ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03.02. Hydrology  (5)
  • 05.01. Computational geophysics  (3)
  • Elsevier  (8)
  • Springer Science + Business Media
  • 2020-2024  (8)
  • 1
    Publication Date: 2024-01-08
    Description: This study is focused on fluids characterization and circulations through the crust of the Irpinia region, an active seismic zone in Southern Italy, that has experienced several high-magnitude earthquakes, including a catastrophic one in 1980 (M = 6.9 Ms). Using isotopic geochemistry and the carbon‑helium system in free and dissolved volatiles in water, this study aims to explore the processes at depth that can alter pristine chemistry of these natural fluids. Gas-rock-water interactions and their impact on CO2 emissions and isotopic composition are evaluated using a multidisciplinary model that integrates geochemistry and regional geological data. By analyzing the He isotopic signature in the natural fluids, the release of mantle-derived He on a regional scale in Southern Italy is verified, along with significant emissions of deep-sourced CO2. The proposed model, supported by geological and geophysical constraints, is based on the interactions between gas, rock, and water within the crust and the degassing of deep-sourced CO2. Furthermore, this study reveals that the Total Dissolved Inorganic Carbon (TDIC) in cold waters results from mixing between a shallow and a deeper carbon endmember that is equilibrated with carbonate lithology. In addition, the geochemical signature of TDIC in thermal carbon-rich water is explained by supplementary secondary processes, including equilibrium fractionation between solid, gas, and aqueous phases, as well as sinks such as mineral precipitation and CO2 degassing. These findings have important implications for developing effective monitoring strategies for crustal fluids in different geological contexts and highlight the critical need to understand gas-water-rock interaction processes that control fluid chemistry at depths that can affect the assessment of the CO2 flux in atmosphere. Finally, this study highlights that the emissions of natural CO2 from the seismically active Irpinia area are up to 4.08·10+9 mol·y-1, which amounts is in the range of worldwide volcanic systems.
    Description: Published
    Description: 165367
    Description: OST3 Vicino alla faglia
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: CO(2) output; Carbon isotopes; Degassing; Earthquakes; Noble gases; Precipitation ; 04.04 Solid Earth ; 01.01. Atmosphere ; 03.01. General ; 03.02. Hydrology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-09
    Description: A common practice of seismology is to analyze earthquake occurrence in terms of events catalogues, with the aim to either find useful correlations between internal mechanisms under study and their outcome in the spatial/temporal series of the events or, more directly, to assess some statistical rules from observations. With this approach, catalogues are often searched for some recognizable patterns or behaviors: in this work we present a software tool created to reveal a particular kind of events sequences. The idea follows from the concept of multiplets, a well known events pattern often found in seismic series. A multiplet is defined as a sequence of events, all near in space and time and exhibiting similar magnitudes. The amount of multiplets in seismic series is related, as it is for other clustering mechanisms, to underlying correlations in the physics of the events. The software, built from scratch, scans seismic catalogues in search of events clustered as “multiplets”: this is done through the thorough application of comparison tests whose parameters thresholds are both user defined and semi-automated. The tool is however more “general” in the sense that by varying values of the filtering parameters it can reveal other kind of patterns too. While we think that this tool can be thought as a general purpose space–time series analyzer, we have found it particularly useful when applied to the results of a seismic simulator with the purpose of assessing their adherence with the observed seismicity. It can be used as a sort of metric to quantify the simulation predictions effectiveness in terms of presence of similar multiplets distributions in simulated vs. real catalogues. The software has been entirely developed in the Wolfram Language (Mathematica), a commercial powerful environment for scientific calculus and results report, but the main computational routine has been also ported to python for open-source, copyleft usage.
