ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(7), (2021): e2020JG005977, https://doi.org/10.1029/2020JG005977.
    Description: Increasing Arctic temperatures are thawing permafrost soils and liberating ancient organic matter, but the fate of this material remains unclear. Thawing of permafrost releases dissolved organic matter (DOM) into fluvial networks. Unfortunately, tracking this material in Arctic rivers such as the Kolyma River in Siberia has proven challenging due to its high biodegradability. Here, we evaluate late summer abruptly thawed yedoma permafrost dissolved organic carbon (DOC) inputs from Duvannyi Yar. We implemented ultrahigh-resolution mass spectrometry alongside ramped pyrolysis oxidation (RPO) and isotopic analyses. These approaches offer insight into DOM chemical composition and DOC radiocarbon values of thermochemical components for a permafrost thaw stream, the Kolyma River, and their biodegraded counterparts (n = 4). The highly aliphatic molecular formula found in undegraded permafrost DOM contrasted with the comparatively aliphatic-poor formula of Kolyma River DOM, represented by an 8.9% and 2.6% relative abundance, respectively, suggesting minimal inputs of undegraded permafrost DOM in the river. RPO radiocarbon fractions of Kolyma River DOC exhibited no “hidden” aged component indicative of permafrost influence. Thermostability analyses suggested that there was limited biodegraded permafrost DOC in the Kolyma River, in part determined by the formation of high-activation energy (thermally stable) biodegradation components in permafrost DOM that were lacking in the Kolyma River. A mixing model based on thermostability and radiocarbon allowed us to estimate a maximum input of between 0.8% and 7.7% of this Pleistocene-aged permafrost to the Kolyma River DOC. Ultimately, our findings highlight that export of modern terrestrial DOC currently overwhelms any permafrost DOC inputs in the Kolyma River.
    Description: This work was funded by NSF grants ANT-1203885 and PLR-1500169 to R.G.M.S. The work was also supported by the National Science Foundation Division of Chemistry through DMR-1644779 and the State of Florida.
    Description: 2022-01-09
    Keywords: Permafrost ; Dissolved organic carbon ; Dissolved organic matter ; FT-ICR MS ; Ramped pyrolysis oxidation ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(20), (2021): e2021GL094693, https://doi.org/10.1029/2021GL094693.
    Description: Pacific Summer Water (PSW) plays a critical role in the ecosystem of the western Arctic Ocean, impacting sea-ice melt and providing freshwater to the basin. Most of the water exits the Chukchi Sea shelf through Barrow Canyon, but the manner in which this occurs and the ultimate fate of the water remain uncertain. Using an extensive collection of historical hydrographic and velocity data, we demonstrate how the PSW outflow depends on different wind conditions, dictating whether the warm water progresses eastward or westward away from the canyon. The current carrying the water westward along the continental slope splits into different branches, influenced by the strength and extent of the Beaufort Gyre, while the eastward penetration of PSW along the shelfbreak is limited. Our results provide the first broad-scale view of how PSW is transferred from the shelf to the basin, highlighting the role of winds, boundary currents, and eddy exchange.
    Description: Funding for the project was provided by National Science Foundation grant OPP-1733564 and National Oceanic and Atmospheric Administration grant NA14OAR4320158 (P. Lin, R. S. Pickart, J. Li), and Trond Mohn Foundation Grant BFS2016REK01 (K. Vage).
    Description: 2022-04-01
    Keywords: Pacific Summer Water ; Arctic ; Beaufort Gyre ; Chukchi Slope Current ; Beaufort Shelfbreak Jet ; Barrow Canyon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(5), (2022): e2021JC018056, https://doi.org/10.1029/2021jc018056.
    Description: As Arctic sea ice declines, wind energy has increasing access to the upper ocean, with potential consequences for ocean mixing, stratification, and turbulent heat fluxes. Here, we investigate the relationships between internal wave energy, turbulent dissipation, and ice concentration and draft using mooring data collected in the Beaufort Sea during 2003–2018. We focus on the 50–300 m depth range, using velocity and CTD records to estimate near-inertial shear and energy, a finescale parameterization to infer turbulent dissipation rates, and ice draft observations to characterize the ice cover. All quantities varied widely on monthly and interannual timescales. Seasonally, near-inertial energy increased when ice concentration and ice draft were low, but shear and dissipation did not. We show that this apparent contradiction occurred due to the vertical scales of internal wave energy, with open water associated with larger vertical scales. These larger vertical scale motions are associated with less shear, and tend to result in less dissipation. This relationship led to a seasonality in the correlation between shear and energy. This correlation was largest in the spring beneath full ice cover and smallest in the summer and fall when the ice had deteriorated. When considering interannually averaged properties, the year-to-year variability and the short ice-free season currently obscure any potential trend. Implications for the future seasonal and interannual evolution of the Arctic Ocean and sea ice cover are discussed.
    Description: This work was supported by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. S. T. Cole was supported by Office of Naval Research grant N00014-16-1-2381.
    Description: 2022-10-14
    Keywords: Arctic ; Internal waves ; Mixing ; Sea ice ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carey, J. C., Abbott, B. W., & Rocha, A. V. Plant uptake offsets silica release from a large arctic tundra wildfire. Earth’s Future, 7(9), (2019): 1044-1057, doi:10.1029/2019EF001149.
    Description: Rapid climate change at high latitudes is projected to increase wildfire extent in tundra ecosystems by up to fivefold by the end of the century. Tundra wildfire could alter terrestrial silica (SiO2) cycling by restructuring surface vegetation and by deepening the seasonally thawed active layer. These changes could influence the availability of silica in terrestrial permafrost ecosystems and alter lateral exports to downstream marine waters, where silica is often a limiting nutrient. In this context, we investigated the effects of the largest Arctic tundra fire in recent times on plant and peat amorphous silica content and dissolved silica concentration in streams. Ten years after the fire, vegetation in burned areas had 73% more silica in aboveground biomass compared to adjacent, unburned areas. This increase in plant silica was attributable to significantly higher plant silica concentration in bryophytes and increased prevalence of silica‐rich gramminoids in burned areas. Tundra fire redistributed peat silica, with burned areas containing significantly higher amorphous silica concentrations in the O‐layer, but 29% less silica in peat overall due to shallower peat depth post burn. Despite these dramatic differences in terrestrial silica dynamics, dissolved silica concentration in tributaries draining burned catchments did not differ from unburned catchments, potentially due to the increased uptake by terrestrial vegetation. Together, these results suggest that tundra wildfire enhances terrestrial availability of silica via permafrost degradation and associated weathering, but that changes in lateral silica export may depend on vegetation uptake during the first decade of postwildfire succession.
    Description: This research was supported by NSF EAR PD Fellowship 1451527 to J. C. Carey, NSF grants 1065587 and 1026843 to the Marine Biological Laboratory, and NSF grant 1556772 to the University of Notre Dame. B. W. Abbott was supported by the Plant and Wildlife Department and College of Life Sciences at Brigham Young University. Data are available from the Dryad Digital Repository (doi:10.5061/dryad.79q74n7). We thank Ian Klupar for field assistance. R. Fulweber at the Toolik Field Station GIS & Remote Sensing Office performed watershed delineations and other spatial analysis. We thank the NSF Arctic LTER and the UAF Toolik Field Station for logistical support. We declare no conflicts of interest.
    Keywords: silica ; Arctic ; tundra ; wildfire ; vegetation ; permafrost
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...