the farther in advance the prediction, however. An estimate is therefore needed of the probability that a conflict will occur, given a pair of predicted trajectories and their levels of uncertainty. A method is developed in this paper to estimate that conflict probability. The trajectory prediction errors are modeled as normally distributed, and the two error covariances for an aircraft pair are combined into a single equivalent covariance of the relative position. A coordinate transformation is then used to derive an analytical solution. Numerical examples and Monte Carlo validation are presented.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110411 , NAS 1.15:110411 , A-962310
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: A model has been developed which represents prominent reporter concerns expressed in the narratives of 300 mode-related incident reports from NASA's Aviation Safety Reporting System (ASRS). The model objectively quantifies the structure of concerns which persist across situations and reporters. These concerns are described and illustrated using verbatim sentences from the original narratives. Report accession numbers are included with each sentence so that concerns can be traced back to the original reports. The results also include an inventory of mode names mentioned in the narratives, and a comparison of individual and joint concerns. The method is based on a proximity-weighted co-occurrence metric and object-oriented complexity reduction.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110413 , A-962350 , NAS 1.15:110413
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: In 1993, fuel accounted for approximately 15 percent of an airline's expenses. Fuel consumption increases as fuel reserves increase because of the added weight to the aircraft. Calculating fuel reserves is a function of Federal Aviation Regulations, airline company policy, and factors that impact or are impacted by fuel usage enroute. This research studied how pilots and dispatchers determined the fuel needed for a flight and identified areas where improvements in methods may yield measurable fuel savings by (1) listing the uncertainties that contribute to adding contingency fuel, (2) obtaining the pilots' and dispatchers' perspective on how often each uncertainty occurred, and (3) obtaining pilots' and dispatchers' perspective on the fuel used for each occurrence. This study found that for the majority of the time, pilots felt that dispatchers included enough fuel. As for the uncertainties that flight crews and dispatchers account for, air traffic control accounts for 28% and weather uncertainties account for 58 percent. If improvements can be made in these two areas, a great potential exists to decrease the reserve required, and therefore, fuel usage without jeopardizing safety.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110240 , NAS 1.15:110240
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: Advanced air traffic management systems such as the Center/TRACON Automation System (CTAS) should yield a wide range of benefits, including reduced aircraft delays and controller workload. To determine the traffic-flow benefits achievable from future terminal airspace automation, live radar information was used to perform an analysis of current aircraft landing rates and separations at the Dallas/Fort Worth International Airport. Separation statistics that result when controllers balance complex control procedural constraints in order to maintain high landing rates are presented. In addition, the analysis estimates the potential for airport capacity improvements by determining the unused landing opportunities that occur during rush traffic periods. Results suggest a large potential for improving the accuracy and consistency of spacing between arrivals on final approach, and they support earlier simulation findings that improved air traffic management would increase capacity and reduce delays.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110397 , NAS 1.15:110397 , A-961649
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: The practical application of real-time performance optimization is addressed (using a wide-body transport simulation) based on real-time measurements and calculation of incremental drag from forced response maneuvers. Various controller combinations can be envisioned although this study used symmetric outboard aileron and stabilizer. The approach is based on navigation instrumentation and other measurements found on state-of-the-art transports. This information is used to calculate winds and angle of attack. Thrust is estimated from a representative engine model as a function of measured variables. The lift and drag equations are then used to calculate lift and drag coefficients. An expression for drag coefficient, which is a function of parasite drag, induced drag, and aileron drag, is solved from forced excitation response data. Estimates of the parasite drag, curvature of the aileron drag variation, and minimum drag aileron position are produced. Minimum drag is then obtained by repositioning the symmetric aileron. Simulation results are also presented which evaluate the affects of measurement bias and resolution.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-4730 , H-2085 , AIAA Paper 96-0093 , NAS 1.15:4730
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-05
    Description: While much of the emphasis of the free-flight movement has been concentrated on reducing en-route delays, airport capacity is a major bottleneck in the current airspace system, particularly during bad weather. According to the Air Transport Association (ATA) Air Carrier Delay Reports, ground delays (gate-hold, taxi-in, and taxi-out) comprise 75 percent of total delays. It is likely that the projected steady growth in traffic will only exacerbate these losses. Preliminary analyses show that implementation of the terminal area technologies and procedures under development in NASA s Terminal Area Productivity program can potentially save the airlines at least $350M annually in weather-related delays by the year 2005 at Boston Logan and Detroit airports alone. This paper briefly describes the Terminal Area Productivity program, outlines the costhenefit analyses that are being conducted in support of the program, and presents some preliminary analysis results.
    Keywords: Air Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: Many aircraft accidents/incidents investigations cite crew error as a causal factor (Boeing Commercial Airplane Group 1996). Human factors experts suggest that crew error has many underlying causes and should be the start of an accident investigation and not the end. One of those causes, the flight deck design, is correctable. If a flight deck design does not accommodate the human's unique abilities and deficits, crew error may simply be the manifestation of this mismatch. Pilots repeatedly report that they are "behind the aircraft" , i.e., they do not know what the automated aircraft is doing or how the aircraft is doing it until after the fact. Billings (1991) promotes the concept of "human-centered automation"; calling on designers to allocate appropriate control and information to the human. However, there is much ambiguity regarding what it mean's to be human-centered. What often are labeled as "human-centered designs" are actually designs where a human factors expert has been involved in the design process or designs where tests have shown that humans can operate them. While such designs may be excellent, they do not represent designs that are systematically produced according to some set of prescribed methods and procedures. This paper describes a design concept, called Wings, that offers a clearer definition for human-centered design. This new design concept is radically different from current design processes in that the design begins with the human and uses the human body as a metaphor for designing the aircraft. This is not because the human is the most important part of the aircraft (certainly the aircraft would be useless without lift and thrust), but because he is the least understood, the least programmable, and one of the more critical elements. The Wings design concept has three properties: a reversal in the design process, from aerodynamics-, structures-, and propulsion-centered to truly human-centered; a design metaphor that guides function allocation and control and display design; and a deliberate distinction between two fundamental functions of design, to complement and to interpret human performance. The complementary function extends the human's capabilities beyond his or her current limitations - this includes sensing, computation, memory, physical force, and human decision making styles and skills. The interpretive (or hermeneutic, Hollnagel 1991) function translates information, functionality, and commands between the human and the aircraft. The Wings design concept allows the human to remain aware of the aircraft through natural interpretation. It also affords great improvements in system performance by maximizing the human's natural abilities and complementing the human's skills in a natural way. This paper will discuss the Wings design concept by describing the reversal in the traditional design process, the function allocation strategy of Wings, and the functions of complementing and interpreting the human.
