ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (31)
  • Maps
  • Molecular Diversity Preservation International  (31)
  • 2020-2024  (31)
  • Geography  (31)
Collection
  • Articles  (31)
  • Maps
Years
Year
Journal
  • 1
    Publication Date: 2021-10-07
    Description: Publicly available optical remote sensing images from platforms such as Sentinel-2 satellites contribute much to the Earth observation and research tasks. However, information loss caused by clouds largely decreases the availability of usable optical images so reconstructing the missing information is important. Existing reconstruction methods can hardly reflect the real-time information because they mainly make use of multitemporal optical images as reference. To capture the real-time information in the cloud removal process, Synthetic Aperture Radar (SAR) images can serve as the reference images due to the cloud penetrability of SAR imaging. Nevertheless, large datasets are necessary because existing SAR-based cloud removal methods depend on network training. In this paper, we integrate the merits of multitemporal optical images and SAR images to the cloud removal process, the results of which can reflect the ground information change, in a simple convolution neural network. Although the proposed method is based on deep neural network, it can directly operate on the target image without training datasets. We conduct several simulation and real data experiments of cloud removal in Sentinel-2 images with multitemporal Sentinel-1 SAR images and Sentinel-2 optical images. Experiment results show that the proposed method outperforms those state-of-the-art multitemporal-based methods and overcomes the constraint of datasets of those SAR-based methods.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-26
    Description: The results of long-term satellite monitoring of oil pollution of the sea surface in the southeastern Baltic Sea (SEB) are discussed in this paper. From June 2004 to December 2020, in total, 2780 Synthetic Aperture Radar (SAR) images from different satellites were received and analyzed. There were 788 oil spills detected in the study area. The oil spills were concentrated along the main shipping routes in the SEB. The volume of the detected oil spills was estimated. The average size of the spill was about 2 km2 or 0.8 m3. Seasonal variability of oil pollution shows a decrease in the number of oil detections in the autumn–winter period, which is associated with the prevalence of unfavorable wind conditions that limit the use of SAR technology for oil spill detection and navigation for small ships. In situ measurements show that seasonal variation in the concentration of oil products in seawater is characterized by a maximum in April and a minimum in July. Since 2007, a decrease in oil detections has been observed for the entire Baltic Sea, including the study area. The interannual variability also shows a decrease in the concentration of oil products in the water column. In the southeastern Baltic Sea, the volume of oil products released yearly to the sea surface from ships does not exceed 0.1% of the average instantaneous presence of oil products in the water column.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-27
    Description: Remotely sensed vegetation indices (VIs) have been widely used to estimate the aboveground biomass (AGB) carbon stock of coastal wetlands by establishing Vis-related linear models. However, these models always have high uncertainties due to the large spatial variation and fragmentation of coastal wetlands. In this paper, an efficient coastal wetland AGB model for the Bohami Rim coastal wetlands was presented based on multiple data sets. The model was developed statistically with 7 independent variables from 23 metrics derived from remote sensing, topography, and climate data. Compared to previous models, it had better performance, with a root mean square error and r value of 188.32 g m−2 and 0.74, respectively. Using the model, we firstly generated a regional coastal wetland AGB map with a 10 m spatial resolution. Based on the AGB map, the AGB carbon stock of the Bohai Rim coastal wetland was 2.11 Tg C in 2019. The study demonstrated that integrating emerging high spatial resolution multi-remote sensing data and several auxiliary metrics can effectively improve VIs-based coastal wetland AGB models. Such models with emerging freely available data sets will allow for the rapid monitoring and better understanding of the special role that “blue carbon” plays in global carbon cycle.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: Although remote sensors have been increasingly providing dense data and deriving reanalysis data for inversion of particulate matters, the use of these data is considerably limited by the ground monitoring samples and conventional machine learning models. As regional criteria air pollutants, particulate matters present a strong spatial correlation of long range. Conventional machine learning cannot or can only model such spatial pattern in a limited way. Here, we propose a method of a geographic graph hybrid network to encode a spatial neighborhood feature to make robust estimation of coarse and fine particulate matters (PM10 and PM2.5). Based on Tobler’s First Law of Geography and graph convolutions, we constructed the architecture of a geographic graph hybrid network, in which full residual deep layers were connected with graph convolutions to reduce over-smoothing, subject to the PM10–PM2.5 relationship constraint. In the site-based independent test in mainland China (2015–2018), our method achieved much better generalization than typical state-of-the-art methods (improvement in R2: 8–78%, decrease in RMSE: 14–48%). This study shows that the proposed method can encode the neighborhood information and can make an important contribution to improvement in generalization and extrapolation of geo-features with strong spatial correlation, such as PM2.5 and PM10.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-25
    Description: Dramatic urban land expansion and its internal sub-fraction change during 2000–2020 have taken place in Africa; however, the investigation of their spatial heterogeneity and dynamic change monitoring at the continental scale are rarely reported. Taking the whole of Africa as a study area, the synergic approach of normalized settlement density index and random forest was applied to assess urban land and its sub-land fractions (i.e., impervious surface area and vegetation space) in Africa, through time series of remotely sensed images on a cloud computing platform. The generated 30-m resolution urban land/sub-land products displayed good accuracy, with comprehensive accuracy of over 90%. During 2000–2020, the evaluated urban land throughout Africa increased from 1.93 × 104 km2 to 4.18 × 104 km2, with a total expansion rate of 116.49%, and the expanded urban area of the top six countries accounted for more than half of the total increments, meaning that the urban expansion was concentrated in several major countries. A turning green Africa was observed, with a continuously increasing ratio of vegetation space to built-up area and a faster increment of vegetation space than impervious surface area (i.e., 134.43% vs., 108.88%) within urban regions. A better living environment was also found in different urbanized regions, as the newly expanded urban area was characterized by lower impervious surface area fraction and higher vegetation fraction compared with the original urban area. Similarly, the humid/semi-humid regions also displayed a better living environment than arid/semi-arid regions. The relationship between socioeconomic development factors (i.e., gross domestic product and urban population) and impervious surface area was investigated and both passed the significance test (p 〈 0.05), with a higher fit value in the former than the latter. Overall, urban land and its fractional land cover change in Africa during 2000–2020 promoted the well-being of human settlements, indicating the positive effect on environments.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-27
