ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Q1-390  (1,070)
  • Frontiers Media SA  (1,070)
  • 2020-2024  (1,070)
Collection
Language
Years
  • 2020-2024  (1,070)
Year
  • 1
    Publication Date: 2024-04-11
    Description: It has become more evident that many microalgae respond very differently than land plants to diverse stimuli. Therefore, we cannot reduce microalgae biology to what we have learned from land plants biology. However, we are still at the beginning of a comprehensive understanding of microalgae biology. Microalgae have been posited several times as prime candidates for the development of sustainable energy platforms, making thus the in-depth understanding of their biological features an important objective. Thus, the knowledge related to the basics of microalgae biology must be acquired and shared rapidly, fostering the development of potential applications. Microalgae biology has been studied for more than forty years now and more intensely since the 1970’s, when genetics and molecular biology approaches were integrated into the research programs. Recently, studies on the molecular physiology of microalgae have provided evidences on the particularities of these organisms, mainly in model species, such as Chlamydomonas reinhardtii. Of note, cellular responses in microalgae produce very interesting phenotypes, such as high lipid content in nitrogen deprived cells, increased protein content in cells under high CO2 concentrations, the modification of flagella structure and motility in basal body mutant strains, the different ancient proteins that microalgae uses to dissipate the harmful excess of light energy, the hydrogen production in cells under sulfur deprivation, to mention just a few. Moreover, several research groups are using high-throughput and data-driven technologies, including “omics” approaches to investigate microalgae cellular responses at a system-wide level, revealing new features of microalgae biology, highlighting differences between microalgae and land plants. It has been amazing to observe the efforts towards the development and optimization of new technologies required for the proper study of microalgae, including methods that opened new paths to the investigation of important processes such as regulatory mechanisms, signaling crosstalk, chemotactic mechanisms, light responses, chloroplast controlled mechanisms, among others. This is an exciting moment in microalgae research when novel data are been produced and applied by research groups from different areas, such as bioprocesses and biotechnology. Moreover, there has been an increased amount of research groups focused in the study of microalgae as a sustainable source for bioremediation, synthesis of bioproducts and development of bioenergy. Innovative strategies are combining the knowledge of basic sciences on microalgae into their applied processes, resulting in the progression of many applications that hopefully, will achieve the necessary degree of optimization for economically feasible large-scale applications. Advances on the areas of basic microalgae biology and novelties on the essential cellular processes were revealed. Progress in the applied science showed the use of the basic science knowledge into fostering translational research, proposing novel strategies for a sustainable world scenario. In this present e-book, articles presented by research groups from different scientific areas showed, successfully, the increased development of the microalgae research. Herewith, you will find articles ranging from bioprospecting regional microalgae species, through advances in microalgae molecular physiology to the development of techniques for characterization of biomass and the use of biomass into agriculture and bioenergy production. This e-book is an excellent source of knowledge for those working with microalgae basic and applied sciences, and a great opportunity for researchers from both areas to have an overview of the amazing possibilities we have for building an environmentally sustainable future once the knowledge is translated into novel applications.
    Keywords: TA1-2040 ; TP248.13-248.65 ; QK1-989 ; Q1-390 ; Biotechnology ; biomass ; Hydrogen ; bioenergy ; Nutrients ; Lipids ; Microalgae ; Biofuels ; sustainability ; Carbon Dioxide ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-11
    Description: Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.Plant gene transfer achieved in the early ‘80s paved the way for the exploitation of the potential of gene engineering to add novel agronomic traits and/or to design plants as factories for high added value molecules. For this latter area of research, the term "Molecular Farming" was coined in reference to agricultural applications in that major crops like maize and tobacco were originally used basically for pharma applications. The concept of the “green biofactory” implies different advantages over the typical cell factories based on animal cell or microbial cultures already when considering the investment and managing costs of fermenters. Although yield, stability, and quality of the molecules may vary among different heterologous systems and plants are competitive on a case-to-case basis, still the “plant factory” attracts scientists and technologists for the challenging features of low production cost, product safety and easy scale up. Once engineered, a plant is among the cheapest and easiest eukaryotic system to be bred with simple know-how, using nutrients, water and light. Molecules that are currently being produced in plants vary from industrial and pharmaceutical proteins, including medical diagnostics proteins and vaccine antigens, to nutritional supplements such as vitamins, carbohydrates and biopolymers. Convergence among disciplines as distant as plant physiology and pharmacology and, more recently, as omic sciences, bioinformatics and nanotechnology, increases the options of research on the plant cell factory. “Farming for Pharming” biologics and small-molecule medicines is a challenging area of plant biotechnology that may break the limits of current standard production technologies. The recent success on Ebola fighting with plant-made antibodies put a spotlight on the enormous potential of next generation herbal medicines made especially in the name of the guiding principle of reduction of costs, hence reduction of disparities of health rights and as a tool to guarantee adequate health protection in developing countries.