    Keywords: Air Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-06-28
    Description: The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-112211 , NAS 1.15:112211 , A-977300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Analysis of incident reports plays an important role in aviation safety. Typically, a narrative description, written by a participant, is a central part of an incident report. Because there are so many reports, and the narratives contain so much detail, it can be difficult to efficiently and effectively recognize patterns among them. Recognizing and addressing recurring problems, however, is vital to continuing safety in commercial aviation operations. A practical way to interpret large collections of incident narratives is to apply the QUORUM method of text analysis, modeling, and relevance ranking. In this paper, QUORUM text analysis and modeling are surveyed, and QUORUM relevance ranking is described in detail with many examples. The examples are based on several large collections of reports from the Aviation Safety Reporting System (ASRS) database, and a collection of news stories describing the disaster of TWA Flight 800, the Boeing 747 which exploded in mid- air and crashed near Long Island, New York, on July 17, 1996. Reader familiarity with this disaster should make the relevance-ranking examples more understandable. The ASRS examples illustrate the practical application of QUORUM relevance ranking.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-112190 , NAS 1.15:112190 , A-976313
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: This manual is a practical guide to help airline instructors effectively facilitate debriefings of Line Oriented Simulations (LOS). It is based on a recently completed study of Line Oriented Flight Training (LOFT) debriefings at several U.S. airlines. This manual presents specific facilitation tools instructors can use to achieve debriefing objectives. The approach of the manual is to be flexible so it can be tailored to the individual needs of each airline. Part One clarifies the purpose and objectives of facilitation in the LOS setting. Part Two provides recommendations for clarifying roles and expectations and presents a model for organizing discussion. Part Tree suggests techniques for eliciting active crew participation and in-depth analysis and evaluation. Finally, in Part Four, these techniques are organized according to the facilitation model. Examples of how to effectively use the techniques are provided throughout, including strategies to try when the debriefing objectives are not being fully achieved.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-112192 , NAS 1.15:112192 , A-976385 , DOT/FAA/AR-97/6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-06-28
    Description: One of the biggest challenges for a pilot in the transition to a 'glass' cockpit is understanding the flight management system (FMS). Because of both the complex nature of the FMS and the pilot-FMS interface, a large portion of transition training is devoted to the FMS. The current study examined the impact of the primary pilot-FMS interface, the control display unit (CDU), on FMS training. Based on the hypothesis that the interface design could have a significant impact on training, an FMS simulation with two separate interfaces was developed. One interface was similar to a current-generation design, and the other was a multiwindows CDU based on graphical user interface techniques. For both application and evaluation reasons, constraints were applied to the graphical CDU design to maintain as much similarity as possible with the conventional CDU. This preliminary experiment was conducted to evaluate the interface effects on training. Sixteen pilots with no FMS experience were used in a between-subjects test. A time-compressed, airline-type FMS training environment was simulated. The subjects were trained to a fixed-time criterion, and performance was measured in a final, full-mission simulation context. This paper describes the technical approach, simulation implementation, and experimental results of this effort.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-4744 , NAS 1.15:4744 , L-17563
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: A calibration of the acoustic and aerodynamic prediction methods was performed and a baseline fan definition was established and evaluated to support the quiet high speed fan program. A computational fluid dynamic analysis of the NASA QF-12 Fan rotor, using the DAWES flow simulation program was performed to demonstrate and verify the causes of the relatively poor aerodynamic performance observed during the fan test. In addition, the rotor flowfield characteristics were qualitatively compared to the acoustic measurements to identify the key acoustic characteristics of the flow. The V072 turbofan source noise prediction code was used to generate noise predictions for the TFE731-60 fan at three operating conditions and compared to experimental data. V072 results were also used in the Acoustic Radiation Code to generate far field noise for the TFE731-60 nacelle at three speed points for the blade passage tone. A full 3-D viscous flow simulation of the current production TFE731-60 fan rotor was performed with the DAWES flow analysis program. The DAWES analysis was used to estimate the onset of multiple pure tone noise, based on predictions of inlet shock position as a function of the rotor tip speed. Finally, the TFE731-60 fan rotor wake structure predicted by the DAWES program was used to define a redesigned stator with the leading edge configured to minimize the acoustic effects of rotor wake / stator interaction, without appreciably degrading performance.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-198518 , NAS 1.26:198518 , E-10398
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-06-28
    Description: The Joint University Program on Air Transportation Technology was conducted at Princeton University from 1971 to 1995. Our vision was to further understanding of the design and operation of transport aircraft, of the effects of atmospheric environment on aircraft flight, and of the development and utilization of the National Airspace System. As an adjunct, the program emphasized the independent research of both graduate and undergraduate students. Recent principal goals were to develop and verify new methods for design and analysis of intelligent flight control systems, aircraft guidance logic for recovery from wake vortex encounter, and robust flight control systems. Our research scope subsumed problems associated with multidisciplinary aircraft design synthesis and analysis based on flight physics, providing a theoretical basis for developing innovative control concepts that enhance aircraft performance and safety. Our research focus was of direct interest not only to NASA but to manufacturers of aircraft and their associated systems. Our approach, metrics, and future directions described in the remainder of the report.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-201420 , NAS 1.26:201420
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-28
    Description: A preliminary batch simulation study was conducted to define the wake decay required for a Boeing 737-100 airplane to safely encounter a Boeing 727 wake and land. The baseline six-degree-of-freedom B737 simulation was modified to include a wake model and the strip-theory calculation of the vortex-induced forces and moments. The guidance and control inputs for the airplane were provided by an autoland system. The wake strength and encounter altitude were varied to establish a safe encounter boundary. The wake was positioned such that the desired flight path traversed the core of the port Vortex. Various safe landing criteria were evaluated for defining a safe encounter boundary. A sensitivity study was also conducted to assess the effects of encounter model inaccuracies.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110223 , NAS 1.15:110223
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: A flight demonstration was conducted to address airport surface movement area capacity and safety issues by providing pilots with enhanced situational awareness information. The demonstration presented an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning system (DGPS) receiver, a high speed very high frequency (VHF) data link, an Airport Surface Detection Equipment (ASDE-3) radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on an AMASS display. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with test results.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-1998-206930 , NAS 1.15:206930 , L-17654
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: An impact-location estimation algorithm is being used at the NASA Dryden Flight Research Center to support range safety for uninhabited aerial vehicle flight tests. The algorithm computes an impact location based on the descent rate, mass, and altitude of the vehicle and current wind information. The predicted impact location is continuously displayed on the range safety officer's moving map display so that the flightpath of the vehicle can be routed to avoid ground assets if the flight must be terminated. The algorithm easily adapts to different vehicle termination techniques and has been shown to be accurate to the extent required to support range safety for subsonic uninhabited aerial vehicles. This paper describes how the algorithm functions, how the algorithm is used at NASA Dryden, and how various termination techniques are handled by the algorithm. Other approaches to predicting the impact location and the reasons why they were not selected for real-time implementation are also discussed.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-97-206299 , NAS 1.15:206299 , H-2200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-28
    Description: In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer programming formulation, the solution of which generates feasible and near-optimal routes for individual flights. The algorithm, termed the Lagrangian Generation Algorithm, is used to solve practical problems in the southwestern portion of United States in which the solutions are within 1% of the corresponding lower bounds.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-97-206395 , NAS 1.26:206395
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-06-28
    Description: With a Free Flight policy, the emphasis for air traffic control is shifting from active control to passive air traffic management with a policy of intervention by exception. Aircraft will be allowed to fly user preferred routes, as long as safety Alert Zones are not violated. If there is a potential conflict, two (or more) aircraft must be able to arrive at a solution for conflict resolution without controller intervention. Thus, decision aid tools are needed in Free Flight to detect and resolve conflicts, and several problems must be solved to develop such tools. In this report, we analyze and solve problems of proximity management, conflict detection, and conflict resolution under a Free Flight policy. For proximity management, we establish a system based on Delaunay Triangulations of aircraft at constant flight levels. Such a system provides a means for analyzing the neighbor relationships between aircraft and the nearby free space around air traffic which can be utilized later in conflict resolution. For conflict detection, we perform both 2-dimensional and 3-dimensional analyses based on the penetration of the Protected Airspace Zone. Both deterministic and non-deterministic analyses are performed. We investigate several types of conflict warnings including tactical warnings prior to penetrating the Protected Airspace Zone, methods based on the reachability overlap of both aircraft, and conflict probability maps to establish strategic Alert Zones around aircraft.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-97-205944 , NAS 1.26:205944 , TR-97138-01
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-28
