ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (382)
  • De Gruyter
  • 2015-2019  (220)
  • 2010-2014  (162)
  • Natural Sciences in General  (382)
Collection
  • Articles  (382)
Years
Year
Journal
  • 1
    Publication Date: 2017-06-01
    Description: This paper represents an index model developed for the assessment of risk caused by river floods. The main purpose of this model is to evaluate the flood risk in the western coastal region of Mazandaran Province/Iran. The model assesses the risk at triple components, i.e. the flood occurrence probability, vulnerability and consequences, through identification and evaluation of effective criteria categorized into seven indexes (environmental, technical, economic, social, depth, population and sensitivity ones) that are involved in all stages of flooding (source, pathway and receptor). The flood risk in the developed model is defined by a dimensionless magnitude called as risk score between 0 and 100 for each zone of the area under assessment by calculating and combining of two newly defined factors: occurrence and vulnerability factor and impact factor. The model was applied in a case study, the Nowshahr flood in 2012. The results showed that: (i) the flood risk zoning was compared with observed data for aspect of the damages, and general agreement between them was obtained; (ii) for urban zones, which surrounded by two rivers, would easily be in critical condition and rescue operations face difficulties; and (iii) it is necessary to review the location of the emergency services, according the flood risk zoning.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-01
    Description: There is public concern that large-scale disturbances to forest cover caused by insects and storm winds in the Bohemian Forest could intensify high water flows and enhance the expected flooding risks predicted in current regional climate change scenarios. We analysed stream discharge in Upper Vydra and Große Ohe, neighbouring catchments in the Bohemian Forest, the largest contiguous forested area in Central Europe. Upper Vydra, in the Šumava National Park, and Große Ohe (including the Upper Große Ohe headwater catchment in the Bavarian Forest National Park) are similar in size, but differ in land use cover and the extent of disturbed Norway spruce stands. Publicly available runoff and meteorological data (1978–2011) were examined using non-parametric trend and breakpoint analysis. Together with mapped vegetation cover changes, the results were used to address the following questions: 1) are there significant changes in the hydrological cycle and, if so, do these changes relate to 2) the extent and expansion of disturbance in forests stands and/or 3) altered precipitation dynamics and thermal conditions? We found no marked overall change in annual runoff or in annual or seasonal precipitation, but a significant increase in high flows in March. This overall trend related to the marked warming in late winter and early spring (+~4 K in April, p 〈 0.01), irrespective of altitude and slope position. It significantly shifted the end of the snow cover period by more than three weeks to the beginning/middle of April depending on altitude, and intensified snow melt. In the Upper Große Ohe catchment, a significant decrease in catchment balance, the difference between the long term precipitation and runoff (–72 mm, 11%) was found when the loss of tree cover reached 30% of catchment area. Diminished evapotranspiration losses from severely disturbed stands increased groundwater recharge during summer and caused a significant rise in low flows in autumn. However, observed increases in late winter high flows were due to warming only. They could be further intensified by the increasing winter precipitation predicted under present climate change scenarios, and would therefore increase the risk of flooding at lower elevations.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-01
    Description: In slurry transport of settling slurries in Newtonian fluids, it is often stated that one should apply a line speed above a critical velocity, because blow this critical velocity there is the danger of plugging the line. There are many definitions and names for this critical velocity. It is referred to as the velocity where a bed starts sliding or the velocity above which there is no stationary bed or sliding bed. Others use the velocity where the hydraulic gradient is at a minimum, because of the minimum energy consumption. Most models from literature are one term one equation models, based on the idea that the critical velocity can be explained that way. Here the following definition is used: The critical velocity is the line speed below which there may be either a stationary bed or a sliding bed, depending on the particle diameter and the pipe diameter, but above which no bed (stationary or sliding) exists, the Limit Deposit Velocity (LDV). The way of determining the LDV depends on the particle size, where 5 regions are distinguished. These regions for sand and gravel are roughly; very small particles up to 0.014–0.040 mm (d 〈 δv), small particles from δv–0.2 mm, medium particles in a transition region from 0.2–2.00 mm, large particles 〉 2 mm and very large particles 〉 0.015·Dp. The lower limit of the LDV is the transition between a sliding bed and heterogeneous transport. The new model is partly based on physics and correlates well with experiments from literature.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-01
    Description: Gravity-driven open-channel flows carrying coarse sediment over an erodible granular deposit are studied. Results of laboratory experiments with artificial sediments in a rectangular tilting flume are described and analyzed. Besides integral quantities such as flow rate of mixture, transport concentration of sediment and hydraulic gradient, the experiments include measurements of the one-dimensional velocity distribution across the flow. A vertical profile of the longitudinal component of local velocity is measured across the vertical axis of symmetry of a flume cross section using three independent measuring methods. Due to strong flow stratification, the velocity profile covers regions of very different local concentrations of sediment from virtually zero concentration to the maximum concentration of bed packing. The layered character of the flow results in a velocity distribution which tends to be different in the transport layer above the bed and in the sediment-free region between the top of the transport layer and the water surface. Velocity profiles and integral flow quantities are analyzed with the aim of evaluating the layered structure of the flow and identifying interfaces in the flow with a developed transport layer above the upper plane bed.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-01
