ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences  (522)
  • Frontiers Media SA  (522)
  • 2020-2024  (522)
Collection
Language
Years
  • 2020-2024  (522)
Year
  • 1
    Publication Date: 2024-04-05
    Description: In the past two decades there have been significant advances made in understanding the cellular and molecular alterations that occur with brain ageing, as well as with our understanding of age-related brain diseases. Ageing is associated with a mid-life decline in many cognitive domains (eg. Attention, working memory, episodic memory) that progresses with advancing age and which may be potentiated by a variety of diseases. However, despite the breadth of attempts to explain it, the underlying basis for age-related memory impairment remains poorly understood. Both normal and “pathological” ageing (as in age-related neurodegenerative disorders such as Alzheimer’s disease) may be associated with overlapping and increased levels of “abnormal” pathology, and this may be a potential mediator of cognitive decline in both populations. An emerging hypothesis in this field is that metal ion dys/homeostasis may represent a primary unifying mechanism to explain age- and disease-associated memory impairment – either indirectly via an effect on disease pathogenesis, or by a direct effect on signaling pathways relevant to learning and memory. There remains a concerted worldwide effort to deliver an effective therapeutic treatment for cognitive decline associated with ageing and/or disease, which is currently an unmet need. There have been numerous clinical trials conducted specifically testing drugs to prevent cognitive decline and progression to dementia, but to date the results have been less than impressive, highlighting the urgent need for a greater understanding of the neurobiological basis of memory impairment in ageing and disease which can then drive the search for effective therapeutics.
    Keywords: RC321-571 ; Q1-390 ; Down Syndrome ; Amyotrophic Lateral Sclerosis ; Parkinson's disease ; aluminium ; Iron ; TBI ; Cognition ; Copper ; Alzheimer's disease ; Zinc ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-05
    Description: Neuromorphic engineering has just reached its 25th year as a discipline. In the first two decades neuromorphic engineers focused on building models of sensors, such as silicon cochleas and retinas, and building blocks such as silicon neurons and synapses. These designs have honed our skills in implementing sensors and neural networks in VLSI using analog and mixed mode circuits. Over the last decade the address event representation has been used to interface devices and computers from different designers and even different groups. This facility has been essential for our ability to combine sensors, neural networks, and actuators into neuromorphic systems. More recently, several big projects have emerged to build very large scale neuromorphic systems. The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not only in creating a strongly connected research community, but also in introducing different groups to each other’s hardware. Many neuromorphic systems are first created at one of these workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic systems.
    Keywords: RC321-571 ; Q1-390 ; neuromorphic engineering ; Learning ; Floating gate ; Neural Network ; spike-based ; event-based ; simulation ; dynamic vision sensor ; network ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Despite the importance of mathematics in our educational systems little is known about how abstract mathematical thinking emerges. Under the uniting thread of mathematical development, we hope to connect researchers from various backgrounds to provide an integrated view of abstract mathematical cognition. Much progress has been made in the last 20 years on how numeracy is acquired. Experimental psychology has brought to light the fact that numerical cognition stems from spatial cognition. The findings from neuroimaging and single cell recording experiments converge to show that numerical representations take place in the intraparietal sulcus. Further research has demonstrated that supplementary neural networks might be recruited to carry out subtasks; for example, the retrieval of arithmetic facts is done by the angular gyrus. Now that the neural networks in charge of basic mathematical cognition are identified, we can move onto the stage where we seek to understand how these basics skills are used to support the acquisition and use of abstract mathematical concepts.
    Keywords: RC321-571 ; Q1-390 ; Neuroimaging ; development ; numerosity ; gifted ; Mathematical Cognition ; algebra ; abstract ; Expertise ; Arithmetic ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Glial cells are no longer considered passive bystanders in neuronal brain circuits. Not only are they required for housekeeping and brain metabolism, they are active participants in regulating the physiological function and plasticity of brain circuits and the online control of behavior both in invertebrate and vertebrate model systems. In invertebrates, glial cells are essential for normal function of sensory organs (C. elegans) and necessary for the circadian regulation of locomotor activity (D. melanogaster). In the mamallian brain, astrocytes are implicated in the regulation of cortical brain rhythms and sleep homeostasis. Disruption of AMPA receptor function in a subset of glial cell types in mice shows behavioral deficits. Furthermore, genetic disruption of glial cell function can directly control behavioral output. Regulation of ionic gradients by glia can underlie bistability of neurons and can modulate the fidelity of synaptic transmission. Grafting of human glial progenitor cells in mouse forebrain results in human glial chimeric mice with enhanced plasticity and improved behavioral performance, suggesting that astrocytes have evolved to cope with information processing in more complex brains. Taken together, current evidence is strongly suggestive that glial cells are essential contributors to information processing in the brain. This Research Topic compiles recent research that shows how the molecular mechanisms underlying glial cell function can be dissected, reviews their impact on plasticity and behavior across species and presents novel approaches to further probe their function.