    Description: This report summarizes FAA Program Analysis and Operations Research Service (ASD-400)/Lockheed Martin activities and findings related to airport surface delays and causes, in support of NASA Langley Research Center's Terminal Area Productivity (TAP) Program. The activities described in this report were initiated in June 1995. A preliminary report was published on September 30, 1995. The final report incorporates data collection forms filled out by traffic managers, other FAA staff, and an airline for the New York City area, some updates, data previously requested from various sources to support this analysis, and further quantification and documentation than in the preliminary report. This final report is based on data available as of April 12, 1996. This report incorporates data obtained from review and analysis of data bases and literature, discussions/interviews with engineers, air-traffic staff, other FAA technical personnel, and airline staff, site visits, and a survey on surface delays and causes. It includes analysis of delay statistics; preliminary findings and conclusions on surface movement, surface delay sources and causes, runway occupancy time (ROT), and airport characteristics impacting surface operations and delays; and site-specific data on the New York City area airports, which are the focus airports for this report.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-97-201721 , NAS 1.26:201721
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: A significant effort is underway at NASA Langley to develop a system to provide dynamical aircraft wake vortex spacing criteria to Air Traffic Control (ATC). The system under development, the Aircraft Vortex Spacing System (AVOSS), combines the inputs of multiple subsystems to provide separation matrices with sufficient stability for use by ATC and sufficient monitoring to ensure safety. The subsystems include a meteorological subsystem, a wake behavior prediction subsystem, a wake sensor subsystem, and system integration and ATC interfaces. The proposed AVOSS is capable of using two factors, singly or in combination, for reducing in-trail spacing. These factors are wake vortex motion out of a predefined approach corridor and wake decay below a strength that is acceptable for encounter. Although basic research into the wake phenomena has historically used wake total circulation as a strength parameter, there is a requirement for a more specific strength definition that may be applied across multiple disciplines and teams to produce a real-time, automated system. This paper presents some of the limitations of previous applications of circulation to aircraft wake observations and describes the results of a preliminary effort to bound a spacing system strength definition.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110343 , NAS 1.15:110343
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-28
    Description: As part of the NASA Terminal Area Productivity Program, Langley Research Center embarked on a series of field measurements of wake vortex characteristics and associated atmospheric boundary layer properties. One measurement period was at the Memphis International Airport in August 1995. Atmospheric temperature, humidity, winds, turbulence, radiation, and soil properties were measured from a variety of sensor systems and platforms including sodars, profilers, aircraft and towers. This research focused on: (1) changes that occurred in tower data during sunrise and sunset transitions, (2) vertical variation of temperature and cross-head winds at selected times utilizing combinations of sensors, and (3) changes measured by an OV-10 aircraft during approaches and level flights. Significant but not unusual changes are documented and discussed in terms of expected boundary layer behavior. Questions on measurement and prediction of these changes from existing and near-term capabilities are discussed in the context of a future Aircraft Vortex Spacing System.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-4786 , NAS 1.26:4786
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: This paper describes a method that was developed to detect gear tooth damage that does not require a priori knowledge of the frequency characteristic of the fault. The basic idea of the method is that a few damaged teeth will cause transient load fluctuations unlike the normal tooth load fluctuations. The method attempts to measure the energy in the lower side bands of the modulated signal caused by the transient load fluctuations. The method monitors the energy in the frequency interval which excludes the frequency of the lowest dominant normal tooth load fluctuation and all frequencies above it. The method reacted significantly to the tooth fracture damage results documented in the Lewis data sets which were obtained from tests of the OH-58A transmission and tests of high contact ratio spiral bevel gears. The method detected gear tooth fractures in all four of the high contact ratio spiral bevel gear runs. Published results indicate other detection methods were only able to detect faults for three out of four runs.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-112207 , NAS 1.15:112207 , A-977138
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Description: This study analyzes techniques instructors use to facilitate crew analysis and evaluation of their Line-Oriented Flight Training (LOFT) performance. A rating instrument called the Debriefing Assessment Battery (DAB) was developed which enables raters to reliably assess instructor facilitation techniques and characterize crew participation. Thirty-six debriefing sessions conducted at five U.S. airlines were analyzed to determine the nature of instructor facilitation and crew participation. Ratings obtained using the DAB corresponded closely with descriptive measures of instructor and crew performance. The data provide empirical evidence that facilitation can be an effective tool for increasing the depth of crew participation and self-analysis of CRM performance. Instructor facilitation skill varied dramatically, suggesting a need for more concrete hands-on training in facilitation techniques. Crews were responsive but fell short of actively leading their own debriefings. Ways to improve debriefing effectiveness are suggested.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-110442 , NAS 1.15:110442 , DOT/FAA/AR-96/122
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Description: The Federal Aviation Administration is trying to make its air traffic management system more responsive to the needs of the aviation community by exploring the concept of 'free flight' for aircraft flying under instrument flight rules. A logical first step toward free flight could be made without significantly altering current air traffic control (ATC) procedures or requiring new airborne equipment by designing a ground-based system to be highly responsive to 'user preference' in en route airspace while providing for an orderly transition to the terminal area. To facilitate user preference in all en route environments, a system based on an extension of the Center/TRACON Automation System (CTAS) is proposed in this document. The new system would consist of two integrated components. An airspace tool (AT) focuses on unconstrained en route aircraft (e.g., not transitioning to the terminal airspace), taking advantage of the relatively unconstrained nature of their flights and using long-range trajectory prediction to provide cost-effective conflict resolution advisories to sector controllers. A sector tool (ST) generates efficient advisories for all aircraft, with a focus on supporting controllers in analyzing and resolving complex, highly constrained traffic situations. When combined, the integrated AT/ST system supports user preference in any air route traffic control center sector. The system should also be useful in evaluating advanced free-flight concepts by serving as a test bed for future research. This document provides an overview of the design concept, explains its anticipated benefits, and recommends a development strategy that leads to a deployable system.
    Keywords: Air Transportation and Safety
    Type: NASA TM-4763 , NAS 1.15:4763 , A-962788
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-06-28
    Description: An ice detector and deicing fluid effectiveness monitoring system for an aircraft is disclosed. The ice detection portion is particularly suited for use in flight to notify the flight crew of an accumulation of ice on an aircraft lifting and control surfaces, or helicopter rotors, whereas the deicing fluid effectiveness monitoring portion is particularly suited for use on the ground to notify the flight crew of the possible loss of the effectiveness of the deicing fluid. The ice detection portion comprises a temperature sensor and a parallel arrangement of electrodes whose coefficient of coupling is indicative of the formation of the ice, as well as the thickness of the formed ice. The fluid effectiveness monitoring portion comprises a temperature sensor and an ionic-conduction cell array that measures the conductivity of the deicing fluid which is indicative of its concentration and, thus, its freezing point. By measuring the temperature and having knowledge of the freezing point of the deicing fluid, the fluid effectiveness monitoring portion predicts when the deicing fluid may lose its effectiveness because its freezing point may correspond to the temperature of the ambient.
    Keywords: Air Transportation and Safety
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-06-28
    Description: This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Atlanta Hartsfield International Airport in Atlanta, GA. The test aircraft was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. Qualitative and quantitative results are discussed.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-1998-206283 , NAS 1.15:206283 , L-17690
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-28
    Description: This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-201607 , NAS 1.26:201607 , DOT/FAA/ND-96/2 , RTI/4500/030-01F
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The current air traffic environment in airport terminal areas experiences substantial delays when weather conditions deteriorate to Instrument Meteorological Conditions (IMC). Expected future increases in air traffic will put additional pressures on the National Airspace System (NAS) and will further compound the high costs associated with airport delays. To address this problem, NASA has embarked on a program to address Terminal Area Productivity (TAP). The goals of the TAP program are to provide increased efficiencies in air traffic during the approach, landing, and surface operations in low-visibility conditions. The ultimate goal is to achieve efficiencies of terminal area flight operations commensurate with Visual Meteorological Conditions (VMC) at current or improved levels of safety.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-201611 , NAS 1.26:201611
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Description: Based on theories of adult learning and airline industry guidelines for Crew Resource Management (CRM), the stated objective during Line Oriented Flight Training (LOFT) debriefings is for instructor pilots (IP's) to facilitate crew self-analysis of performance. This study reviews 19 LOFT debriefings from two major U.S. airlines to examine the relationship between IP efforts at facilitation and associated characteristics of crew participation. A subjective rating scale called the Debriefing Assessment Battery was developed and utilized to evaluate the effectiveness of IP facilitation and the quality of crew participation. The results indicate that IP content, encouragement, and questioning techniques are highly and significantly correlated with, and can therefore predict, the degree and depth of crew participation.
    Keywords: Air Transportation and Safety
    Type: NASA-CR-196701 , NAS 1.26:196701 , A-961979
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-02
    Description: A flight demonstration was conducted to address airport surface movement area capacity issues by providing pilots with enhanced situational awareness information. The demonstration showed an integration of several technologies to government and industry representatives. These technologies consisted of an electronic moving map display in the cockpit, a Differential Global Positioning System (DGPS) receiver, a high speed VHF data link, an ASDE-3 radar, and the Airport Movement Area Safety System (AMASS). Aircraft identification was presented to an air traffic controller on AMASS. The onboard electronic map included the display of taxi routes, hold instructions, and clearances, which were sent to the aircraft via data link by the controller. The map also displayed the positions of other traffic and warning information, which were sent to the aircraft automatically from the ASDE-3/AMASS system. This paper describes the flight demonstration in detail, along with preliminary results.