    Keywords: TP248.13-248.65 ; TA1-2040 ; QK1-989 ; Q1-390 ; plant molecular farming ; Metabolic Engineering ; transient expression ; Genetic Engineering ; recombinant protein ; biopharmaceuticals ; Plant factory ; Biobetter ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TC Biochemical engineering::TCB Biotechnology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-11
    Description: The understanding of biological complexity has been greatly facilitated by cross-disciplinary, holistic approaches that allow insights into the function and regulation of biological processes that cannot be captured by dissecting them into their individual components. In addition, the development of novel tools has dramatically increased our ability to interrogate information at the nucleic acid, protein and metabolite level. The integration and interpretation of disparate data sets, however, still remain a major challenge in systems biology. Roots provide an excellent model for studying physiological, developmental, and metabolic processes. The availability of genetic resources, along with sequenced genomes has allowed important discoveries in root biochemistry, development and function. Roots are transparent, allowing optical investigation of gene activity in individual cells and experimental manipulation. In addition, the predictable fate of cells emerging from the root meristem and the continuous development of roots throughout the life of the plant, which permits simultaneous observation of different developmental stages, provide ideal premises for the analysis of growth and differentiation. Moreover, a genetically fixed cellular organization allows for studying the utilization of positional information and other non-cell-autonomous phenomena, which are of utmost importance in plant development. Although their ontogeny is largely invariant under standardized experimental conditions, roots possess an extraordinary capacity to respond to a plethora of environmental signals, resulting in distinct phenotypic readouts. This high phenotypic plasticity allows research into acclimative and adaptive strategies, the understanding of which is crucial for germplasm enhancement and crop improvement. With the aim of providing a current snapshot on the function and development of roots at the systems level, this Research Topic collated original research articles, methods articles, reviews, mini reviews and perspective, opinion and hypotheses articles that communicate breakthroughs in root biology, as well as recent advances in research technologies and data analysis.
    Keywords: TA1-2040 ; TP248.13-248.65 ; QK1-989 ; Q1-390 ; root architecture ; Synthetic Biology ; auxin ; gene co-expression analysis ; nutrient acquisition ; root hairs ; Systems Biology ; regulatory peptides ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-11
    Description: An increasing number of countries are shifting toward sustainable energy economies, emphasizing the use of renewable energy sources, increases in energy efficiency and the abatement of greenhouse gas emissions. The success of such an energy transition will depend not only on the development of new energy technologies, but also on major changes in the patterns of individual energy-related decisions and behaviors resulting in substantial reductions in energy demand. Consequently, the behavioral sciences can make important contributions to the energy transition by increasing our understanding of the multiple factors and mechanisms that underlie individual as well as group-based decisions and behaviors in the energy domain and by creating a basis for systematic interventions that reduce energy usage. Many different types of relevant behaviors and decisions need to be considered in this context, including decisions to invest in energy-efficient household equipment, adjustments of energy-critical habits related to heating, eating, or mode of transportation, and participation in the political discourse related to questions of energy. An integration of the expertise of the different disciplines of the behavioral sciences is thus needed to comprehensively investigate the impact of the different drivers and barriers that may determine energy-related decisions and behaviors, including economic factors such as price level, social factors such as norms, communication patterns and social learning processes, and individual factors such as values, attitudes, beliefs, heuristics, affective biases and emotions. The potential impact of these factors on the success of the energy transition is considerable: for example, a recent projection of the energy demand in Switzerland until 2050 has estimated the reduction potential related to psychological and sociological factors between 0% and 30%, depending on which behavioral changes will be implemented in society. Increased research efforts from the behavioral sciences are required to ensure that the full reduction potential can be achieved. This Research Topic brings together contributions from different disciplines such as psychology, affective science, behavioral economics, economics, sociology, consumer behavior, business science, sociology, and political science, that improve our understanding of the many factors underlying decision-making and behavior in the energy domain, and contribute to the development of targeted interventions that aim at reducing energy demand based on these factors.
