ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (34,314)
  • De Gruyter  (3,071)
  • 2020-2024  (37,385)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2024-06-15
    Description: The objective of this study is to determine the effects of ocean acidification (OA) on the survival, development and swimming behaviour of embryos of the deep-sea coral Desmophyllum pertusum (syn. Lophelia pertusa). Upon spawning, fertilized embryos were collected and exposed to two pCO2 treatments corresponding to present pCO2 conditions (400 ppm) and future pCO2 conditions predicted under scenario IPCC RCP8.5 for the end of the century (1000 ppm). We monitored survival daily and we measured swimming velocity on day 9 after spawning. Temperature and pH were measured every 24h, salinity was measured every other day, and water samples were collected during the first and last day of the experiment to determine total alkalinity (TA). This dataset includes data on the effects of ocean acidification on swimming velocity of larvae of the deep-sea coral Desmophyllum pertusum. Embryos were exposed to two acidification (pCO2) treatments: present pCO2 conditions (400 ppm) and future pCO2 conditions predicted under RCP8.5 for the end of the century (1000 ppm). After rearing the embryos in the respective treatments for nine days, we recorded the swimming behaviour of larvae with a video camera. Videos were analyzed with manual particle tracking, and here we report the swimming velocity and total traveled distance of larvae in each experimental treatment.
    Keywords: ASSEMBLE_Plus; Association of European Marine Biological Laboratories Expanded; Climate change; cold-water coral; DATE/TIME; Deep sea; early life history; early life stages; iAtlantic; Image analysis, NIH ImageJ, MTrackJ plugin; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; Larvae; larval behaviour; physiology; Remote operated vehicle; ROV; Sample ID; Species; Species, unique identification (Semantic URI); Species, unique identification (URI); Speed, swimming; Swim distance; Time in hours; Tisler_Sampling_Lophelia_pertusa_4; Tisler_Sampling_Lophelia_pertusa_6; Tisler Reef, Skagerrak; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 480 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-15
    Description: The objective of this study is to determine the effects of ocean acidification (OA) on the survival, development and swimming behaviour of embryos of the deep-sea coral Desmophyllum pertusum (syn. Lophelia pertusa). Upon spawning, fertilized embryos were collected and exposed to two pCO2 treatments corresponding to present pCO2 conditions (400 ppm) and future pCO2 conditions predicted under scenario IPCC RCP8.5 for the end of the century (1000 ppm). We monitored survival daily and we measured swimming velocity on day 9 after spawning. Temperature and pH were measured every 24h, salinity was measured every other day, and water samples were collected during the first and last day of the experiment to determine total alkalinity (TA). This dataset includes data on the effects of OA on embryo and larval survival of the deep-sea coral Desmophyllum pertusum. Embryos (age: first cleavage and 2 cell stage) were exposed to two acidification (pCO2) treatments: present pCO2 conditions (400 ppm) and future pCO2 conditions predicted under RCP8.5 for the end of the century (1000 ppm) and reared for a total of nine days. We counted embryos and larvae daily to determine larval survival under the two treatments.