    Keywords: Air Transportation and Safety
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-02
    Description: The main purpose of this investigation was for NASA to help the National Transportation Safety Board (NTSB) gain better understanding of the events that led to the loss of Comair Flight 3272 over Monroe, Michigan, on January 9, 1997. In-flight icing was suspected as being the primary cause of this accident. Of particular interest to the Safety Board was what NASA could learn about the potential performance degradation of the wing of the Embraer EMB-120 twin-turboprop commuter aircraft with various levels of ice contamination. NASA agreed to undertake (1) ice-accretion prediction computations with NASA s LEWICE program to bound the kind of contaminations that the vehicle may have developed, (2) testing in the NASA Lewis Research Center's Icing Research Tunnel to verify and refine the ice shapes developed by LEWICE, (3) a two-dimensional Navier- Stokes analysis to determine the performance degradation that those ice shapes could have caused, and (4) an examination using three-dimensional Navier-Stokes codes to study the three-dimensional effects of ice contamination.
    Keywords: Air Transportation and Safety
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-06
    Description: Air traffic in the United States has continued to grow at a steady pace since 1980, except for a dip immediately after the tragic events of September 11, 2001. There are different growth scenarios associated both with the magnitude and the composition of the future air traffic. The Terminal Area Forecast (TAF), prepared every year by the FAA, projects the growth of traffic in the United States. Both Boeing and Airbus publish market outlooks for air travel annually. Although predicting the future growth of traffic is difficult, there are two significant trends: heavily congested major airports continue to see an increase in traffic, and the emergence of regional jets and other smaller aircraft with fewer passengers operating directly between non-major airports. The interaction between air traffic demand and the ability of the system to provide the necessary airport and airspace resources can be modeled as a network. The size of the resulting network varies depending on the choice of its nodes. It would be useful to understand the properties of this network to guide future design and development. Many questions, such as the growth of delay with increasing traffic demand and impact of the en route weather on future air traffic, require a systematic understanding of the properties of the air traffic network. There has been a major advance in the understanding of the behavior of networks with a large number of components. Several theories have been advanced about the evolution of large biological and engineering networks by authors in diversified disciplines like physics, mathematics, biology and computer science. Several networks exhibit a scale-free property in the sense that the probabilistic distribution of their nodes as a function of connections decreases slower than an exponential. These networks are characterized by the fact that a small number of components have a disproportionate influence on the performance of the network. Scale-free networks are tolerant to random failure of components, but are vulnerable to selective attack on components. This paper examines two network representations for the baseline air traffic system. A network defined with the 40 major airports as nodes and with standard flight routes as links has a characteristic scale: all nodes have 60 or more links and no node has more than 460 links. Another network is defined with baseline aircraft routing structure exhibits an exponentially truncated scale-free behavior. Its degree ranges from 2 connections to 2900 connections, and 225 nodes have more than 250 connections. Furthermore, those high-degree nodes are homogeneously distributed in the airspace. A consequence of this scale-free behavior is that the random loss of a single node has little impact, but the loss of multiple high-degree nodes (such as occurs during major storms in busy airspace) can adversely impact the system. Two future scenarios of air traffic growth are used to predict the growth of air traffic in the United States. It is shown that a three-times growth in the overall traffic may result in a ten-times impact on the density of traffic in certain parts of the United States.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN65789
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-05-30
    Description: This presentation will: Describe some of the exploratory work and products of the UCAT, which lay the groundwork for NASAs UAM investments; Describe the UAM Grand Challenge
    Keywords: Air Transportation and Safety
    Type: AFRC-E-DAA-TN68911
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-06
    Description: For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, and hardware components. This system can detect and diagnose failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the-fly temporal and Bayesian probabilistic fault diagnosis; and (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software. We call this approach rt-R2U2, a name derived from its requirements. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual flight data from the NASA Swift UAS.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN24388 , International Journal of Prognostics & Health Management (ISSN 2153-2648); 6; 021
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-05-22
    Description: Among its many other functions, the Federal Aviation Administrations En Route Automation Modernization (ERAM) provides external systems with real-time air traffic data for flights in enroute airspace in the National Airspace System. It replaced the En Route Host computer and backup system used at 20 FAA Air Route Traffic Control Centers (Centers) nationwide. Among the new features of ERAM, its output data stream of flight plan and track data includes a unique identifier for a flight originating in any one of the 20 ERAM Centers. The unique identifier, called the Global Unique Flight Identifier (GUFI), is persistent across all the Centers that track the flight. However, certain factors make it difficult to correlate data using the GUFI. First, the value of the GUFI is only unique within a time window of seven days. Second, the GUFI is attached only to flight-plan related data messages. Finally, track positions reported by ERAM do not reference the GUFI. In order to correlate historical as well as real time flight-plan and position related ERAM data, an efficient, heuristic approach was developed, and a prototype was developed. The approach showed that the processing speed, through parallel processing, is sufficient to correlate ERAM data in real-time. As described in this paper, when there are multiple track positions reported from multiple Centers within a few seconds, each position is assigned with a weighted score to indicate the quality of the position relative to its last know position. The weighted score can be used to eliminate potentially duplicate track positions. The approach is database-agnostic, and can be implemented in a Big Data system such as an Apache Hadoop system, as well as in traditional database systems.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2015–218819 , ARC-E-DAA-TN23612
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-06
    Description: Video describing UTM
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN33180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-06
    Description: Animation video explaining ATD-2
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN33179
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-31
    Description: FACT is a software program that provides important information about winter weather operations to airline dispatchers and airport personnel. FACT has a "quad" design and shows various maps, text, and tabular information. It also has a team messaging capability. It is meant to be used by airline dispatchers and airport personnel to manage winter storms. This presentation is for a meeting with Boeing. COMMERCIAL AIRCRAFT; AIRLINE OPERATIONS; STORMS COMPUTER PROGRAMS; AIRLINE OPERATIONS; WEATHER FORECASTING; MESSAGE PROCESSING; AIRCRAFT COMMUNICATION; WINTER; STORMS (METEOROLOGY); COMMERCIAL AIRCRAFT
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN70188 , Meeting with Boeing; Jun 26, 2019; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-27
    Description: The development of a global economy makes the outlook for high speed commercial intercontinental flight feasible, and the development of various configurations operating from 20 to 30 km have been proposed. In addition to the still unresolved issues relating to current commercial operations (12-16 km), the higher dose rates associated with the higher operating altitudes makes il imperative that the uncertainties in the atmospheric radiation environment and the associated health risks be re-examined. Atmospheric radiation associated with the galactic cosmic rays forms a background level which may, under some circumstances, exceed newly recommended allowable exposure limits proposed on the basis of recent evaluations of the A -bomb survivor data (due to increased risk coefficients). These larger risk coefficients, within the context of the methodology for estimating exposure limits, are resulting in exceedingly low estimated allowable exposure limits which may impact even present day flight operations and was the reason for the CEC workshop in Luxembourg (1990). At higher operating altitudes, solar particles events can produce exposures many orders of magnitude above background levels and pose significant health risks to the most sensitive individuals (such as during pregnancy). In this case the appropriate quality factors are undefined, and some evidence exists which indicates that the quality factor for stochastic effects is a substantial underestimate.
    Keywords: Air Transportation and Safety
    Type: NASA-TM-112628 , NAS 1.15:112628
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-25
    Description: AEDT2b (Aviation Environment Design Tool version 2b) is FAA's aviation environmental consequence tool. We have integrated part of AEDT2b's fuel and emission computation modules with our FACET in the past years. This talk is to provide the feedback to AEDT2b's development team from a ATM researcher viewpoint.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN22022
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-03
    Description: This paper identifies and characterizes factors that contribute to operator workload in unmanned vehicle systems. Our objective is to provide a basis for developing models of workload for use in design and operation of complex human-machine systems. In 1986, Hart developed a foundational conceptual model of workload, which formed the basis for arguably the most widely used workload measurement techniquethe NASA Task Load Index. Since that time, however, there have been many advances in models and factor identification as well as workload control measures. Additionally, there is a need to further inventory and describe factors that contribute to human workload in light of technological advances, including automation and autonomy. Thus, we propose a conceptual framework for the workload construct and present a taxonomy of factors that can contribute to operator workload. These factors, referred to as workload drivers, are associated with a variety of system elements including the environment, task, equipment and operator. In addition, we discuss how workload moderators, such as automation and interface design, can be manipulated in order to influence operator workload. We contend that workload drivers, workload moderators, and the interactions among drivers and moderators all need to be accounted for when building complex, human-machine systems.