    Keywords: RC321-571 ; Q1-390 ; Cerebellum ; C. elegans ; Astrocytes ; DREADD ; Cortex ; plasticity ; Gq ; Behavior ; glia ; Hippocampus ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-05
    Description: In this EBook, we highlight how newly emerging techniques for non-invasive manipulation of the human brain, combined with simultaneous recordings of neural activity, contribute to the understanding of brain functions and neural dynamics in humans. A growing body of evidence indicates that the neural dynamics (e.g., oscillations, synchrony) are important in mediating information processing and networking for various functions in the human brain. Most of previous studies on human brain dynamics, however, show correlative relationships between brain functions and patterns of neural dynamics measured by imaging methods such as electroencephalography (EEG), magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). In contrast, manipulative approaches by non-invasive brain stimulation (NIBS) have been developed and extensively used. These approaches include transcranial magnetic stimulation (TMS) and transcranial electric stimulation (tES) such as transcranial direct current stimulation (tDCS), alternating current stimulation (tACS), and random noise stimulation (tRNS), which can directly manipulate neural dynamics in the intact human brain. Although the neural-correlate approach is a strong tool, we think that manipulative approaches have far greater potential to show causal roles of neural dynamics in human brain functions. There have been technical challenges with using manipulative methods together with imaging methods. However, thanks to recent technical developments, it has become possible to use combined methods such as TMS–EEG coregistration. We can now directly measure and manipulate neural dynamics and analyze functional consequences to show causal roles of neural dynamics in various brain functions. Moreover, these combined methods can probe brain excitability, plasticity and cortical networking associated with information processing in the intact human brain. The contributors to this EBook have succeeded in showcasing cutting-edge studies and demonstrate the huge impact of their approaches on many areas in human neuroscience and clinical applications.
    Keywords: RC321-571 ; Q1-390 ; non-invasive brain stimulation NIBS ; TMS-EEG ; Transcranial magnetic stimulation TMS ; transcranial electric stimulation tES ; Coregistration ; Near-infrared spectroscopy NIRS ; Functional magnetic resonance imaging fMRI ; transcranial direct current stimulation tDCS ; transcranial alternating current stimulation tACS ; transcranial random noise stimulation tRNS ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-05
    Description: Bálint’s syndrome is named after the Hungarian physician who first reported a remarkable case of a man with complex visuospatial deficits following bilateral lesions within parietal and occipital cortex (Bálint, 1909). The syndrome has three primary symptoms: simultanagnosia (impaired spatial awareness of more than one object at time), optic ataxia (misreaching to visual targets) and ocular apraxia (described by Bálint as “psychic paralysis of gaze”). Balint’s patients not only cannot perceive more than one object at time and therefore show poor comprehension of multi-object visual scenes i.e. poor detection of all the objects present and difficulty in grasping the relationship between them; in addition they typically fail to reach towards location of the single object, which they can perceive. The deficit of the allocation of spatial attention in Balint’s syndrome has been linked to a problem in feature binding which results in illusory conjunctions. Patients with Balint’s syndrome also show deficits in global processing i.e. when integration of multiple local elements into global compound shapes is required. Consequently, Balint’s syndrome provides a unique opportunity to study the nature and neuroanatomy of human visuospatial processing, in particular multi-level object representation, spatial awareness and the distribution of visual attention. The studies collected here cover both the anatomical and the cognitive mechanisms of the different symptoms associated with the syndrome. Furthermore, the dissociations between the components of Bálints’ syndrome, in particular simultanagnosia and optic ataxia, can also co-occur with visual neglect and extinction and the different combinations of reported lesions raises a question about the status of the syndrome and whether it should be merely treated as a historical compilation of symptoms which may or may not coexist cohesively. This interesting argument is raised here.