    Description: Published
    Description: 105496
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: seismic multiple events ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-23
    Description: Trace metals and Rare Earth Element (REE) are amply discharged by submarine hydrothermal vents, sometimes leading to the formation of ore deposits of economic interest. We report on first data on the geochemical processes involving REE and trace metals, at the solid-liquid interface, in the hydrothermal area of Levante Bay at Vulcano Island (Aeolian Archipelago, Italy). Samples were collected from several submarine springs and seeps, a mud pool and one thermal well, and analyzed for Al, Si, Ti, V, Cr, Mn, Fe, Co, As, Rb, Sr, Cs, Ba, U and REE, besides major ions. Within the bay, hydrothermal fluids contaminate seawater and promote the leaching of metals from sediments through the dissolution of CO2 and H2S, while the particulate matter removes several elements from the water. The leaching of the bottom sediments and the contribution of steam-heated water produce an enrichment of some metals and REE in the Levante Bay with respect to the concentrations expected in the ambient seawater. An enrichment up to one order of magnitude is measured for Fe, Al, Ba, Cs and Rb, and up to two orders of magnitude for Mn in the submarine samples. Other transition metals (Ti, V, Co, Cr), U, As and Sr have concentrations similar or slightly lower than the ambient seawater. REE are in concentrations higher than in ambient seawater up to two orders of magnitude. Despite being significantly higher than uncontaminated seawater, the concentrations of some metals (namely Fe, Al, Ti, Cr, V, Co, U) and REE in most samples are lower than expected by the mixing between seawater and the steam-heated water, discharging from submarine springs. Indeed, equilibrium and reaction path modeling indicate the likely precipitation of Fe-oxyhydroxides, able to remove minor elements, such as Ti, Cr, Co, V and As, and REE. The last ones are significantly removed by newly-forming solid phases, due to the presence of a large amount of Fe released by the acidic fluids through the leaching of sediments. The low pH limits the formation of solution complexes of REE with carbonate ions (the main complexing agent for REE in seawater), whereas the sorption onto particles is still effective, even at close distance from the submarine springs and seeps. This study brings new insights on the geochemical processes occurring in submarine hydrothermal systems, in particular, those in subduction-related context.
    Description: Fondo Sociale Europeo (PO FSE 2014-2020)
    Description: Published
    Description: 120756
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: REE ; Trace metals ; Hydrothermal system ; Seawater ; 03.02. Hydrology ; 03.04. Chemical and biological ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-20
    Description: Implicit integration of the viscous term can significantly improve performance in computational fluid dynamics for highly viscous fluids such as lava. We show improvements over our previous proposal for semi-implicit viscous integration in Smoothed Particle Hydrodynamics, extending it to support a wider range of boundary models. Due to the resulting loss of matrix symmetry, a key advancement is a more robust version of the biconjugate gradient stabilized method to solve the linear systems, that is also better suited for parallelization in both shared-memory and distributed-memory systems. The advantages of the new solver are demostrated in applications with both Newtonian and non-Newtonian fluids, covering both the numerical aspect (improved convergence thanks to the possibility to use more accurate boundary model) and the computing aspect (with excellent strong scaling and satisfactory weak scaling).