    Keywords: Air Transportation and Safety
    Type: NASA/TM-2017-219482 , ARC-E-DAA-TN40243
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-31
    Description: This work introduces an approach to estimate the complexity of a low-altitude air traffic scenario involving multiple UASs using mathematical programming. Given a set of multi-point UAS flight trajectories, vehicle dynamics, and a conflict resolution algorithm, an abstract model is developed such that it can be solved quickly using a mathematical programming optimization software without running high-fidelity simulations that can be computationally expensive and may not suit real-time apA quick and accurate assessment of complexity for a given traffic scenario can help plan and schedule flights to alleviate traffic bottleneck and mitigate operation risks, especially for unmanned aerial system traffic management where high traffic density or complexity is expected. This work introduces a traffic scenario complexity metric that was constructed based on the number of potential conflicts weighted by the conflict resolution cost associated. The cost associated with a conflict is calculated based on the corresponding conflict resolution maneuvers. To obtain the conflict resolution maneuvers, a MILP-based optimization was formulated with the vehicle model and conflict management parameters incorporated. To evaluate the complexity metrics, an approach of using measurements from high-fidelity simulations was proposed. The scenario complexity measurements for 920 random-generated scenarios were obtained through high-fidelity simulations and treated as the ground truth. Two statistics methods: Pearson and Alternative Conditional Expectations were applied for analysis. The results showed that the number of flights has low correlation with the scenario complexity according to the correlation coefficients calculated by both methods. The Alternative Conditional Expectations method shows that the proposed scenario complexity metric has better correlation with the ground truth than the number of potential conflicts.plications. In the abstract model, each vehicle is represented by a time-varied vector associated with position, speed, and heading information. The total extra distance that aircraft need to divert from their original routes to avoid collisions is computed and used to setup a quadratic programming formula. The metrics including the number of conflicts and extra distances travelled by all vehicles are then utilized to estimate the complexity of a given UAS flight scenario. Results and verification against high-fidelity simulations will be provided in the final draft.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN69705 , AIAA Aviation Forum 2019; Jun 17, 2019 - Jun 21, 2019; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-27
    Description: Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.
    Keywords: Air Transportation and Safety
    Type: AIAA 17th Applied Aerodynamics Conference; 28 Jun. - 1 Jul.; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-20
    Description: In air traffic control, task demand and workload have important implications for the safety and efficiency of air traffic, and remain dominant considerations. Within air traffic control, task demand is dynamic. However, research on demand transitions and subsequent controller perception and performance is limited. This research uses an air traffic control simulation to investigate the effect of task demand transitions, and the direction of those transitions, on workload and fatigue and one efficiency performance measure. Results indicate that a change in task demand appears to affect both workload and fatigue ratings, although not necessarily performance. In addition, participants workload and fatigue ratings in equivalent task demand periods appear to change depending on the demand period preceding the time of the current ratings. Further research is needed to enhance understanding of demand transition and workload history effects on operator experience and performance, in both air traffic control and other safety-critical domains.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN34265 , Applied Human Factors and Ergonomics Conference; Jul 27, 2016 - Jul 31, 2016; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-18
    Description: The U.S. National Transportation Safety Board (NTSB) has recorded 8,436 rotorcraft accidents during the period mid - 1963 through the end of 1997. Review and analysis of the NTSB summary narrative for each accident has been completed. In addition, FAA (Federal Aviation Administration) counts of the growing registered rotorcraft fleet over this period has obtained. Taken together, a large and informative data base is now available, which indicates that the accident rate (on a per airframe basis) has changed very little since the mid 1970s. The data base, even in the summary form provided by this paper, offers suggestions for safer designs and improved flight operations. For analysis purposes, each accident has been placed in one of 21 top level categories as defined by the NTSB. Analysis of this grouping shows that 70 percent of rotorcraft accidents are associated with four categories. The accident count in these top four categories are: (1) 2,408 Loss of engine power (2) 1,322 In flight collision with object (3) 1,114 Loss of control (4) 1,083 Airframe/component/system failure or malfunction. Single engine rotorcraft dominate these accident statistics because of their sheer numbers over the study period. One-third of the loss of engine power accidents with these aircraft is fuel/air mixture related and fuel exhaustion is a common event. This appears to be the case whether a piston or turbine engine is installed. This paper provides similar study results in the other major mishap categories. It shows that both minor and major design and flight operations changes can -- and should -- be made to reduce rotorcraft accidents in the future. The paper outlines these changes and suggests how they may be made.
    Keywords: Air Transportation and Safety
    Type: American Helicopter Society Forum 55; May 25, 1999 - May 27, 1999; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The goal of the commercial air transport system is to provide air transportation to the flying public at an acceptable cost with minimal risk. in an ideal situation these three goals would support each other. In fact, it is sometimes the case that the goals conflict: getting passengers to their destinations on time may conflict with fixing a minor mechanical malfunction that may or may not impact safety; flying a route that will avoid turbulence, thereby providing passengers with a more comfortable ride, may consume more fuel; managing traffic density may mean aircraft are delayed or must use an approach that will result in a long taxi to their gates, costing time and fuel. Various players in the system--pilots, dispatchers, controllers, as well as managers in the airline carriers and traffic management system--make decisions every day that involve trade-offs of benefits and costs. The prospect of revisions in the air traffic management system, with shifts in responsibilities from controllers to users, including airline operations center personnel and pilots, means that individuals may be performing either new jobs or old jobs under new guidance. It will be essential to know how the various players (a) perceive the risks and benefits associated with the decisions they will make under the old and new control structures, and (b) how much risk they are willing to accept in making decisions. Risk is here defined as the probability and magnitude of negative events (after Slovic, 1987). Of primary interest are risks associated with traffic, weather, and operational factors such as schedule, fuel consumption, and passenger service. Previous research has documented differences between groups in perceptions of risks associated with both everyday and aviation related situations. Risk perception varies as a function of familiarity with the situation, degree to which one is potentially affected by the risk, the level of control one has over the situation, and one's level of experience and responsibility in the situation. In our presentation we will consider several factors that may influence differences in risk perception, risk tolerance and risk management among the three major categories of participants in the aviation system (pilots, dispatchers, and controllers). Primary factors that may affect risk attitudes (the collective term we will use for the three components of risk) include: expertise or job-specific knowledge or training, personal involvement or vulnerability to consequences, goals, time horizon (imminence of consequences), span of control and type of control, and information or technology support. These will be considered in the context of five different types of risk (physical threat, economic, social, legal, and ethical). A study designed to study differences between pilots and controllers in their perceptions and responses to traffic risks under the present and a user-preferred control situation will be described. Future studies involving dispatchers' risk perceptions regarding various types of risk will be discussed.
    Keywords: Air Transportation and Safety
    Type: Airline Dispatchers Federation Meeting; Oct 10, 1997; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-18
    Description: Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go" decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.
    Keywords: Air Transportation and Safety
    Type: AIAA Guidance, Navigation, and Control Conference; Aug 10, 1998 - Aug 12, 1998; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-18
    Description: The primary objective of the NASA Advanced Air Transportation Technologies (AATT) program is to fully explore the possibilities of the "Free Flight" concept. AVIATION products will enable substantial increases in the effectiveness of national and global air transportation systems. These increases will be achieved by developing and testing automation aids that can assist in the decision-making process among pilots, air traffic controllers, and dispatchers. The AATT program is responsible for defining, exploring, and developing advanced air traffic system concepts to a level suitable for preproduction prototype assessment by the FAA which, if successful, will result in full-scale deployment. These decision support tools will allow all airspace users to choose the best flight path for their own purpose within the constraints of safety and the needs of other users. To do this, several goals must be met: allow users to minimize operating costs by making trade-offs between time and routing; improve the effectiveness of high-density operations on the ground and in the air, enable safe operation in a smooth and efficient manner across boundaries of free-flight and capacity-constrained flight regions; provide system improvements that are easily deployable anywhere in the world; and improve the ability to simulate advanced capabilities in the airspace system.