    Keywords: ASSEMBLE_Plus; Association of European Marine Biological Laboratories Expanded; Climate change; cold-water coral; DATE/TIME; Deep sea; early life history; early life stages; iAtlantic; Integrated Assessment of Atlantic Marine Ecosystems in Space and Time; Laboratory experiment; Larvae; larval behaviour; pH; pH meter, Mettler Toledo, Seven2Go pH /Ion meter S8; physiology; Remote operated vehicle; Replicate; ROV; Salinity; Sample ID; Species; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Time in hours; Tisler_Sampling_Lophelia_pertusa_4; Tisler_Sampling_Lophelia_pertusa_6; Tisler Reef, Skagerrak; Treatment; Visual counts
    Type: Dataset
    Format: text/tab-separated-values, 1116 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-14
    Description: The shallow meridional overturning cells of the Atlantic Ocean, the Subtropical Cells (STCs), consist of poleward Ekman transport at the surface, subduction in the subtropics, equatorward flow at thermocline level and upwelling along the equator and at the eastern boundary. In this study we provide the first observational estimate of transport variability associated with the horizontal branches of the Atlantic STCs in both hemispheres based on Argo float data and supplemented by reanalysis products. Thermocline layer transport convergence and surface layer transport divergence between 10°N and 10°S are dominated by seasonal variability. Meridional thermocline layer transport anomalies at the western boundary and in the interior basin are anti-correlated and partially compensate each other at all resolved time scales. It is suggested that the seesaw-like relation is forced by the large-scale off-equatorial wind stress changes through low-baroclinic-mode Rossby wave adjustment. We further show that anomalies of the thermocline layer interior transport convergence modulate sea surface temperature (SST) variability in the upwelling regions along the equator and at the eastern boundary at time scales longer than 5 years. Phases of weaker (stronger) interior transport are associated with phases of higher (lower) equatorial SST. At these time scales, STC transport variability is forced by off-equatorial wind stress changes, especially by those in the southern hemisphere. At shorter time scales, equatorial SST anomalies are, instead, mainly forced by local changes of zonal wind stress.
    Keywords: BANINO; Benguela Niños: Physikalische Prozesse und langperiodische Variabilität; Climate - Biogeochemistry Interactions in the Tropical Ocean; RACE; Regional Atlantic Circulation and global Change; SFB754; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management
    Type: Dataset
    Format: 16 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-06-14
    Description: The upper-ocean circulation of the tropical Atlantic is a complex superposition of thermohaline and wind-driven flow components. The resulting zonally- and vertically-integrated upper-ocean meridional flow is referred to as the upper branch of the Atlantic Meridional Overturning Circulation (AMOC) - a major component and potential tipping element of the global climate system. We investigate the tropical part of the northward AMOC branch, i.e. the return flow covering the upper 1,200 m, based on Argo data and repeated shipboard velocity measurements. The western boundary mean circulation at 11°S is realistically reproduced from high-resolution Argo data showing a remarkably good representation of the vertical structure of meridional velocity and the volume transport of water mass layers when compared to results from direct velocity measurements along a repeated ship section. Thus, we extend the analysis to the inner tropical Atlantic. Within the AMOC return flow, a diapycnal upwelling of central water into the thermocline layer of ~2 Sv is derived between 11°S and 10°N which is about half the magnitude of previous estimates, likely due to improved horizontal resolution. The mean strength of the AMOC return flow is ~16 Sv across 11°S and 10°N. At 11°S, northward transport is concentrated at the western boundary where the AMOC return flow enters the tropics at all vertical layers above 1,200 m. At 10°N, northward transport is observed both at the western boundary and in the interior predominantly in the surface and intermediate layer indicating recirculation and transformation of thermocline and central water within the tropics.
    Keywords: BANINO; Benguela Niños: Physikalische Prozesse und langperiodische Variabilität; currents; physical oceanography; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management; tropical Atlantic
    Type: Dataset
    Format: 46 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-14
    Description: Physical oceanography variables and carbon remineralisation (juveniles/adults of Cyclothone species and Argyropelecus hemigymnus) were analysed during the BATHYPELAGIC cruise (North Atlantic, June 2018). This dataset contains the depth, temperature, and conductivity which were recorded from surface to a maximum depth of 2000 m using a SeaBird SBE 25plus CTD equipped with a Seabird-43 Dissolved Oxygen sensor and a Seapoint Fluorometer. Values of numerical abundance, biomass, specific ETS activity, specific respiraton and respiration flux data analyzed from Northwest Africa (20° N, 20° W) to the South of Iceland are presented. A. hemigymnus specimens were collected using a ''Mesopelagos” net (5 x7 m mouth opening, 58 m total length) equipped with graded-mesh netting (starting with 30 mm and ending with 4 mm) and a multi-sampler for collecting samples from 5 different depth layers. However, Cyclothone specimens were collected using the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS-1 m²) zooplankton net with a 0.2 mm mesh size and with several nets for collecting samples from 8 different depth layers. The Mesopelagos catches were sorted out and identified on board to the lowest possible taxon, and specimens selected for Electron Transfer System (ETS) analyses were immediately frozen in liquid nitrogen for later analysis in the laboratory. MOCNESS samples were preserved in 5% buffered formalin, and specimens were sorted out later in the laboratory. Stomiiforms respiration in the meso- and bathypelagic zones of the ocean were estimated along the transect. Abundance, biomass, specific ETS activity, specific respiration and respiration are given by layer between e.g. 100 m and 1000 m depth (MOCNESS net, 1900–1600 m, 1600–1300 m, 1300–1000 m, 1000–700 m, 700–400 m, 400–200 m, 200–100 m and 100–0 m; Mesopelagos, 1900–1200 m, 1200–800 m, 800–500 m, 500–200 m and 200–0 m).