    Keywords: TA1-2040 ; BF1-990 ; Q1-390 ; determinants ; Interventions ; Energy ; Decisions ; behavioral insights ; sustainability ; consumer ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-11
    Description: Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.
    Keywords: TA1-2040 ; TA401-492 ; Q1-390 ; QC1-999 ; photonic integration ; additional waveguide system ; Wafer bonding ; germanium-based emitter ; telecommunications applications ; bio-chemical applications ; silicon photonics ; Bandgap tuning ; III-V semiconductors ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-11
    Description: The development of information technology enabled us to exchange more items of information among us no matter how far we are apart from each other. It also changed our way of communication. Various types of robots recently promoted to be sold to general public hint that these robots may further influence our daily life as they physically interact with us and handle objects in environment. We may even recognize a feel of presence similar to that of human beings when we talk to a robot or when a robot takes part in our conversation. The impact will be strong enough for us to think about the meaning of communication. This e-book consists of various studies that examine our communication influenced by robots. Topics include our attitudes toward robot behaviors, designing robots for better communicating with people, and how people can be affected by communicating through robots.
    Keywords: TA1-2040 ; BF1-990 ; T58.5-58.64 ; Q1-390 ; robot ; human nature ; teleoperation ; enhancement ; embodiment ; Communication ; thema EDItEUR::T Technology, Engineering, Agriculture, Industrial processes::TB Technology: general issues::TBX History of engineering and technology
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-05
    Description: After a quarter of century of rapid technological advances, research has revealed the complexity of cancer, a disease intimately related to the dynamic transformation of the genome. However, the full understanding of the molecular onset of this disease is still far from achieved and the search for mechanisms of treatment will follow closely. It is here that Nanotechnology enters the fray offering a wealth of tools to diagnose and treat cancer. In fact, the National Cancer Institute predicts that over the next years, nanotechnology will result in important advances in early detection, molecular imaging, targeted and multifunctional therapeutics, prevention and control of cancer. Nanotechnology offers numerous tools to diagnose and treat cancer, such as new imaging agents, multifunctional devices capable of overcome biological barriers to deliver therapeutic agents directly to cells and tissues involved in cancer growth and metastasis, and devices capable of predicting molecular changes to prevent action against precancerous cells. Nanomaterials-based delivery systems in Theranostics (Diagnostics & Therapy) provide better penetration of therapeutic and diagnostic substances within the body at a reduced risk in comparison to conventional therapies. At the present time, there is a growing need to enhance the capability of theranostics procedures where nanomaterials-based sensors may provide for the simultaneous detection of several gene-associated conditions and nanodevices with the ability to monitor real-time drug action. These innovative multifunctional nanocarriers for cancer theranostics may allow the development of diagnostics systems such as colorimetric and immunoassays, and in therapy approaches through gene therapy, drug delivery and tumor targeting systems in cancer. Some of the thousands and thousands of published nanosystems so far will most likely revolutionize our understanding of biological mechanisms and push forward the clinical practice through their integration in future diagnostics platforms. Nevertheless, despite the significant efforts towards the use of nanomaterials in biologically relevant research, more in vivo studies are needed to assess the applicability of these materials as delivery agents. In fact, only a few went through feasible clinical trials. Nanomaterials have to serve as the norm rather than an exception in the future conventional cancer treatments. Future in vivo work will need to carefully consider the correct choice of chemical modifications to incorporate into the multifunctional nanocarriers to avoid activation off-target, side effects and toxicity. Moreover the majority of studies on nanomaterials do not consider the final application to guide the design of nanomaterial. Instead, the focus is predominantly on engineering materials with specific physical or chemical properties. It is imperative to learn how advances in nanosystem’s capabilities are being used to identify new diagnostic and therapy tools driving the development of personalized medicine in oncology; discover how integrating cancer research and nanotechnology modeling can help patient diagnosis and treatment; recognize how to translate nanotheranostics data into an actionable clinical strategy; discuss with industry leaders how nanotheranostics is evolving and what the impact is on current research efforts; and last but not least, learn what approaches are proving fruitful in turning promising clinical data into treatment realities.