    Description: Published
    Description: 111413
    Description: 3IT. Calcolo scientifico
    Description: JCR Journal
    Keywords: SPH ; Low Reynods number ; Implicit integration ; BiCGSTAB ; GPU ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-07
    Description: In the present paper we introduce a numerical model for the representation of displacement, strain and stress due to single forces embedded in a layered elastic half-space. The code EFGRN/EFCMP (Elastic Forces GReeN functions/Elastic Forces CoMPutation) is able to represent the mechanical effects due to pre-assigned distributions of single forces. Even if internal deformation sources can be described by distributions of equivalent body forces with vanishing resultant and moment, single forces are employed in geophysics to represent hydraulic and/or lithostatic loads, effects of internal density anomalies, and even some kind of seismic events. A distribution of single forces is also used to describe the effects of an inelastic inclusion located inside an elastic medium. In fact, the recent literature shows that poro-elastic and thermo-elastic inclusions can be represented using single forces distributed on their boundaries. EFGRN/EFCMP shares the benefits of rapid and semi-analytical calculation offered by the parent code, EFGRN/EFCMP , which is instead suitable for the representation of extended dislocation sources, as seismic faults. The present code also provides an option for computing the effects of a distribution of single forces embedded in a homogeneous half-space, by using the analytical solutions of Mindlin. Accordingly, EFGRN/EFCMP can be a valid support both for the representation of forward models of deformation sources and for the procedures of inversion of geodetic data in a layered medium. We show some applications of the code and we provide several scripts in MATLAB language which help the user to quickly start using EFGRN/EFCMP
    Description: Published
    Description: 105136
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: 04.08. Volcanology ; 05.01. Computational geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-16
    Description: Ischia is a volcanic island located NW of the Gulf of Naples (South Italy). The island of Ischia is a structurally complex hydrothermal active system that hosts a fractured aquifer system whose geometry and hydraulic properties are still partly unknown. The aquifer system of Ischia, composed mainly of Quaternary volcanic deposits and marine sediments, exhibits physically and chemically heterogeneous waters. The intense seismicity and hydrothermal activity are expressed by numerous fumaroles and thermal springs, which have been exploited since ancient times, promoting, and supporting the world-renowned tourist activities that constitute the main economic activity of the island. The aim of this study is to determine the hydrogeochemical processes in the Ischia aquifer system. Also, we calculated the proportion of seawater in the aquifer system of Ischia using historical hydrogeochemical data relative to two sampling campaigns. Sixty-nine groundwater and thermal spring samples collected in July 2000 were analyzed and compared with previously published data to identify the changes in seawater contribution. The sample analysis shows that different physicochemical processes occur in the groundwater of Ischia Island, where recharge water, seawater and deep fluids interact and overlap with different intensity. The calculated saline factor indicates a seawater content of up to 70% in some samples near the coast, suggesting that seawater intrusion is the main process in these areas. Later data show that seawater intrusion increases around the coastline with up to 93% seawater content. Finally, data analysis shows that although a change in chemical composition is observed, no variation in thermal water temperature is recorded over time.
    Description: This paper is partially funded by Program U-Apoya (N/A1/2014), University of Chile who granted Dr. Linda Daniele and by project PCI ITAL170012. Additional funding was provided by project M02761 Ministero degli Affari Esteri e della Cooperazione Internazionale to Renato Somma and by ANID-FONDAP #15200001/ACE210005 (Centro de Excelencia en Geotermia de los Andes, CEGA). Finally, we acknowledge chief editor Stefano Albanese for handling the manuscript. An anonymous reviewer is acknowledged for the helpful comments and suggestions.
    Description: Published
    Description: 106935
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: 1V. Storia eruttiva
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 1TR. Georisorse
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Seawater intrusion ; Water-rock interaction ; Thermal waters ; Ischia Island ; 04.08. Volcanology ; 03. Hydrosphere ; 03.02. Hydrology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-16
    Description: Almost 140 years of industrial exploitation have severely degraded the environment of Bagnoli Coroglio (BC), the westernmost neighborhood of the city of Naples (Italy). In this peculiar area, however, geogenic processes overlap with the impact of human activities, making it difficult to distinguish between anthropogenic and geogenic pollution sources. This is particularly true for Arsenic, the concentration of which in the marine sediments largely exceeds the tolerable level for human health and the background value for local pyroclastics. After several studies have used traditional tools based on multivariate statistics, this article attempts at tackling the problem via numerical modeling, which provides a deeper insight into the physics that governs the pollution process. Therefore, we use a particle tracking model to assess whether arsenic levels in the seabed can be affected by the influx of thermal water from an artificial channel outfalling at the westernmost part of the coast The climatic forcings that drive the marine circulation are simplified to basic "scenarios", in which wind and waves are stationary in strength and direction. Since the simulation time is much less than the contamination timescale, the comparison between numerical results and measurements is essentially qualitative and concerns the shape of contamination contours. It was found the primary forcing that enables seabed pollution is the tidal circulation, which, moreover, acts continuously in time. Quantitative arguments based on regression analysis suggest the discharge of thermal water explains almost a quarter of the observed pollution, which is consistent with previous research based on multivariate statistics.