    Keywords: bathypelagic; BATHYPELAGIC; biological carbon pump; Biomass and Active Flux in the Bathypelagic Zone; Carbon; fish; ICM_Excellence_Centre; mesopelagic; Northeast Atlantic; remineralization; respiration flux; Severo Ochoa Centre of Excellence; SUMMER; Sustainable Management of Mesopelagic Resources; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-06-14
    Description: During the Transatlantic Equatorial Cruise II (TRATLEQ II) with the R/V METEOR (M181) from 17. April to 28. May 2022 (Brandt, 2022), 44 Lagrangian drifters were deployed along the Equator (between 7°W and 37°W) to monitor the surface flow in the upper meter. The equatorial section covered the region of the Atlantic cold tongue that seasonally develops during boreal summer east of 23°W and the western equatorial Atlantic characterized by warmer surface waters and deeper mixed layer depths. In particular, the cruise M181 took place during the warm phase with relatively homogeneous warm surface layer in the whole equatorial Atlantic. Drifters were deployed every 1° longitude (~111 km) between 7°W and 37°W. The drifters were designed and built at Helmholtz-Zentrum Hereon to follow the upper surface flow (approx. 50 cm). The main body of these Hereon drifters consists of a 7.5 cm x 20 cm long tube with a floatation ring at the top. It is attached to a drogue of 35 cm in both length and diameter through a flexible cord within a distance of 20 cm to the tube. When deployed about 5 cm of the tube protrude from the water surface, resulting in a ratio of drag area inside to drag area outside the water of 21. The tube contains a battery pack and an electronic board, which acquires and reports the GPS position every 5 minutes via a global satellite network in near real time. Table 1 provides some information on the 44 deployed Hereon Drifters, which consists of deployment and working time, total covered distance and number of recorded GPS positions.
    Keywords: MOPGA-TAD; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management; Tropical Atlantic Deoxygenation: gateway dynamics, feedback mechanisms and ecosystem impacts
    Type: Dataset
    Format: application/zip, 44 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-14
    Description: Carbon export (from the epipelagic towards the mesopelagic zone) and sequestration (from the mesopelagic towards the bathypelagic zone) in the ocean are reviewed. Particulate organic carbon (POC) flux, and active flux due to migrant zooplankton and micronekton are shown from the epipelagic to the mesopelagic zone, and from the latter to the bathypelagic zone. Values towards the meso- and bathypelagic zones are compared in oligotrophic and productive systems. Zooplankton and prokaryote respiration in the meso- and bathypelagic zones of the ocean are also reviewed for oligotrophic and productive systems. Values were integrated over a depth layer and are given as the flux or respiration under one square meter (in g/m**2/a) between e.g. 100 m and 1000 m depth.