    Description: In China, ground-level ozone has shown an increasing trend and has become a serious ambient pollutant. An accurate spatiotemporal distribution of ground-level ozone concentrations (GOCs) is urgently needed. Generalized linear models (GLMs) and Bayesian maximum entropy (BME) models are practical for predicting GOCs. However, GLMs have limited capacity to capture temporal variations and can miss some short-term and regional patterns, while the performance of BME models may degrade in cases of sparse or imperfect monitoring networks. Thus, to predict nationwide 1 km monthly average GOCs for China, we designed a novel hybrid model containing three modules. (1) A GLM was established to accurately describe the variability in GOCs in the space domain. (2) A BME model incorporating GLM residuals was employed to capture the temporal variability of GOCs in detail. (3) A combination of GLM and BME models was developed based on the specific broad range of each submodel. According to the cross-validation results, the hybrid model exhibited superior performance, with coefficient of determination (R2) values of 0.67. The predictive performance of the large-scale and high-resolution hybrid model is superior to that in previous studies. The nationwide spatiotemporal variability of the GOCs derived from the hybrid model shows that they are valuable indicators for ground-level ozone pollution control and prevention in China.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-27
    Description: Aiming at the GNSS receiver vulnerability in challenging urban environments and low power consumption of integrated navigation systems, an improved robust adaptive Kalman filter (IRAKF) algorithm with real-time performance and low computation complexity for single-frequency GNSS/MEMS-IMU/odometer integrated navigation module is proposed. The algorithm obtains the scale factor by the prediction residual, and uses it to adjust the artificially set covariance matrix of the observation vector under different GNSS solution states, so that the covariance matrix of the observation vector changes continuously with the complex scene. Then, the adaptive factor is calculated by the Mahalanobis distance to inflate the state prediction covariance matrix. In addition, the one-step prediction Kalman filter is introduced to reduce the computational complexity of the algorithm. The performance of the algorithm is verified by vehicle experiments in the challenging urban environments. Experiments show that the algorithm can effectively weaken the effects of abnormal model deviations and outliers in the measurements and improve the positioning accuracy of real-time integrated navigation. It can meet the requirements of low power consumption real-time vehicle navigation applications in the complex urban environment.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-26
    Description: With the rapid development in the global economy and technology, urbanization has accelerated. It is important to characterize the urban expansion and determine its driving force. In this study, we used the Xiaonan District in Hubei Province, China, as an example to map and quantify the spatiotemporal dynamics of urban expansion from the two perspectives of built-up area and urban land in 1990–2020 by using remote sensing images. The location of rivers was found to be a primary limiting factor for spatial patterns and expansion of the built-up area. The transfer of the city center and the main direction of expansion generally corresponded well to the topography, policies, and development strategies. The built-up area expanded faster than the urban population in 1995–2020, which caused a waste in land resources. The results showed that the urban expansion first decreased and then increased during the research period. The increase in the proportion of the secondary industry was the main driving force of the urban expansion. Based on the characteristics of urban expansion in the past three decades, we conclude that the urban land of Xiaonan District will expand quickly in the future and will occupy vast agricultural land. The government must deploy control measures to balance the benefits and costs of urban expansion.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-27
    Description: The spatiotemporal evolution of vegetation and its influencing factors can be used to explore the relationships among vegetation, climate change, and human activities, which are of great importance for guiding scientific management of regional ecological environments. In recent years, remote sensing technology has been widely used in dynamic monitoring of vegetation. In this study, the normalized difference vegetation index (NDVI) and standardized precipitation–evapotranspiration index (SPEI) from 1998 to 2017 were used to study the spatiotemporal variation of NDVI in China. The influences of climate change and human activities on NDVI variation were investigated based on the Mann–Kendall test, correlation analysis, and other methods. The results show that the growth rate of NDVI in China was 0.003 year−1. Regions with improved and degraded vegetation accounted for 71.02% and 22.97% of the national territorial area, respectively. The SPEI decreased in 60.08% of the area and exhibited an insignificant drought trend overall. Human activities affected the vegetation cover in the directions of both destruction and restoration. As the elevation and slope increased, the correlation between NDVI and SPEI gradually increased, whereas the impact of human activities on vegetation decreased. Further studies should focus on vegetation changes in the Continental Basin, Southwest Rivers, and Liaohe River Basin.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-27
    Description: Rising sea levels pose one of the greatest threats to coastal zones. However, sea-level changes near the coast, particularly absolute sea-level changes, have been less well monitored than those in the open ocean. In this study, we aim to investigate the potential of Global Navigation Satellite Systems Interferometric Reflectometry (GNSS-IR) to measure coastal absolute sea-level changes and tie on-land (coastal GNSS) and offshore (satellite altimetry) observations into the same framework. We choose three coastal GNSS stations, one each in regions of subsidence, uplift and stable vertical land motions, to derive both relative sea levels and sea surface heights (SSH) above the satellite altimetry reference ellipsoid from 2008 to 2020. Our results show that the accuracy of daily mean sea levels from GNSS-IR is
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...