    Keywords: Air Transportation and Safety
    Type: Aviation Congress and Exposition; Oct 13, 1997 - Oct 16, 1997; Anaheim, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-18
    Description: NASA and the FAA have initiated programs of research and development to provide flight crew, airline operations and air traffic managers with automation aids to increase capacity in en route and terminal area to support the goals of free flight for safe, flexible, predictable, and efficient operations. To support the development of those aiding systems human performance in automated aiding has been examined in empirical and computationally analytic studies. This paper presents a set of those studies in full mission simulation and the development of a predictive computational model of human performance. We have found that the combination of methodologies provide a powerful design-aiding process. We will describe three research programs in support of Free Flight Operations from the perspective of human performance requirements. We have examined procedures and communications in the use of voice and data-link operation at the transition between unconstrained (enroute) and constrained (terminal) airspace operations. We have examined the timing and form of Center TRACON Automation System (CTAS) advisories in descent. We have investigated the shape and dimensions of an 'alert zone' for air-based separation in unconstrained operations. Finally, we have examined the interaction of a ground-based conflict detection/resolution aiding system, as it interacts with a cockpit-based conflict alerting mechanism. Additional information is contained in the original extended abstract.
    Keywords: Air Transportation and Safety
    Type: 10th CEAS Conference on Free Flight; Oct 20, 1997 - Oct 21, 1997; Amsterdam; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-18
    Description: The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".
    Keywords: Air Transportation and Safety
    Type: Ninth Symposium on Aviation Psychology; Apr 27, 1997 - May 01, 1997; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-18
    Description: Increasing numbers of aircraft are operating on the surface of airports throughout the world. Airport operations are forecast to grow by more that 50%, by the year 2005. Airport surface movement traffic would therefore be expected to become increasingly congested. Safety of these surface operations will become a focus as airport capacity planning efforts proceed toward the future. Several past events highlight the prevailing risks experienced while moving aircraft during ground operations on runways, taxiways, and other areas at terminal, gates, and ramps. The 1994 St. Louis accident between a taxiing Cessna crossing an active runway and colliding with a landing MD-80 emphasizes the importance of a fail-safe system for airport operations. The following study explores reports of incidents occurring on an airport surface that did not escalate to an accident event. The Aviation Safety Reporting System has collected data on surface movement incidents since 1976. This study sampled the reporting data from June, 1993 through June, 1994. The coding of the data was accomplished in several categories. The categories include location of airport, phase of ground operation, weather /lighting conditions, ground conflicts, flight crew characteristics, human factor considerations, and airport environment. These comparisons and distributions of variables contributing to surface movement incidents can be invaluable to future airport planning, accident prevention efforts, and system-wide improvements.
    Keywords: Air Transportation and Safety
    Type: Ohio State University 9th Conference on Aviation Psychology; Apr 27, 1997 - May 01, 1997; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The Aviation Safety Reporting System (ASRS) was established in 1976 under an agreement between the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). This cooperative safety program invites pilots, air traffic controllers, flight attendants, maintenance personnel, and others to voluntarily report to NASA any aviation incident or safety hazard. The FAA provides most of the program funding. NASA administers the program, sets its policies in consultation with the FAA and aviation community, and receives the reports submitted to the program. The FAA offers those who use the ASRS program two important reporting guarantees: confidentiality and limited immunity. Reports sent to ASRS are held in strict confidence. More than 350,000 reports have been submitted since the program's beginning without a single reporter's identity being revealed. ASRS removes all personal names and other potentially identifying information before entering reports into its database. This system is a very successful, proof-of-concept for gathering safety data in order to provide timely information about safety issues. The ASRS information is crucial to aviation safety efforts both nationally and internationally. It can be utilized as the first step in safety by providing the direction and content to informed policies, procedures, and research, especially human factors. The ASRS process and procedures will be presented as one model of safety reporting feedback systems.
    Keywords: Air Transportation and Safety
    Type: Academie Nationale l''Air et de l''Espace International Symposium: The Prevention of Air Accidents; Mar 19, 1997 - Mar 20, 1997; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-18
    Description: A task-analytic approach was used to evaluate the results from an experiment comparing two training methods for the "Precision Descent," a cockpit procedure designed to complement a new, computer-based air traffic control advisory system by allowing air traffic controllers to assign precise descent trajectories to aircraft. A task model was developed for the procedure using a methodology that represents four different categories of task-related knowledge: (1) ability to determine current flight goals; (2) ability to assess the current flight situation relative to those goals; (3) operational knowledge about flight-related tasks; and (4) knowledge about task selection. This model showed what knowledge experienced pilots already possessed, and how that knowledge was supplemented by training material provided in the two training conditions. All flight crews were given a "Precision Descent Chart" that explained the procedure's clearances and compliance requirements. This information enabled pilots to establish appropriate flight goals for the descent, and to monitor their compliance with those goals. In addition to this chart, half of the crews received a "Precision Descent Bulletin" containing technique recommendations for performing procedure-related tasks. The Bulletin's recommendations supported pilots in task selection and helped clarify the procedure's compliance requirements. Eight type-rated flight crews flew eight Precision Descents in a Boeing 747-400 simulator, with four crews in each of the two training conditions. Both conditions (Chart and Chart-with-Bulletin) relied exclusively on the use of those documents to introduce the procedure. No performance feedback was provided during the experiment. Preliminary result show better procedure compliance and higher acceptability ratings from flight crews in the Chart-with-Bulletin condition. These crews performed flight-related tasks less efficiently, however, using the simpler but less efficient methods suggested in the Bulletin. When a more efficient method was recognized, these crews tended to use the more efficient method in addition to the Bulletin's recommendation, instead of replacing it.
    Keywords: Air Transportation and Safety
    Type: 9th International Symposium on Aviation Psychology; Apr 27, 1997 - May 01, 1997; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: Realization of the expected proliferation of Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) depends on the development and validation of performance standards for UAS Detect and Avoid (DAA) Systems. The RTCA Special Committee 228 is charged with leading the development of draft Minimum Operational Performance Standards (MOPS) for UAS DAA Systems. NASA, as a participating member of RTCA SC-228 is committed to supporting the development and validation of draft requirements for DAA surveillance system performance. A recent study conducted using NASA's ACES (Airspace Concept Evaluation System) simulation capability begins to address questions surrounding the development of draft MOPS for DAA surveillance systems. ACES simulations were conducted to study the performance of sensor systems proposed by the SC-228 DAA Surveillance sub-group. Analysis included but was not limited to: 1) number of intruders (both IFR and VFR) detected by all sensors as a function of UAS flight time, 2) number of intruders (both IFR and VFR) detected by radar alone as a function of UAS flight time, and 3) number of VFR intruders detected by all sensors as a function of UAS flight time. The results will be used by SC-228 to inform decisions about the surveillance standards of UAS DAA systems and future requirements development and validation efforts.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN27427 , RTCA SC-228 DAA Surveillance Subgroup Meeting; Oct 22, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-20
    Description: Target generation systems provide the positions of aircraft in air traffic simulations. As the scope of the simulation domains expand, there is a need to develop systems that can provide position reports for thousands of aircraft simultaneously and at update rates that support out-the-window visualization. This paper discusses the motivation and reasoning behind investigating development of a next generation target generator through distributed computing using clustered node processing and how a target generation system benefit future research that utilizes human-in-the-loop simulations.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN64127 , ARC-E-DAA-TN64472 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-20
    Description: The Federal Aviation Administration (FAA) has enhanced the Time-Based Flow Management (TBFM) scheduling tool with a "Checkbox ON" vs. "OFF" function which allows Traffic Management Coordinators (TMCs) to make room in a crowded arrival stream for a departure. When scheduling a departure, having the checkbox ON can delay the Scheduled Times of Arrivals (STAs) of the airborne flights upstream of the TBFM freeze horizons and can compress these flights to their minimum required spacing, thereby creating a slot for a departure. Hence, having the checkbox ON can reduce the frequent ground delays of aircraft departing near high volume airports but can increase delays for airborne arrivals. A Human-in-the-Loop (HITL) simulation compared arrival and departure delays to Newark Airport (EWR) with the checkbox ON vs. OFF as the default position. Three other conditions in this HITL involved various National Airspace System (NAS)-wide approaches for timely delivery of aircraft to the TBFM region. These conditions were: Baseline, using current Mile-in-Trail (MIT) spacing restrictions; Integrated Demand Management (IDM), where all aircraft were given departure times (Expect Departure Clearance Times, or EDCTs), ultimately based on the EWR Airport Arrival Rate; and IDM plus Required Time of Arrival (RTA), a flight deck tool which allowed some aircraft to meet a controlled time of arrival to the TBFM area more precisely. Results showed that the checkbox tool was powerful: with the checkbox ON, departure delays decreased and airborne delays increased, as predicted. However, assuming that the cost ratio of a minute of airborne delay to a minute of departure delay is in the range of 1.2 to 3, as commonly indicated by the literature, checkbox ON and checkbox OFF conditions showed approximately equal total delay costs, i.e., the cost of delays in the air balanced the cost of the delay on the ground. The three scheduling conditions also had approximately equal total delay costs, although a simulation artifact may have reduced the delays in the Baseline condition. In the debrief following the simulation, the TMCs concluded that the checkbox should be used flexibly depending on the current delay situation, and suggested modifications to the checkbox tool which would help them use it in this way, along with enhanced training. The relatively similar total cost of both checkbox default options in this simulation indicates that this might be a fruitful approach, and replace the necessity to have the checkbox rigidly set to either ON or OFF.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN34829 , 2016 IEE/AIAA Digital Avionics Systems Conference (DASC); Sep 25, 2016 - Sep 30, 2016; Sacramento, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-20