    Keywords: QD1-999 ; Q1-390 ; Nanoparticles ; Gene Therapy ; Immunotherapy ; bioimaging ; theranostics ; nanomaterials ; Drug delivery ; Nanomedicine ; Cancer ; Phototherapy ; thema EDItEUR::P Mathematics and Science::PN Chemistry
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-05
    Description: In the past two decades there have been significant advances made in understanding the cellular and molecular alterations that occur with brain ageing, as well as with our understanding of age-related brain diseases. Ageing is associated with a mid-life decline in many cognitive domains (eg. Attention, working memory, episodic memory) that progresses with advancing age and which may be potentiated by a variety of diseases. However, despite the breadth of attempts to explain it, the underlying basis for age-related memory impairment remains poorly understood. Both normal and “pathological” ageing (as in age-related neurodegenerative disorders such as Alzheimer’s disease) may be associated with overlapping and increased levels of “abnormal” pathology, and this may be a potential mediator of cognitive decline in both populations. An emerging hypothesis in this field is that metal ion dys/homeostasis may represent a primary unifying mechanism to explain age- and disease-associated memory impairment – either indirectly via an effect on disease pathogenesis, or by a direct effect on signaling pathways relevant to learning and memory. There remains a concerted worldwide effort to deliver an effective therapeutic treatment for cognitive decline associated with ageing and/or disease, which is currently an unmet need. There have been numerous clinical trials conducted specifically testing drugs to prevent cognitive decline and progression to dementia, but to date the results have been less than impressive, highlighting the urgent need for a greater understanding of the neurobiological basis of memory impairment in ageing and disease which can then drive the search for effective therapeutics.
    Keywords: RC321-571 ; Q1-390 ; Down Syndrome ; Amyotrophic Lateral Sclerosis ; Parkinson's disease ; aluminium ; Iron ; TBI ; Cognition ; Copper ; Alzheimer's disease ; Zinc ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-05
    Description: Neuromorphic engineering has just reached its 25th year as a discipline. In the first two decades neuromorphic engineers focused on building models of sensors, such as silicon cochleas and retinas, and building blocks such as silicon neurons and synapses. These designs have honed our skills in implementing sensors and neural networks in VLSI using analog and mixed mode circuits. Over the last decade the address event representation has been used to interface devices and computers from different designers and even different groups. This facility has been essential for our ability to combine sensors, neural networks, and actuators into neuromorphic systems. More recently, several big projects have emerged to build very large scale neuromorphic systems. The Telluride Neuromorphic Engineering Workshop (since 1994) and the CapoCaccia Cognitive Neuromorphic Engineering Workshop (since 2009) have been instrumental not only in creating a strongly connected research community, but also in introducing different groups to each other’s hardware. Many neuromorphic systems are first created at one of these workshops. With this special research topic, we showcase the state-of-the-art in neuromorphic systems.
    Keywords: RC321-571 ; Q1-390 ; neuromorphic engineering ; Learning ; Floating gate ; Neural Network ; spike-based ; event-based ; simulation ; dynamic vision sensor ; network ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Frontiers Media SA
    Publication Date: 2024-04-05
    Description: Despite the importance of mathematics in our educational systems little is known about how abstract mathematical thinking emerges. Under the uniting thread of mathematical development, we hope to connect researchers from various backgrounds to provide an integrated view of abstract mathematical cognition. Much progress has been made in the last 20 years on how numeracy is acquired. Experimental psychology has brought to light the fact that numerical cognition stems from spatial cognition. The findings from neuroimaging and single cell recording experiments converge to show that numerical representations take place in the intraparietal sulcus. Further research has demonstrated that supplementary neural networks might be recruited to carry out subtasks; for example, the retrieval of arithmetic facts is done by the angular gyrus. Now that the neural networks in charge of basic mathematical cognition are identified, we can move onto the stage where we seek to understand how these basics skills are used to support the acquisition and use of abstract mathematical concepts.
    Keywords: RC321-571 ; Q1-390 ; Neuroimaging ; development ; numerosity ; gifted ; Mathematical Cognition ; algebra ; abstract ; Expertise ; Arithmetic ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAN Neurosciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...