    Keywords: 29HE20101215; 29HE20110117; 29HE20110211; 29HE20110317; 29HE20110416; 29HE20110513; 29HE20110619; bathypelagic; Date/Time of event; DEPTH, water; epipelagic; Event label; Hespérides; Image analysis; Latitude of event; Longitude of event; MALASPINA_LEG1; MALASPINA_LEG1_005-1; MALASPINA_LEG1_007-1; MALASPINA_LEG1_010-1; MALASPINA_LEG1_012-1; MALASPINA_LEG1_013-1; MALASPINA_LEG1_015-1; MALASPINA_LEG1_017-1; MALASPINA_LEG1_019-1; MALASPINA_LEG1_022-1; MALASPINA_LEG1_024-1; MALASPINA_LEG2; MALASPINA_LEG2_027-1; MALASPINA_LEG2_029-1; MALASPINA_LEG2_031-1; MALASPINA_LEG2_033-1; MALASPINA_LEG2_037-1; MALASPINA_LEG2_039-1; MALASPINA_LEG2_041-1; MALASPINA_LEG3; MALASPINA_LEG3_045-1; MALASPINA_LEG3_047-1; MALASPINA_LEG3_049-1; MALASPINA_LEG3_055-1; MALASPINA_LEG3_058-1; MALASPINA_LEG3_062-1; MALASPINA_LEG3_064-1; MALASPINA_LEG3_066-1; MALASPINA_LEG4; MALASPINA_LEG4_069-1; MALASPINA_LEG4_071-1; MALASPINA_LEG4_076-1; MALASPINA_LEG4_077-1; MALASPINA_LEG5; MALASPINA_LEG5_084-1; MALASPINA_LEG5_086-1; MALASPINA_LEG5_088-1; MALASPINA_LEG5_090-1; MALASPINA_LEG5_092-1; MALASPINA_LEG5_096-1; MALASPINA_LEG5_100-1; MALASPINA_LEG6; MALASPINA_LEG6_101-1; MALASPINA_LEG6_103-1; MALASPINA_LEG6_106-1; MALASPINA_LEG6_112-1; MALASPINA_LEG6_114-1; MALASPINA_LEG6_115-1; MALASPINA_LEG6_117-1; MALASPINA_LEG6_119-1; MALASPINA_LEG6_121-1; MALASPINA_LEG6_126-1; MALASPINA_LEG7; MALASPINA_LEG7_131-1; MALASPINA_LEG7_135-1; MALASPINA_LEG7_140-1; MALASPINA_LEG7_142-1; MALASPINA_LEG7_146-1; MALASPINA-2010; Malaspina circumnavigation expedition; Malaspina cruise; mesopelagic; MH007_005; MH009_007; MH012_010; MH014_012; MH015_013; MH017_015; MH019_017; MH021_019; MH024_022; MH026_024; MH036_027; MH038_029; MH040_031; MH042_033; MH046_037; MH048_039; MH050_041; MH061_045; MH063_047; MH065_049; MH075_055; MH078_058; MH082_062; MH086_066; MH095_069; MH097_071; MH102_076; MH103_077; MH128_084; MH130_086; MH132_088; MH134_090; MH136_092; MH140_096; MH144_100; MH150_101; MH152_103; MH155_106; MH161_112; MH163_114; MH164_115; MH166_117; MH168_119; MH170_121; MH175_126; MH193_131; MH197_135; MH202_140; MH204_142; MH208_146; MSN300; Multiple opening/closing net, 300 µm meshsize; Norther Equatorial Pacific Ocean; Northern Equatorial Pacific Ocean; Optional event label; Southern Indian Ocean; Southern Pacific Ocean; Southern Subtropical Indian Ocean; Southern Subtropical Pacific Ocean; Southern Tropical Pacific Ocean; South Indian Ocean; Subtropical North Atlantic; SUMMER; Sustainable Management of Mesopelagic Resources; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management; Zooplankton, biomass as carbon; Zooplankton biomass
    Type: Dataset
    Format: text/tab-separated-values, 124 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-06-14
    Description: Carbon export (from the epipelagic towards the mesopelagic zone) and sequestration (from the mesopelagic towards the bathypelagic zone) in the ocean are reviewed. Particulate organic carbon (POC) flux, and active flux due to migrant zooplankton and micronekton are shown from the epipelagic to the mesopelagic zone, and from the latter to the bathypelagic zone. Values towards the meso- and bathypelagic zones are compared in oligotrophic and productive systems. Zooplankton and prokaryote respiration in the meso- and bathypelagic zones of the ocean are also reviewed for oligotrophic and productive systems. Values were integrated over a depth layer and are given as the flux or respiration under one square meter (in g/m**2/a) between e.g. 100 m and 1000 m depth.