    Keywords: RC321-571 ; Q1-390 ; posterior cortical atrophy ; Balints syndrome ; optic ataxia ; Posterior parietal cortex ; simultanagnosia ; ocular apraxia ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-05
    Description: The tale of cyclic GMP has been astonishing. Having overcome an initial disbelief, cyclic GMP has risen to its present eminence as a premium cellular signal transduction messenger of not only hormonal extracellular but also of the intracellular signals. This research topic focuses on the pathways and functions of membrane guanylate cyclases in different tissues of the body and their interplay with intracellular sensory signals where in many cases, cyclic GMP along with Ca2+ have taken on roles as synarchic co-messengers.
    Keywords: RC321-571 ; Q1-390 ; Glaucoma ; Visceral Pain ; Calcium ; membrane guanylate cyclase ; ANF-RGC ; Gene Therapy ; Cyclic GMP ; synaptic plasticity ; trafficking ; ROS-GC ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-05
    Description: In the search for simple explanations of the natural world, its complicated textures are often filed down to a smoothened surface of our liking. The impetus for this Research Topic was borne out of a need to re-ignite interest in the complex – in this case in the context of ion channels in the nervous system. Ion channels are the large proteins that form regulated pores in the membranes of cells and, in the brain, are essential for the transfer, processing and storage of information. These pores full of twists and turns themselves are not just barren bridges into cells. More and more we are beginning to understand that ion channels are like bustling medieval bridges (packed with apartments and shops) rather than the more sleek modern variety – they are dynamic hubs connected with many structures facilitating associated activities. Our understanding of these networks continues to expand as our investigative tools advance. Together these articles highlight how the complexity of ion channel signaling nexuses is critical to the proper functioning of the nervous system.
    Keywords: RC321-571 ; Q1-390 ; Nervous System ; Ion Channels ; Interactome ; cellular signaling ; Protein complexes ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-05
    Description: Research during the past decade highlights the strong link between appetitive feeding behavior, reward and motivation. Interestingly, stress levels can affect feeding behavior by manipulating hypothalamic circuits and brain dopaminergic reward pathways. Indeed, animals and people will increase or decrease their feeding responses when stressed. In many cases acute stress leads to a decrease in food intake, yet chronic social stressors are associated to increases in caloric intake and adiposity. Interestingly, mood disorders and the treatments used to manage these disorders are also associated with changes in appetite and body weight. These data suggest a strong interaction between the systems that regulate feeding and metabolism and those that regulate mood. This Research Topic aims to illustrate how hormonal mechanisms regulate the nexus between feeding behavior and stress. It focuses on the hormonal regulation of hypothalamic circuits and/or brain dopaminergic systems, as the potential sites controlling the converging pathways between feeding behavior and stress.
    Keywords: RC321-571 ; Q1-390 ; stress ; Obesity ; Dopamine ; Ghrelin ; Leptin ; Seasonal regulation ; feeding ; HPA axis ; Hypothalamus ; circadian rhythms ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-05
    Description: euromodulation is among the fastest-growing areas of medicine, involving many diverse specialties and affecting hundreds of thousands of patients with numerous disorders worldwide. It can briefly be described as the science of how electrical, chemical, and mechanical interventions can modulate the nervous system function. A prominent example of neuromodulation is deep brain stimulation (DBS), an intervention that reflects a fundamental shift in the understanding of neurological and psychiatric diseases: namely as resulting from a dysfunctional activity pattern in a defined neuronal network that can be normalized by targeted stimulation. The application of DBS has grown remarkably and more than 130,000 patients worldwide have obtained a DBS intervention in the past 30 years—most of them for treating movement disorders. This Frontiers Research Topics provides an overview on the current discussion beyond basic research in DBS and other brain stimulation technologies. Researchers from various disciplines, who are working on broader clinical, ethical and social issues related to DBS and related neuromodulation technologies, have contributed to this research topic.
    Keywords: RC321-571 ; Q1-390 ; Informed Consent ; Deep Brain Stimulation ; Depression ; Neurosurgery ; Movement Disorders ; Neuromodulation ; Enhancement ; Neuroethics ; Philosophy ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...