    Description: This research results from a collaboration between the University of Naples Federico II and the National Institute of Geophysics and Vulcanology (INGV). The partnership is born in the frame of the multidisciplinary project ABBaCo, funded by the Italian Ministry of Education and Research, which aimed to provide innovative and environmentally friendly solutions for restoring the Bagnoli area.
    Description: Published
    Description: 134955
    Description: 9T. Geochimica dei fluidi applicata allo studio e al monitoraggio di aree sismiche
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 1TR. Georisorse
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Adsorption ; Arsenic contamination in marine sediments ; Diffusion in coastal waters ; Numerical modeling ; Particle tracking ; Sediments settling ; 03. Hydrosphere ; 03.02. Hydrology ; 03.04. Chemical and biological ; 04.04. Geology ; 04.08. Volcanology ; 05.08. Risk ; 05.06. Methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-09-11
    Description: This work aims to define the geothermal conceptual model of the Spezzano Albanese thermal system located in the northern sector of the Calabria Region, along the western edge of the Sibari Plain. The study confirms that the deep thermal reservoir of Spezzano Albanese is mainly hosted within the permeable levels of the evaporite deposits of the Messinian succession including siltstones with manganese mineralisation, halite, and gypsumarenites. The thermal waters show discharging temperature between 20.2 and 26.6 ◦C and a high compositional variability, from Na–Cl to Na–Ca–HCO3. The compositional evolution (from Na–Cl to Na–HCO3) is accompanied by a decrease in both salinity and the concentrations of most dissolved constituents, including Cl, Br, B, Li, Na, K, Mg, Ca, and Ba. These variations are due to mixing between the thermal endmember, rich in Cl and related components, and low-salinity, cold shallow waters (temperature between 17.5 and 22.7 ◦C). The study points out that the thermal endmember derives by halite dissolution and more complex water-rock interaction processes involving (1) the dissolution of other solid phases of the Messinian deposits, as also confirmed by δ34S values of dissolved sulphate and sulphide, and (2) the precipitation of secondary solid phases (e.g., barite). The geothermometric modelling suggests that the thermal groundwaters in the deep reservoir are probably in equilibrium with either (i) quartz, calcite, disordered dolomite, low-albite, and K-feldspar, as well as with pyrophyllite and poorly crystalline kaolinite (as proxies of clay minerals) at temperatures of 65.5 ± 4.5 ◦C or (ii) quartz, calcite, disordered dolomite, low-albite, disordered adularia, laumontite and saponites at temperatures of 56.1 ± 4.3 ◦C, based on the first and second geothermometric model, respectively. The δ18O and δ2H values of water confirm a meteoric origin for the thermal waters with average recharge altitudes between 745 and 857 m a.s.l. These elevations are compatible with the recharge from the western side of the Esaro valley where evaporite successions are found close to the surface. The isotopic value of the dissolved CO2 associated to the Spezzano Terme water highlights its likely microbial origin, as recognised for other thermal circuits hosted in sedimentary rocks of the southern Apennines. Furthermore, the thermal endmember shows a noteworthy enrichment in CH4 with respect to air due to the interaction of groundwater with sediments rich in organic matter. Although methane could have a biogenic origin, the presence of a minor component of thermogenic methane in the gas phase dissolved in the Spezzano Terme waters cannot be completely excluded. The data obtained in this study allow to assume that the recharge meteoric waters descend to a maximum depth of about 1.1–1.4 km below the main emergence area and then the regional NE-SW fault systems probably act as a preferential pathway for the ascent of the thermal waters towards the surface. These waters discharge at Spezzano Albanese, where the crystalline-metamorphic units cropping out immediately upstream of the emergence area act as cap-rock favouring the final ascent towards the surface of the thermal waters.
    Description: Published
    Description: 106407
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: Thermal waters ; Geothermometric model ; Sulphur isotopes ; δ18O and δ2H ; Spezzano albanese ; Calabria region ; 03.02. Hydrology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...