    Description: This paper presents an encounter-based simulation architecture developed at NASA to facilitate flexible and efficient Detect and Avoid modeling in parametric or tradespace studies on large data sets. The basic premise of this tool is that large-scale input data can be reduced to a set of `canonical encounters' and that using the reduced data in simulations does not lead to loss of fidelity. A canonical encounter is specified as ownship and intruder flight portions potentially resulting in a loss of well clear along with a set of properties that characterize the encounter. The advantages of using canonical encounters include faster simulations, reduced memory footprint, ability to select encounters based on user-specified criteria, shared encounters across multiple teams, peer-reviewed encounters, and a better understanding of the input data set, to name a few.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN62918 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-20
    Description: Current radar-based air traffic service providers may preserve privacy for military and corporate operations by procedurally preventing public release of selected flight plans, position, and state data. The FAA mandate for national adoption of Automatic Dependent Surveillance Broadcast (ADS-B) in 2020 does not include provisions for maintaining these same aircraft-privacy options, nor does it address the potential for spoofing, denial of service, and other well-documented risk factors. This paper presents an engineering prototype that embodies a design and method that may be applied to mitigate these ADS-B security issues. The design innovation is the use of an open source permissioned blockchain framework to enable aircraft privacy and anonymity while providing a secure and efficient method for communication with Air Traffic Services, Operations Support, or other authorized entities. This framework features certificate authority, smart contract support, and higher-bandwidth communication channels for private information that may be used for secure communication between any specific aircraft and any particular authorized member, sharing data in accordance with the terms specified in the form of smart contracts. The prototype demonstrates how this method can be economically and rapidly deployed in a scalable modular environment.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN63825 , AIAA SciTech Forum; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN20867 , American Airlines Presentation; Jan 20, 2015; Irving, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-20
    Description: The objective of this task is to evaluate thermal cycle behavior of advanced 2.5/3D electronics commercial-off the-shelf (COTS) packages of different configurations assembled onto printed circuit boards (PCBs). Three key approaches were considered for evaluation. The first approach focused on the through-mold via (TMV) technology at assembly level. The second approach focused on evaluation of 2.5D (also known as, System in Package (SiP)) in fine pitch ball grid array (FPGA). The third approach focused on evaluation of through-silicone-via (TSV) technologies. This report presents the test results for TMV and SiP packaging technologies and reliability, and it also provides lessons learned on quality assurance methods. Specifically, the report presents the test matrix for various 3D TMV packaging assembly configurations and reliability characterizations performed under two accelerated thermal cycling (ATC) and accelerated thermal shock cycling (ATSC) conditions. The ATC and ATSC were performed in the range of 55C to 125C and 100C to 100C, respectively. The report also includes assembly of a SiP a 60-mm fine-pitch ball-grid array (FPGA) interposer with an IC at the center and six chip-scale package (CSP) daisy chains at the peripherywith package assembly characterizations. After assembly, the daisy chains were subjected to ATCs in the range of 40C to 125C for reliability evaluation. Finally, for both TMV and SiP packaging configurations, characterizations results by X-ray, optical imaging, and daisy-chain resistance evaluations were also presented.
    Keywords: Air Transportation and Safety
    Type: JPL-PUB-18-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-20
    Description: This presentation describes one of the areas of the Detect-and-Avoid work NASA is working on: reduce the barriers for UAS operations with low cost, size, weight, and power sensors.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN55955 , XPONENTIAL 2018; Apr 30, 2018 - May 02, 2018; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Electric Vertical Takeoff and Landing (eVTOL) vehicle and airspace technologies promise large increases in the number of aircraft in operation. One critical technology for these emerging markets is the increased use of automated systems to reduce pilot skill, training, and proficiency requirements. While the use of these systems promises to reduce or eliminate pilot functions in the long-term, the technology development for the required functions will necessitate a phased transition. The transition to, and adoption of automated systems will generate new safety challenges. This presentation discusses current safety challenges, new challenges for eVTOLs, and some research focused on addressing these challenges.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN57236 , Association for Unmanned Vehicle Systems International Conference (AUVSI 2018): From VTOL to eVTOL: Technical Solutions; May 24, 2018 - May 25, 2018; San Carlos, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-20
    Description: When solving problems, multi-person airline crews can choose whether to work together, or to address different aspects of a situation with a divide and conquer strategy. Knowing which of these strategies is most effective may help airlines develop better procedures and training. This paper concentrates on joint attention as a measure of crew coordination. We report results obtained by applying cross recurrence analysis to eye movement data from two-person crews, collected in a flight simulator experiment. The analysis shows that crews exhibit coordinated gaze roughly 1/6th of the time, with a tendency for the captain to lead the first officers visual attention. The degree to which crews coordinate their gaze is not significantly correlated with performance ratings assigned by instructors; further research questions and approaches are discussed.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN35684 , European Association for Aviation Psychology (EAAP) Conference; Sep 26, 2016 - Sep 30, 2016; Cascais; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-20
    Description: Long-Haul Aircraft consume most of their fuel during the cruise phase of flight. The inefficiency in cruise flights compared to efficient routes varies is around 3 to 4. The efficiency of oceanic flights is low due to limited navigational and communication equipment, congestion and airspace restrictions. The availability of Automated Dependent Surveillance-Broadcast (ADS-B) and other improvements provides opportunity for better strategic planning of trajectories. Transatlantic flights between US and Europe constitute one of the busiest oceanic airspace regions in the world. This talk examines the benefits of a wind-optimal trajectory concept with a strategic de-confliction component compared to the current flight planning using the North Atlantic Tracks. The analysis is based on air traffic between US and Europe during July 2012. The potential fuel savings are in the range of (420-970) kg per flight for a Boeing 767-300, the most widely used aircraft between the city-pairs in this study. The talk also describes a global simulation of aviation operations combining flight plans and real air traffic data with historical commercial city-pair aircraft type and schedule data and global atmospheric data. The resulting capability extends the simulation and optimization functions of NASAs Future Air Traffic Management Concept Evaluation Tool (FACET) to global scale. This new capability is used to characterize the evolution of global air traffic, analyze fuel savings and seasonal variations in the long-haul wind-optimal traffic patterns in six major regions of the world.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN37251
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-20
    Description: This document describes the STBO Client and is meant to be a quick reference guide. The STBO Client User Manual and other training materials are available for detailed user instructions.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN61068
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: This analysis shows the effects of Earliest Off-Block Time (EOBT) accuracy on the on-time performance metrics, such as A0 and A14 of outbound flights, and Target Takeoff Time (TTOT) compliance. This was originally presented to the ATD-2 Analytics team in March 2018.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN61116 , Airspace Technology Demonstration 2 Tech Transfer; Sep 14, 2018; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-18
    Description: Substantial increases in the volume of air traffic in the National Airspace System (NAS) are forecast for the next decade, with the number of passengers travelling on U.S. airlines expected to increase by as much as 60%. This increased demand on system capacity will be accompanied by increases in traffic complexity as air traffic service providers routinely accommodate user preferred routing requests. Changes to the NAS to meet these new demands are currently underway, including development of new decision support tools to aid controllers in monitoring and managing air traffic, and increased air-to-air and air-to-ground information exchange. Changes in roles and responsibilities of pilots and controllers in flight path management will accompany these changes in traffic patterns and information technology, however the ultimate responsibility for maintaining aircraft separation will remain with the air traffic controller. A thorough understanding of the methods controllers use to manage air traffic will help ensure that changes to the NAS are implemented in a way that maintains the controller's ability to separate aircraft as the system evolves. This presentation describes the strategies controllers use today to manage arrival traffic in its descent from cruise altitude to the Terminal Radar Approach Control (TRACON) boundary. Factors that increase the complexity of this task include the presence of overflight traffic, varying aircraft performance characteristics, winds aloft, ground speed variations with altitude, the need to merge arrival traffic into a single stream, and, when arrival traffic exceeds airport runway capacity, the added task of metering flow into the TRACON. Because of the limited information available to controllers to manage arrival traffic, their strategies are often driven by the need to reduce the task's complexity, which can result in de-optimized flight paths for individual aircraft (e.g., sub-optimal descent or speed profiles). Understanding these strategies and the cognitive demands that drive them will support a safe transition to a NAS that relies on enhanced technologies. In addition, it could enable system developers to identify opportunities for new automation-based procedures or information displays that could reduce the controller's workload and increase operational efficiency.