    Description: This paper reports the processes by which a single-phase 3-D CFD model of hydrodynamics in a 17-km-long dam reservoir was developed, verified and tested. A simplified VOF model of flow was elaborated to determine the effect of wind on hydrodynamics in the lake. A hexahedral mesh with over 17 million elements and a k-ω SST turbulence model were defined for single-phase simulations in steady-state conditions. The model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (average error of less than 10%) between computed and measured velocity profiles was found. The simulation results proved a strong effect of wind on hydrodynamics in the lake, especially on the development of the water circulation pattern in the lacustrine zone.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-01
    Description: Existence of piedmont zone in a river bed is a critical parameter from among numerous variations of topographical, geological and geographical conditions that can significantly influence the river flow scenario. Downstream flow situation assessed by routing of upstream hydrograph may yield higher flow depth if existence of such high infiltration zone is ignored and therefore it is a matter of concern for water resources planning and flood management. This work proposes a novel modified hydrodynamic model that has the potential to accurately determine the flow scenario in presence of piedmont zone. The model has been developed using unsteady free surface flow equations, coupled with Green-Ampt infiltration equation as governing equation. For solution of the governing equations Beam and Warming implicit finite difference scheme has been used. The proposed model was first validated from the field data of Trout Creek River showing excellent agreement. The validated model was then applied to a hypothetical river reach commensurate with the size of major tributaries of Brahmaputra Basin of India. Results indicated a 10% and 14% difference in the maximum value of discharge and depth hydrograph in presence and absence of piedmont zone respectively. Overall this model was successfully used to accurately predict the effect of piedmont zone on the unsteady flow in a river.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-01
    Description: Turbulence of flow over mobile bedforms in natural open channels is not yet clearly understood. An attempt is made in this paper to determine the effect of naturally formed mobile bedforms on velocities, turbulent intensities and turbulent stresses. Instantaneous velocities are measured using a two-dimensional particle image velocimetry (PIV) to evaluate the turbulence structure of free surface flow over a fixed (immobile) bed, a weakly mobile bed and a temporally varying mobile bed with different stages of bedform development. This paper documents the vertical distribution of velocity, turbulence intensities, Reynolds shear stress and higher-order moments including skewness and turbulent diffusion factors. Analysis of the velocity distributions shows a substantial decrease of velocity near the bed with increasing bedform mobility due to increased friction. A modified logarithmic law with a reduced von Kármán constant and increased velocity shift is proposed for the case of the mobile bedforms. A significant increase in the Reynolds shear stress is observed in the mobile bedforms experiments accompanied by changes over the entire flow depth compared to an immobile bed. The skewness factor distribution was found to be different in the case of the flow over the mobile bedforms. All higher-order turbulence descriptors are found to be significantly affected by the formation of temporally varying and non-equilibrium mobile bedforms. Quadrant analysis indicates that sweep and outward events are found to be dominant in strongly mobile bedforms and govern the bedform mobility.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-03-01
    Description: The aim of this paper is to define the correlation between the geometry of grains and saturated hydraulic conductivity of soils. The particle shape characteristics were described by the ζ0Cindex (Parylak, 2000), which expresses the variability of several shape properties, such as sphericity, angularity and roughness.The analysis was performed on samples of four soils, which were characterised by the same grain size distribution and extremely different particle structure. The shape characteristics varied from ideally spherical, smooth grains (glass microbeads GM) to highly irregular and rough particles (fly ash FA).For each soil, laboratory tests of saturated hydraulic conductivity (constant head test CHT and falling head test FHT) were performed. Additionally, an empirical analysis of effective pore diameter was conducted with use of the analytical models developed by Pavchich (Wolski, 1987) and Indraratna and Vafai (1997). The models were modified by introducing the ζ0Cindex.Experiments have shown that saturated hydraulic conductivity depends on grains shape and surface roughness. This parameter decreases with the increase in the irregularity of soil particles. Moreover, it was proven that the ζ0Creflects the relationship between effective pore diameter and grain shape characteristics.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-01
    Description: Ice jams in northern rivers during winter period significantly change the flow conditions due to the extra boundary of the flow. Moreover, with the presence of bridge piers in the channel, the flow conditions can be further complicated. Ice cover often starts from the front of bridge piers, extending to the upstream. With the accumulation of ice cover, ice jam may happen during early spring, which results in the notorious ice jam flooding. In the present study, the concentration of flowing ice around bridge piers has been evaluated based on experiments carried out in laboratory. The critical condition for the initiation of ice cover around bridge piers has been investigated. An equation for the critical floe concentration was developed. The equation has been validated by experimental data from previous studies. The proposed model can be used for the prediction of formation of ice cover in front of a bridge pier under certain conditions.
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-01
    Electronic ISSN: 0042-790X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Natural Sciences in General
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...