    Keywords: active flux; biological carbon pump; Calculated, integrated over layer depth; Carbon, flux; Carbon, flux per year; Comment; Deep sea; Depth, description; DEPTH, water; MALASPINA-2010; Malaspina circumnavigation expedition; Ocean; Organisms; Parameter; passive flux; Reference/source; Respiration; Respiration rate, carbon; SUMMER; Sustainable Management of Mesopelagic Resources; TRIATLAS; Tropical and South Atlantic climate-based marine ecosystem predictions for sustainable management; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 902 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Meteorology Climatology Remote Sensing, Dep. Umweltwissenschaften, Universität Basel
    Publication Date: 2024-06-14
    Description: In Gobabeb, Namibia SWD, LWD and DIR are each measured redundant with two instruments of the same make (not in this data base). The differences between the pairs are used in the quality control. This is done manually by inspecting plots of half-day diurnal courses of the pairs and their differences. Values are removed mostly in the morning due to daily cleaning. Other reasons for larger differences are birds, insects, or people at the station. There are regular fog events varying in frequency over the year. Usually, the fog appears in the second half of the night and disappears a few hours after sunrise. The case temperatures of pyrgeometers practically never drop below dewpoint but there can be water deposition of the dome.
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, standard deviation; GOB; Gobabeb; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; Long-wave downward radiation; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Monitoring station; MONS; Namib Desert, Namibia; Pyranometer, Kipp & Zonen, CMP22, SN 110315, WRMC No. 20100; Pyranometer, Kipp & Zonen, CMP22, SN 110316, WRMC No. 20101; Pyranometer, Kipp & Zonen, CMP22, SN 120330, WRMC No. 20102; Pyrgeometer, Kipp & Zonen, CGR4, SN 110408, WRMC No. 20200; Pyrgeometer, Kipp & Zonen, CGR4, SN 120457, WRMC No. 20201; Pyrheliometer, Kipp & Zonen, CHP 1, SN 110764, WRMC No. 20000; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Station pressure; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 580084 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Izaña Atmospheric Research Center, Meteorological State Agency of Spain
    Publication Date: 2024-06-14
    Keywords: Air temperature at 2 m height; BARO; Barometer; Baseline Surface Radiation Network; BSRN; DATE/TIME; Diffuse radiation; Diffuse radiation, maximum; Diffuse radiation, minimum; Diffuse radiation, standard deviation; Direct radiation; Direct radiation, maximum; Direct radiation, minimum; Direct radiation, standard deviation; EKO Instruments, MR-60, SN S15115.07, WRMC No. 61013; HEIGHT above ground; Humidity, relative; HYGRO; Hygrometer; IZA; Izaña; Long-wave downward radiation; Long-wave downward radiation, maximum; Long-wave downward radiation, minimum; Long-wave downward radiation, standard deviation; Long-wave upward radiation; Long-wave upward radiation, maximum; Long-wave upward radiation, minimum; Long-wave upward radiation, standard deviation; Monitoring station; MONS; Net radiation; Net radiation, maximum; Net radiation, minimum; Net radiation, standard deviation; Pyranometer, EKO, MS-802F, SN F15508FR, WRMC No. 61010; Pyranometer, EKO, MS-802F, SN F15509FR, WRMC No. 61011; Pyrgeometer, Kipp & Zonen, CGR4, SN 050783, WRMC No. 61008; Pyrheliometer, EKO, MS-56, SN P15048, WRMC No. 61012; Short-wave downward (GLOBAL) radiation; Short-wave downward (GLOBAL) radiation, maximum; Short-wave downward (GLOBAL) radiation, minimum; Short-wave downward (GLOBAL) radiation, standard deviation; Short-wave upward (REFLEX) radiation; Short-wave upward (REFLEX) radiation, maximum; Short-wave upward (REFLEX) radiation, minimum; Short-wave upward (REFLEX) radiation, standard deviation; Station pressure; Tenerife, Spain; Thermometer
    Type: Dataset
    Format: text/tab-separated-values, 1351348 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...