    Keywords: Air Transportation and Safety
    Type: 10th International Conference on Aviation Psychology; May 02, 1999 - May 07, 1999; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-18
    Description: This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.
    Keywords: Air Transportation and Safety
    Type: First International FOQA Symposium; Nov 18, 1997 - Nov 20, 1997; Irvine, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-18
    Description: Most of the scientific community that require scientific data or scientific measurements from aircraft do not understand the full implications of putting certain equipment on board high performance aircraft. It is the duty of the NASA Flight Operations personnel to ensure that all Principal Investigators who are given space on NASA flight research aircraft, comply with stringent safety requirements. The attitude of the experienced Flight operations personnel given this duty has been and remains one of insuring that the PI's experiment is allowed to be placed on the aircraft (facility) and can be operated in a manner that will obtain the expected data. This is sometimes a challenge. The success that NASA has in this regard is due to the fact that it is its own authority under public law, to certify its aircraft as airworthy. Airworthiness, fitness for flight, is a complex issue which pulls together all aspects of configuration management, engineering, quality, and flight safety. It is often the case at each NASA Center that is conducting airborne research, that unique solutions to some challenging safety issues are required. These solutions permit NASA to do things that would not be permitted by the Department of Transportation. This paper will use examples of various flight research configurations to show the necessity of a disciplined process leading up to flight test and mission implementation. All new configurations required engineering flight test but many, as noted in this paper, require that the modifications be flight tested to insure that they do not negatively impact on any part of the aircraft operational profiles. The success of these processes has been demonstrated over many years and NASA has accommodated experimental packages that cannot be flown on any other aircraft.
    Keywords: Air Transportation and Safety
    Type: OPE-FTW-1 , Flight Test Safety Workshop; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-18
    Description: This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data. The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data-analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS will offer to the air transport community an open, voluntary standard for flight-data-analysis software, a standard that will help to ensure suitable functionality, and data interchangeability, among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs of air crews in mind. APMS tools must serve the needs of the government and air carriers, as well as air crews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but through statistical evaluation of the performance of large groups of flights. This paper describes the integrated suite of tools that will assist analysts in evaluating the operational performance and safety of the national air transport system, the air carrier, and the air crew.
    Keywords: Air Transportation and Safety
    Type: ISASI Flight Recorder Working Group Workshop; Apr 16, 1996 - Apr 18, 1996; Santa Monica, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-18
    Description: In 1980, responding to a Congressional request, NASA Ames Research Center created a program to examine whether 'there is a safety problem of uncertain magnitude, due to transmeridian flying and a potential problem due to fatigue in association with various factors found in air transport operations.' The NASA Ames Fatigue/Jet Lag Program was created to collect systematic, scientific information on fatigue, sleep, circadian rhythms, and performance in flight operations. Three Program goals were established and continue to guide research efforts to: (1) determine the extent of fatigue, sleep loss, and circadian disruption in flight operations; (2) determine the impact of these factors on flight crew performance; (3) develop and evaluate countermeasures to mitigate the adverse effects of these factors and maximize flight crew performance and alertness. Since 1980, studies have been conducted in a variety of aviation environments, in controlled laboratory environments, as well as in a full-mission flight simulation. Early studies included investigations of short-haul, long-haul, and overnight cargo flight crews. In 1991, the name of the program was changed to the Fatigue Countermeasures Program to provide a greater emphasis on the development and evaluation of countermeasures. More recent work has examined the effects of planned cockpit rest as an operational countermeasure and provided analyses of the pertinent sleep/duty factors preceding an aviation accident at Guantanamo Bay, Cuba. The Short-Haul study examined the extent of sleep loss, circadian disruption, and fatigue engendered by flying commercial short-haul air transport operations (flight legs less than eight hours). This was one of the first field studies conducted by the NASA program and provided unique insight into the physiological and subjective effects of flying commercial short-haul operations. It demonstrated that a range of measures could be obtained in an operational environment without disturbing the regular performance of duties. The Long-Haul study examined how long-haul flight crews organized their sleep during a variety of international trip patterns and examined how duty requirements, local time, and the circadian system affected the timing, duration, and quality of sleep. Duty requirements and local time can be viewed as external/environmental constraints on time available for sleep, while the internal circadian system is a major physiological modulator of sleep duration and quality. The Overnight Cargo study documented the psychophysiological effects of flying overnight cargo operations. The data collected clearly demonstrated that overnight cargo operations, like other night work, involve physiological disruption not found in comparable daytime operations.
    Keywords: Air Transportation and Safety
    Type: 9th Annual European Aviation Safety Seminar; Mar 04, 1997 - Mar 05, 1997; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-18
    Description: Airline training departments are avid customers for research that will help them enhance the effectiveness of training and the safety of flight operations. However, various factors often make it difficult for training department managers to draw upon the large body of human factors research, e.g.: research may not address the specific questions facing the training departments, the research literature may not be in a form that training managers can readily interpret, researchers' recommendations may be too expensive or impractical to implement, etc. This panel will discuss ways in which researchers can work with training departments to design research and translate findings into products that airlines can use readily. This collaboration is most effective when it is an integral part of the study from its inception. To illustrate the process of collaboration we will use as a case study the recently completed LOFT (Line Oriented Flight Training) Debriefing research project. We will summarize the findings from that study and discuss how we translated those findings into two training tools: a manual on how to facilitate LOFT debriefings and a video that illustrates facilitation techniques in a realistically enacted debriefing. In some cases, instead of starting a new research project, training department needs can be addressed by reviewing the existing research literature and using expert opinion to develop products that specifically address those needs. To illustrate this approach we will discuss a recent informal working group of scientists and airline personnel that met to develop training material to enhance situation awareness. This group reviewed scientific literature and ASRS (Aviation Safety Reporting System) reports, analyzed contributing factors, and produced a model for managing situation awareness.
    Keywords: Air Transportation and Safety
    Type: 9th International Symposium on Aviation Psychology; Apr 27, 1997 - May 01, 1997; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-18
    Description: Altitude deviations are the most common pilot error reported to the Aviation Safety Reporting System. Last year, altitude deviations were reported to the ASRS at the rate of about one per hour. The reporting pilot's narrative is usually our only source of information about what happened in these incidents. In a recent line-oriented, simulator study, twenty-two airline crews flew a realistic, two-hour mission in a DC-9 and an MD-88 aircraft. This paper will describe and analyze two of the five altitude deviations that were observed during this study. The paper focuses on the flight crews' use (or misuse) of the autopilot and autothrottle during these incidents.
    Keywords: Air Transportation and Safety
    Type: 1995 Aviation Psychology Meeting; Apr 24, 1995 - Apr 27, 1995; Columbus, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: This presentation will present an overview of NASA and joint NASA/FAA R&D programs related to Air Traffic Management. In addition it will address the plans for the new Advanced Air Transportation Technologies program, which will investigate methods for achieving the airline industries needs for increased flexibility in the nation's air traffic management system.
    Keywords: Air Transportation and Safety
    Type: SAE Aerotech 1995; Sep 18, 1995 - Sep 21, 1995; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...